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MANIFOLDS WITH QUADRATIC CURVATURE DECAY
AND SLOW VOLUME GROWTH

JOHN LOTT 1 AND ZHONGMIN SHEN

To Detlef Gromoll on his 60th birthday

ABSTRACT. - We show that there are topological obstructions for a noncompact manifold to admit a
Riemannian metric with quadratic curvature decay and a volume growth which is slower than that of the
Euclidean space of the same dimension. © 2000 Editions scientifiques et medicales Elsevier SAS

RESUME. - Nous montrons qu'il y a des obstructions topologiques pour qu'une variete non compacte
admette une metrique Riemannienne a courbure quadratiquement decroissante ainsi qu'une croissance de
volume plus lente que celle de 1'espace Euclidien de meme dimension. © 2000 Editions scientifiques et
medicales Elsevier SAS

1. Introduction

A major theme is Riemannian geometry is the relationship between curvature and topology.
For compact manifolds, one can constrain the curvature and diameter and ask whether
one obtains topological restrictions on the manifold. If the manifold is noncompact then a
replacement for a diameter bound is a constraint on how the curvature behaves in terms of
the distance from a basepoint. More precisely, let M be a complete connected n-dimensional
Riemannian manifold. Fix a basepoint mo G M.

DEFINITION 1.1.- M has quadratic curvature decay (with constant C > 0) if for all m e M
and all 2-planes P in T^M, the sectional curvature K(P) of P satisfies

(1) \K(P)\<iC/d(mo,m)2.

Note that condition (1) is scale-invariant in that it is unchanged by a constant rescaling of
the Riemannian metric. One can show that any connected smooth paracompact manifold has a
Riemannian metric with quadratic curvature decay; see [10, p. 96] or Lemma 2.1 below. Let us
contrast this with the result ofAbresch [1] that if K(P) ̂  -G/d(mo, m)2"^ for some e > 0 then
M has finite topological type in the following sense.

DEFINITION 1.2. - M has finite topological type if M is homotopy-equivalent to a finite
GIV-complex.

1 Supported by NSF Grant DMS-9704633.
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276 J. LOTT AND Z. SHEN

See [1,9] for results on manifolds with faster-than-quadratic curvature decay. In this paper we
concentrate instead on the case of quadratic curvature decay. We will show that if in addition one
restricts the volume growth of the metric, then one does obtain topological restrictions on M.
The first question is whether M has finite topological type.

DEFINITION 1.3. - M has lower quadratic curvature decay (with constant C > 0) if for all
m € M and all 2-planes P in TmM, the sectional curvature K(P) of P satisfies

(2) K(P)^-C/d(mo,m)2.

Let Bt denote the metric ball of radius t around mo and let 5i denote the distance sphere of
radius t around mo. If M has lower quadratic curvature decay then by a standard argument, M
has at most polynomial volume growth; see [7, Theorem 4.9(iii)] or Lemma 3.1 below.

PROPOSITION 1.1.- Suppose that M has lower quadratic curvature decay. If vol(£?t) =
o(t2) as t —^ oo and M does not collapse at infinity, i.e. mfx^M^oKB\(x)) > 0, then M has
finite topological type.

The o(t2) bound in Proposition 1.1 cannot be improved to 0(t2), as shown in Example 3
below. Proposition 1.1 is an improvement of [11, Theorem 1.2], where an additional assumption
of nonnegative Ricci curvature was made.

Next, we consider manifolds with volume growth slower than that of the Euclidean space of
the same dimension.

DEFINITION 1.4. - M has slow volume growth if

(3) liminfvol(Bt)/r =0.
t^oo

There is a notion of an end E of M and of E being contained in an open set 0 C M; see, for
example, [2, p. 80].

DEFINITION 1.5. - An end E of M is tame if it is contained in an open set diffeomorphic to
(0, oo) x X for some smooth connected closed manifold X.

We remark that X is determined by E only up to /^-cobordism. Hereafter we assume that M
is oriented.

PROPOSITION 1.2.- Suppose that M has quadratic curvature decay and slow volume
growth. Let E be a tame end of M as in Definition 1.5. Then for any product \\^pi^(TX)
ofPontryagin classes ofX and any bounded cohomology class cj € H1 (X; R) with I + 4 ̂ ^ ik =
n — 1,

(4) /^un^(rx)=o.
x k

COROLLARY 1.1.- IfM is as in Proposition 1.2 then the signature and the simplicial volume
ofX vanish.

Example. - There is no metric of quadratic curvature decay and slow volume growth on
R </ ^Pu2A;X ^r

Next, we give a sufficient condition for M to have a metric of quadratic curvature decay and
slow volume growth.
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MANIFOLDS WITH QUADRATIC CURVATURE DECAY AND SLOW VOLUME GROWTH 277

PROPOSITION 1.3. - Let X be a closed manifold with a polarized F-structure [5]. Suppose
that X = 9Nfor some smooth compact manifold N. Then there is a complete Riemannian metric
on M = Int(TV) of quadratic curvature decay and slow volume growth.

It follows from Proposition 1.3 that when n is even, there is a metric on W1 of quadratic
curvature decay and slow volume growth. The case when n is odd is less obvious.

PROPOSITION 1.4.- For all n > 1, there is a complete Riemannian metric on W1 of
quadratic curvature decay and slow volume growth.

If X is a closed oriented manifold with a polarized ^-structure then the Pontryagin numbers
and Euler characteristic of X vanish. Based on Proposition 1.3, one may think that under the
hypotheses of Proposition 1.2, one could also show that the Euler characteristic of X vanishes.
However, Proposition 1.4 shows that this is not the case, as the Euler characteristic of Sn~l is
two if n is odd.

We can combine Propositions 1.2-1.4 to obtain some low-dimensional results.

COROLLARY 1.2. - Let N be a smooth compact connected oriented manifold-with-boundary
of dimension n.

(1) Ifn = 2 then Int(AQ has a metric of quadratic curvature decay and slow volume growth.
(2) Ifn=3 then Int(TV) has a metric of quadratic curvature decay and slow volume growth if

and only if9N consists ofl-spheres and 2-tori.
(3) Ifn= 4, suppose that Thurston's GeometrUation Conjecture holds. Then Int(7V) has a

metric of quadratic curvature decay and slow volume growth if and only if the connected
components of9N are graph manifolds.

Finally, by an argument similar to that of [6, Theorem 0.8], there is an integrality result for the
integral of the Gauss-Bonnet-Chern form, which we state without proof.

PROPOSITION 1.5.- Suppose that M has a complete Riemannian metric g of quadratic
curvature decay with

voW=o(t") and J^^oc.
1

Let e(M,g) <E ^(M) be the Gauss-Bonnet-Chern form. Then f^ e(M,g) <E Z.

As mentioned above, any connected smooth paracompact manifold admits a Riemannian
metric with quadratic curvature decay. An interesting question, which makes no reference to
volume growth, is how small the constant C in Definition 1.1 can be made. That is, given
C > 0, what are the topological constraints on the noncompact manifolds which admit complete
Riemannian metrics satisfying [JC(P)| ^ C/(l + d(mo,m))2?

We thank Mikhael Gromov for pointing out the relevance of bounded cohomology, Frank
Connolly for a topological remark and the referee for useful comments.

2. Examples

(1) Let TV be a smooth compact connected n-dimensional manifold-with-boundary. Let h be a
metric on ON. Given c ̂  1, consider the metric on [1, oo) x 9N given by dt2 + t^h. Extend this
to a smooth metric g on Int(TV) == N UQN ([1, oo) x 9N). Then g has quadratic curvature decay
and polynomial volume growth. By choosing c large, the degree of volume growth can be made
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278 J. LOTT AND Z. SHEN

arbitrarily large. Taking c = 1, we see that having quadratic curvature decay and volume growth
of order O(^) in no way restricts the topology of the ends.

(2) For c G M, consider the metric on [1, oo) x S'1 given by dt2 + t^dO2. Cap this off by a
disk at { 1 } x S1 to obtain a smooth metric g on IR2. Then g has quadratic curvature decay. If
c < -1 then (R2, g) has finite volume. Hence the assumption of quadratic curvature decay gives
no nontrivial lower bound on volume growth.

(3) Start with the Euclidean metric on the annulus

(5) A={(x,y)eR2: l^x2+y2^4}=^0)-B^O).

Add a handle to Int(A), keeping the metric the same near 9A. Consider this as a metric on
T -D2 - D2. With an obvious notation, for j e N, let V • (T2 - D2 - D2) denote the rescaled
metric. Consider the infinite genus surface

(6)^=W)U^{T2-D2-D2)Us.2•(T2-D2-D2)Us^^T2-D2-D2)Us^'•

with its corresponding metric gs. For n ̂  2, let g^-2 be a flat metric on the (n - 2)-torus.
Then the product metric (F, gs) x (T^-2, g^-i) has quadratic curvature decay, volume growth
of order t2 and infinite topological type. This shows that the o(t2) condition in Proposition 1.1
cannot be improved to 0(t2).

LEMMA 2.1.- If M is a smooth connected paracompact manifold then M admits a complete
Riemannian metric of quadratic curvature decay.

Proof. - First, M admits a complete Riemannian metric h of bounded sectional curvature [8].
Given 0 e C°° (M), put g = e^h. We have

(7) ^ki(9) = R]kiW - ?1 + ̂ hjk - fe + 6^ - ̂ r (^ - 6ih,k),

where (f)ab = ̂ ;ab — 0;a<^;6. Let dh denote the distance function with respect to h and let d
denote the distance function with respect to g . By [6, Theorem 1.8], there is a (f) e C°°(M) and a
constant c > 0 such that

(1) (f)(m) ̂  dh(mo, m) ̂  (f)(m) + c.
(2) ||V0||^c.
(3) [|Hess(0)||^c.

Then from (7), in order to show that g has quadratic curvature decay it suffices to show that there
is a constant 00 such that dg(m^ m) ̂  Ce^ for all m c M. Let 7 be a normalized minimal
geodesic, with respect to h, from mo to m. Then measuring the length of 7 with respect to g ,

dh(mo,m) dh(m,o,m)

(8) dg(mo, m) ̂  / g^W)) ̂  ̂  j e* d^ = e^7720'7'^ - 1 ̂  e0^^.
o o

The lemma follows. D

3. Proof of Proposition 1.1

First of all, every manifold with lower quadratic Ricci curvature decay has polynomial volume
growth [7, Theorem 4.9(iii)]. For completeness, and as we will need Eq. (11) below, we give the
proof here.
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MANIFOLDS WITH QUADRATIC CURVATURE DECAY AND SLOW VOLUME GROWTH 279

LEMMA 3.1. - Suppose that there is a constant C > 0 such that for each m C M and each
unit vector v C TmM, the Ricci curvature satisfies

C
(9) Ric(-y,v)^ -(n- 1)

d(mo, m)2'

Put N = (n - 1)((V\ +4C7 - 1)/2) + n. Then there is a constant Co = Go(n, C) > 0 such that
for t ̂  3,

(10)

and

vol(Bf) ̂  Covol(6'i)f + vol(^i)

(11 ) vol(B,+i-B,_i)^Co
vol(^-i)

t - 1 '

Proof. - Let lit = —— ^^=1 k denote the mean curvature of the regular part of 61, where
{^}F=i1 are me pri^ipBl curvatures. Letting dAf and dAmo denote the volume forms on St and
SmoM respectively, define ( p t ' - SmoM —^ Sf by

(12) ^(^)=exp^(^)

and define r ] t ' . SmoM —>• (0, oo) by

(13)

We have

(14)

and

(15)

As t -^ 0,

(16)

(^)*dA^ v=r]t(v)dAmo.

vo\(St)= I ^(^)dA^
S^M

(n - \)IIt\^v) = r]'t(v)/r]t(v).

, n — 1 Ric(^, v)
(n - \Wt\^ = —— - ————t + o(t).

Put IKf) = lit ^t(v) and v(t) = (exp^ )*(t?;). The Riccati equation implies

(17) TT^+TT^)2^-
Ric(^)^ffl)

n-1

Put a = (^1 +4(7 + 1)/2 and consider

(18) /(Q = eF 77(s)(s)ds [^77(Q - a^-1].

Then (16) implies that lim^o+ fW = 0. On the other hand, from (9) and (17), we have

(19) f ' ( t ) = i^e^ n(s)(s)ds [Il^t) + II(t)2 - a(a - l)t-2] ̂  0.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



280 J. LOTT AND Z. SHEN

Thus f(t) ̂  0, giving

(20) n(t)<^at~\

Together with (15), we conclude that ^(v)/^"1^ is nonincreasing. This implies that
vo^St)/^71"1^ is nonincreasing, too. As

t

(21) vol(fit) - vol(Bi) = / ̂ ^^a d5,
1

we obtain

t t

(22) vol(5i) ( 5(n-l)a d5 ̂  vol(B,) - vol(Bi) ̂  ̂ ^ [ 5(n-l)Q d5.
i i

Hence

(23) vol(B,) ̂  -——1——-vol^i)^-1^1 + vol(Bi).
(n— l)a+ 1

Also,
t+i ^+1

(24) .ol(B,,, - B,.,)= / ̂ •-•>«d. < ̂ !|;-̂  / .»-"°d.
t-1 t-1

<+1

^vol(B,.)-vol(B.) ^_^

^-'sCn-Dads 7J l t-1

volCB^i)
^^"^t-

for large enough Co. D

Proof of Proposition 1.1.- We use critical point theory of the distance function; for a review,
see [3]. Let us say that a connected component ̂  of St is good if it is part of the boundary of
an unbounded component of M — Bt and there is a ray from mo passing through Z^.

LEMMA 3.2. - Suppose that there is a to > 0 such that ift > to then there is no critical point
ofdmo on any good component St of St. Then M has finite topological type.

Proof. - Let E be an end of M. We know that there is a normalized ray 7 such that 7(0) = mo
and 7 exits E. Let U be the unbounded component of M — B^ containing {^(t)]t>to- By
assumption, for all t > to, the connected component ̂  of St which contains ^(t) does not
include any critical points of dmo. By the isotopy lemma [3, Lemma 1.4], for each t > to there
is some e > 0 so that a neighborhood of St is homeomorphic to (t — e,t 4- e) x Ef, the first
coordinate being the distance from mo. By compactness, for any b > a > to, we get an embedding
[a, b] x Ea -^ U. Stacking these together, we get an embedding ^: (to, oo) x E —> U for a
fixed E. As the image of ^ is relatively open and closed, we obtain that U is homeomorphic to
(0, oo) x Z' (compare [3, p. 35]). Furthermore, Z1 is a closed connected topological manifold [3,
Lemma 1.4]. In particular, for all t > to, U H St is connected and good, so U does not contain any
critical points. Thus M — B^ does not contain any critical points in its unbounded components.
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MANIFOLDS WITH QUADRATIC CURVATURE DECAY AND SLOW VOLUME GROWTH 281

A priori, M — B^ may have an infinite number of bounded components. However, as distance
balls in M are precompact, it follows that only a finite number of these bounded components can
intersect Si^\. Thus there is some t\ > to such that M — B^ does not have any critical points,
from which the lemma follows. D

Remark. - In fact, the proof above shows that M is homeomorphic to the interior of a compact
topological manifold-with-boundary N . It follows from smoothing theory that if dim(M) ^ 6
then M is diffeomorphic to the interior of a compact smooth manifold-with-boundary. This is
basically because one can put a smooth structure on 9N if one can lift the classifying map for
the tangent (micro)bundle from [QN.BTop] to [QN,BO\. As the interior of N is smooth, we can
deform the lifting obstruction into the interior of N , where it vanishes.

Define

(25) T>(mo, t) = sup Diam(Zt),

where the supremum is taken over all good components Sf of St and the diameter is measured
using the metric on M. We claim that if the manifold has lower quadratic curvature decay and if

(26) lim^^^O
t—>00 t

there is a to > 0 such that if t > to then there is no critical point of dmo on any good component
St of St. For a pair of points p, q G M, define

epq(x) = d(p, x) + d(q, x) - d(p, q).

Clearly, for any t > 0 and any point m € M — B^t on a ray from mo which intersects St,

(27) em,m(x) ̂  2P(mo, t) for x C St.

By assumption, the sectional curvature on M — Bf/^ satisfies

(28) KM>-^-.

Assume that there is a to > 0 such that for t > to,

(29) Z)(mo^K——=,
4A\/C'

where A is a large constant which will be specified later.
Suppose that x e St is a critical point of dmo. (See Fig. 1.) Take a minimizing geodesic r from

x to m. There is a minimizing geodesic a- from x to mo such that Z((T(O), r(0)) ̂  ^. Take two
points p = o'(a) and q = r(a) where a = t/(\VC). By the triangle inequality, we have

(30) epq(x) ̂  emom(x) < TD(mQ, t).

For A ^ 1W/VC, we see that the triangle /\pxq is contained in a small neighborhood of x inside
M — Bf/^. Then we can apply the Toponogov inequality to ^pxq and obtain

(31) cosh(co^(p,^)) ^ cosh^coa),

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



282 J. LOTT AND Z. SHEN

Fig. 1.

where CQ = 2VC/t. Note that

(32)

We obtain

(33)

cod(p, q) = co [2a - epq(x)] ^ 2co [a - P(mo, t)] ^

cosh ( - ) < cosh2 ( - ) .
\ A 7 \ A 7

This is impossible for sufficiently large A.
Finally, we must show that if vol(B^) = o(t1) and if there is a v > 0 such that vol(Bi(.r)) > v

for all x e M, then (29) holds for large ^.
Let Et be a connected component of the boundary of an unbounded component of M — Bt. For

any x, y C Z^ there is a continuous curve c: [0, r] ̂  J^ from x to ^/. Suppose that d(x, y) > 2.
Then there is a partition 0 = ^o < ^i < • • • < tk = r such that {Bi(c(^))}^o are disjoint and
B2(c(ti)) n B^c(ti^)) ̂  0. Note that Bi(cfc)) C B^+i - ̂ _i. We have

(34)

Thus

(35)

K

(k+l)v ^ ^vol(Bi(c(^))) ^ vol(B,+i -^7) ^ Go^1^.0.
^- 1

f c — i
Diam(^) ̂  ^d(c(^),c(^+i)) ^ Ci^1^-0,

^ -1

giving

(36)

This proves Proposition 1.1. D
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MANIFOLDS WITH QUADRATIC CURVATURE DECAY AND SLOW VOLUME GROWTH 283

4. Proof of Proposition 1.2 and Corollary 1.1

Fix an open set 0 containing E which is diffeomorphic to (0,oo) x X. For u > 1, let M
denote M with the metric U^QM- Let 0 denote the copy of 0 in M. Let Bt and St denote the
metric ball and metric sphere in M around mo. Rescaling (1), there is a constant C' > 0 such
that the region B\oo — B\/\QQ has sectional curvatures bounded by C ' , uniformly in u. Put

(37) r i / i o (5 inO)={mCM: d(m, 5'i H 0)^1/10}.

By [6, Theorem O.I], there is a constant C" > 0 independent of u such that there is a connected
codimension-0 submanifold Uu of M with

(38) (5i n 6) c Un c ri/io(^i n o\

(39) vol((9[/J ^ C^vol^i/io^i n 0))

and

(40) UTT^KC",

where IIguu is me second fundamental form of 9Uu in M. Then by the Gauss-Codazzi equation,
the intrinsic sectional curvature of 9Uu is uniformly bounded in u. Rescaling to M, we have

(41) vol(Ti/io(5i n E)) = u-^o^Tu/^Sn H 0)) < ^voKBnu/io).

Let (^ }^i be a sequence in R^ approaching infinity such that

(42) limvol(Bi^./io)/^=0.
J—^OO " "

For ̂  large, let Yj be a connected component of QUuj. Let Oj be the oriented cobordism between
Yj and X coming from the unbounded component of M — Yj corresponding to E, truncated at
some level [Rj] x X. Let i: Yj; —» Oj be the inclusion and let TT : Oj —^ (0, oo) x X —^ X be
projection. Then

(43) I^un^(TX)- A^oz)*^un^(Ty,)= [d(7r^/\]^p^TO,)\=0.
{ k 4 fc 6, ^ k /

From (39), (41), (42) and [10, p. 37], we have that J^.(TT o z)*c^ U rL^C^) = ° i f^ is ̂ ^
enough. This proves Proposition 1.2.

Take uj = 1 € H°(X;]R). Applying Proposition 1.2 to the Hirzebruch L-class, we obtain that
the signature ofX vanishes. Suppose X has a nonzero simplicial volume. Then the fundamental
class [X] € Bn~l(X',R) is a bounded cohomology class and Proposition 1.2 implies that
f^- uj = 0, which is a contradiction. This proves Corollary 1.1.

5. Proof of Proposition 1.3

Suppose that [g(t)}t^[\,oo) is a smooth 1-parameter family ofRiemannian metrics on X with
sectional curvatures that are uniformly bounded in t. Then one can check that dt2 + t2g(t)

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



284 J. LOTT AND Z. SHEN

is a metric of quadratic curvature decay on [l,oo) x X if \\g~~l(t)dg/dt\\oo = 0(1 / t ) and
II^Md^/d^llcx) = 0(l/t2). Put ^ = t-1 and let g(t) be the Riemannian metric on X denned
in [5, Section 3]. Then [g(t)}t^[i,oo) has uniformly bounded sectional curvature in t. We claim
that \\g-\t)dg/dt\\^ =0(l/Qand 11^-1 (t) d2g/dt2 \ \ oo = 0(1 /t2). The metric^) is defined by
a finite recursive process. One starts with an invariant Riemannian metric go for the F-structure
and puts g^t) = log^l + t)go. Clearly \\g^\t)dg^/dt\\^ = 0(1/0 and \\g^(t)d2g^dt2\\^ =
OCl/^.Then

(44) g^t^!^^^ onu-
3 W), onX-U^

where
(1) [/jis a certain open subset of X,
(2) g^(t) is the part of gj(t) corresponding to tangent vectors to the F-structure on Uj,
(3) hj(t) is the part of gj(t) corresponding to normal vectors to the F-structure on Uj and
(4) pj = ̂ -iog(/,)/iogd/2) ̂ ^ fj'.X-. [1/2,1] a certain smooth function which is identically

one on X — Uj.
It follows by induction on j that there is a metric of quadratic curvature decay and small

volume growth on [1, oo) x X. Gluing [1, oo) x X onto TV, we obtain the desired metric on M.

6. Proof of Proposition 1.4

Ifnis even then S^1 has a polarized F-structure coming from a free 5'1-action and the result
follows from Proposition 1.3. The first nontrivial case is when n = 3.

Suppose that n = 3. By [4, Example 1.4], there is a metric h on R3 with finite volume and
bounded sectional curvature. Our metric will be conformally related to h. Let us first give the
construction of h in detail. For j e ̂ +, let Cj be the complement of a small solid torus in a solid
torus. (See Fig. 2.) Then topologically,

(45) R3 = (S1 x D2) UT2 Ci Ur2 €2 U^ • • • .

We take mo e S1 x D2. Each Cj can be decomposed as Cj = (Z^- x S^ •) U-p (^2j+i x 5^+i),
where E^ is a 2-sphere with three disks removed, ^2j+i is a 2-disk and S^., 'S^+i are circles.
(See Fig. 3. Each block is to be rotated around the axis and then have its left and right faces

c
Fig. 2.
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MANIFOLDS WITH QUADRATIC CURVATURE DECAY AND SLOW VOLUME GROWTH 285

^
0 ^~ 0 +

Fig. 3.

ŝ... s'O
2j,3

2i+l,l

2: z
2J+1

Fig. 4.

identified.) Put QE^j = 5 .̂ j U 5^ u S^3» where 5^-j is the top side of the rectangle, S^^ ls

the bottom side of the rectangle and 5^ 3 is the circle enclosing the removed disk. (See Fig. 4.)
Put 9^2j+i = 5^+11 • The identifications of the toroidal boundaries are

(46) d „ d
°2j+U x °2j+l

cl „ d
°2j,3 x ^2j

, d
~2j,2 X ̂ ,,

/ ^2j-2,l x ^2j-2'

where

(47) ^2j+l,l ^ ^2j
clOo^

^1
^2j+l '

^1
'^2J,3 '

rd
^•]

, Cl
°2j,2'

/ <?1
*:')2J-2»

. ^1
°2j-2,l-

We will put product metrics on Z^j x 5'̂  and Z'2j+i x ^j+i • Let ei be the length of S^ and
let ^^ be the length of 5^. Then (47) gives the relations

(48) ^2j,l = ̂ 2j+2, ^2j,2 = ̂ 2j+l, ^2j,3 = ̂ 2j-2, ^2j+l,l = ̂ 2j-

We will take ei = e~\ Let Zoo be a thrice-punctured sphere with a Riemannian metric
such that three ends E^E^E^ ^ (l,oo) x 51 are isometric to dr2 + e'^d^2. Put EQ =
Foe - (EI U £"2 U ^3). Let u C C°°([0,1]) be a nondecreasing function such that

(49) u(s)=
' s if 5 C [0,1/3],
1 if s C [1/2,1].

Given k G Z+, put £'(A:) = [0, A;] x S'1 with the metric dr2 + e-2^/^ d(92. Then put

(50) Z2, = Zo Ua^ (E(2j + 2) U E(lj + 1) U E(2j - 2)),
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2j,l

E(2j+2)

H(2j-2)

Z
2J+1

Fig. 5.

isometrically. (See Fig. 5.) Similarly, let S'^ be a once-punctured sphere with a Riemannian
metric such that the end E = (1, oo) x 6'1 is isometric to dr2 + e"^ d(92. Put SQ = E^ - E and

(51) ^2,+i = ^o U^' TO),

isometrically. (See Fig. 5.) Then one can check that {^}j^i have uniformly bounded volume
and curvature. Glue together the product metrics on (Z^j x S\ }°^i and {^2j+i x S\ , 1 }^ to
give the metric h on M3. As ]Cjli e-J < °°' n follows that h has bounded curvature and finite
volume.

Given (f) e C°° (M3), put g = e^h. By (7), the weighted sectional curvatures

(52) r 2(^(m) ^p x 1
1^ ^^.9) }rn^M,PcT,zM

are uniformly bounded provided that the gradient V<^ of <j) and the Hessian ^((^) of 0 are
uniformly bounded with respect to h.

We construct (j) on ̂ j x S^ and ^2j+i x 5^i to be the pullbacks of functions on Z^j and
^2j+i, respectively. Let (f)oo G Coc(^'oo) be a Morse function with one critical point, of saddle
type, such that

(53)

Then in terms of (50), put

(54)

^oc^^O^-.^o),
0oo|£;2=10d(-,^o),

^oc|£;3=-80-40d(.,^o),
^c(^o)C[-80,0].

) ̂  =80^+80^+^1^..

(See Fig. 6.) Similarly, let <^ C C^I^) be a Morse function with one critical point, a local
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80j +160J+80

80j+100j+10

80j+100j+10

I;2j ^
Fig. 6.

maximum, such that

(55) ^\E = -10d(., Fo), ^(^o) C [0,10].

Then in terms of (51), put

(56) (f>\E^ = 80j2 + 120j + 10 + ̂  ̂ .

(See Fig. 6.) Finally, define 0 on the 5'1 x D2 factor in (45) so as to extend 0 to a smooth function
onM3.

It is easy to see that V<^ and H((f>) are uniformly bounded on R3. As

(57) dg(m^\K(P^ = ̂ ^e l̂̂ P,,)!,

in order to show that g has quadratic curvature decay, it suffices to show that e~(f)(1'n)dg(mQ, m) is
uniformly bounded with respect to m € M3. Let T2 be the first torus factor in (45). Then it suffices
to show that e'^^dg^T2, m) is uniformly bounded with respect to m e R3. Let {7(5)}se[0,t] be
a piecewise smooth path from m to T2 which is unit-speed with respect to h, and along which (f)
is nonincreasing. Then letting Lg(^) denote the length of 7 with respect to g, we have

(58)

t
e-^^/r2, m) < e-^L^) = ( e^^-^ ds.

We take 7 to be (reparametrized) gradient flow of (j) starting from m. Although <j) is not a Morse
function, we note that gradient flow on E^j x S\y is essentially the same as gradient flow on E^,
as it is constant in the S\ -factor, and gradient flow on ^2.7+1 x ^ij+i ls essentially the same as
gradient flow on ^2j+i» as it is constant in the S\ _^ -factor. If the projection of 7 onto E^j or
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^2.7+1 meets a critical point c of saddlepoint type, we extend 7 beyond c to become a piecewise
smooth curve with a corner, again following a downward gradient trajectory. We continue this
process until 7 hits T2. Changing variable to u = 0(7(5)), we have

t (^(m)
_n-(A(m) du(59) / ^(7(s))-</>(m) ̂  ̂  V ^u-(f){m)

|V0|(0-1^))'
0 80

As </>(7(5)) is nonincreasing, if m C C^ then 7 never enters ^2/c+i x 5^+i for A- < j. Also
7 hits at most one critical point in each Z^/c for k < j. By the construction of 0, if c/c <E ^/c
is the critical point then ^c^xs1 G [80A;2 + 80A; - 80.80A;2 + 80A:]. Thus the singularities of
1/| V^K^"1^)) are well-spaced in u. If 7 passes through a critical point c and ZAQ = 0(c) then

1 1
|V0|(0-1^)) v^~^o~

for u ̂  UQ. From the uniform nature of V0 near the critical points, it follows that there is a
constant D > 0, independent of m C R3, such that for all x e [80, (f)(m) — I],

:r+l

(60) /^^D-
Then

<i>(m)

(61) / c"-^) d" < D

' ' J |V<^-'(y))'l-e-r
80

Thus g has quadratic curvature decay.
Put tj^\ = d(mo, C^+i). For j > 0, each path from mo to Cj+i must pass through Cj. Put

(62) ^ = (S'1 x D2) Ur2 C\ Ur2 • • • Ur2 ̂ -.

Then B^(mo) C Dj and so vol(^^i) ̂  vol(D^). With respect to (50), let Fj be the subset
[j4-2,2^+2]x^C^(2j+2)x5'^.(SeeFig.7.)Forlargej,0|^ _^ ^ 80J2+120j+80
and so

(63) vol(^- - F,) ̂  e240^360^240 vol(R3, /i).

On the other hand,

2j+2

/ , 1 _ ,3—120.7
(64) VOl(F-) == g3(80J2+80J+40a;)g-2(2J•+2) ̂  ̂  1 e ^240.72+4807+240 ̂ -2(27+2)

'̂+2

Thus

(65) vol(B^) - 0 (e240^2+48^+240e-2(2^+2)).
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SOj^Oj+SO

SOj^llOj+SO

As any path from mo to Cj+i must pass through Fj,

27+2 -40 •
(66) ^+1 ^ ( e80^80^40" dx = l-e 'e^+^+so^

J+2

Thus
(67) voK^^^/^^O^-^-^),

showing that g has slow volume growth.
If n > 3, we can do a similar construction in which Cj is the complement of a small T71"2 x D2

in T71-2 x D2 and C^ is decomposed as (Z^- x T^-2) U-r—1 (^2j+i x T71-2).

7. Proof of Corollary 1.2

(1) If n = 2, put a metric on Int(A^) with flat cylindrical ends.
(2) If n = 3, suppose that ON consists of 2-spheres and 2-tori. For a 2-sphere component of

ON, put a metric coming from Proposition 1.4 on the corresponding end of Int(TV). For a 2-torus
component of ON, put a flat metric on the corresponding end (1, oo) x T2 of Int(TV). This gives
the desired metric on Int(TV). Now suppose that Int(7V) has a metric with quadratic curvature
decay and slow volume growth. From Corollary 1.1, the simplicial volume of ON must vanish.
Thus ON consists of 2-spheres and 2-tori.

(3) If n = 4, suppose that the connected components of ON are graph manifolds. Then ON
has a polarized F-structure and Proposition 1.3 implies that there is a metric on Int(TV) with
quadratic curvature decay and slow volume growth. Now suppose that Thurston's Geometrization
Conjecture holds and that Int(AO has a metric with quadratic curvature decay and slow volume
growth. From Corollary 1.1, the simplicial volume of ON must vanish. From [12], this implies
that the connected components of ON are graph manifolds.
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