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HODGE DECOMPOSITION FOR HIGHER ORDER
HOCHSCHILD HOMOLOGY

TEIMURAZ PIRASHVILI

ABSTRACT. - Let r be the category of finite pointed sets and F be a functor from r to the category
of vector spaces over a characteristic zero field. Loday proved that one has the natural decomposition
7TnF(S1) ̂  ©n^ Q^^CF), n ^ 0. We show that for any d ^ 1, there exists a similar decomposition
for 7^nF(Sd). Here 3d is a simplicial model of the d-dimensional sphere. The striking point is, that
the knowledge of the decomposition for 7VnF(S1) (respectively 7TnF(S2)) completely determines the
decomposition of 7^nF(Sd) for any odd (respectively even) d. These results can be applied to the
cohomology of the mapping space Xs , where X is a c^-connected space. Thus Hodge decomposition of
H*(X31) and ̂ (X32) determines all groups ̂ (X^), d ̂  1. © 2000 Editions scientifiques et medicales
Elsevier SAS

RESUME. - Soient F la categoric des ensembles finis pointes et F un foncteur de la categoric F
vers la categoric des espaces vectoriels sur un corps de caracteristique zero. Loday montre dans (Loday,
1998) que Ron a une decomposition naturelle 7TnF(S1) ̂  Q)^oH^\F\ n ̂  0. On demontre dans cet
article qu'il existe une decomposition naturelle pour 7VnF(Sd), ou 3d est un modele simplicial pour
les spheres de dimension d. Le fait important ici est que la decomposition pour d = 1 (resp. d = 2)
determine completement la decomposition pour tout d impair (resp. pair). Ce resultat peut etre applique
a la cohomologie des espaces fonctionnels Xs . Done les decompositions de H*(X3 ) et H*(X3 )
determinent completement tous les groupes H* (Xs \d ^ 1. © 2000 Editions scientifiques et medicales
Elsevier SAS

0. Introduction

Let A be a commutative algebra and M be an A-module. Let

£(A, M): r -^ Vect

be the functor from the category F of finite pointed sets to the category of vector spaces given
by

{0,l,...,n}^M(g)A^,

see also Section 1.7. There is a standard way to prolong the functor £(A, M): F —^ Vect to a
functor from the category Sets^ of all pointed sets to the category of vector spaces by direct limits.
By abuse of notation we will still denote this functor by £(A, M). For any pointed simplicial set
Y: A^ —> Sets^ we let H^(A, M) denote the homology of the chain complex associated to the
ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE. - 0012-9593/00/02/© 2000 Editions scientifiques et
medicales Elsevier SAS. All rights reserved
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simplicial vector space

A^J^ sets C(AM) Vect.

For Y = Sd, the sphere of dimension d ^ 1, one uses the notation H^(A,M) instead of
H^ (A,M). For Y = S1 one recovers the usual Hochschild homology of A with coefficients
in M (see [17]). Because of this fact, we call the groups Ifj^A, M) Hochschild homology of
order d of A with coefficient in M. Higher order Hochschild homology was implicitly defined
in [1]. These groups are related to the cohomology of the mapping spaces Xs in the same way
as usual Hochschild homology is related to the cohomology of the free loop space Xs (see
Section 5). The main goal of this paper is to show that the higher order Hochschild homology
in the characteristic zero case has a natural decomposition, which, for d = 1, is isomorphic to
the classical Hodge decomposition [17]. Our methods are new even for d = 1 and are based
on homological properties of ^-modules. As a consequence we show that the knowlege of
the Hodge decomposition of the cohomology H ' ' ( X S ) of the free loop space determines the
cohomology H*(X3 ) of the mapping spaces for all odd d and, similarly, the knowlege of the
Hodge decomposition of the cohomology H^f^X8 ) determines the cohomology H*(X3 ) for
all even d, provided X is a d-connected space (see Section 5).

Let us recall that the Hodge decomposition for Hochschild homology of commutative
algebras in the characteristic zero case first was obtained by Quillen [23]. Using sophisticated
combinatorics Gerstenhaber and Schack constructed the so-called Eulerian idempotents and
proved that they yield a decomposition of Hochschild homology (see [12,16]). It turns out that
both decompositions are isomorphic to each other (see [25]). Moreover, Loday made in [16] the
important observation that such decompositions have a more general nature. Namely he proved
the following result: Let F: r —> Vect be a functor from finite pointed sets to the category of
vector spaces over a characteristic zero field. Let 51: A017 —^ Sets,, be the standard simplicial
model for the circle, which has only two nondegenerate simplices. Clearly the values of 51 are
finite pointed sets, so one can take the composition of these two functors F(S1): A^ —> Vect. In
this way one gets the simplicial vector space F(S1) and one can take the homotopy groups of it.
Among other things, Loday proved that there exists a natural decomposition

n

^(^(^^(F), n^O,
i=0

where the groups H^\F) are defined using Eulerian idempotents. If A is a commutative algebra
and M is a symmetric bimodule, then for F = £(A, M) Loday's result gives exactly the Hodge
decomposition for Hochschild homology. Loday obtained in [16] also a similar decomposition
for cyclic homology (see Section 3 for more details). Later McCarthy remarked that Loday's
decomposition can be obtained using the rotations of the circle [19]. We refer to [30] for
relationship between Hodge decomposition of cyclic homology and Hodge filtration in algebraic
geometry, and [6] and [29] for related results.

We give an alternative approach of this subject. We do not only give a new purely homological
proof of Loday's results, but we obtain essentially more. Using homological algebra of
F-modules we construct a spectral sequence, whose abutment is TT^F(Y). Here Y is any pointed
simplicial set. We show that for Y = 3d, the spectral sequence collapses at E2 level and
gives a natural decomposition for 7TnF(Y) in characteristic zero. We give a simple axiomatic
characterization of the decomposition of7r^F(5'1), from which we deduce that our decomposition
and Loday's decomposition are isomorphic. The striking fact is, that in the decomposition of

4° SERIE - TOME 33 - 2000 - N° 2



HODGE DECOMPOSITION FOR HIGHER ORDER HOCHSCHILD HOMOLOGY 153

7^nF(Sd) for d odd, the same groups H^\F) appear but in a different way:

7r,F(^)^ (]) H^(F), n ^ O , d = 2 A ; + l ^ l .
i-\-dj=n

We define the Hochschild homology of order d of a commutative algebra A with coefficients in
an A-module M to be 71-̂ (5 )̂, where F = £(A, M). As an example we compute higher order
Hochschild homology for smooth algebras (for all d) and for truncated polynomial algebras (for
d odd). We prove that for all d the Hochschild homology of order d of the de Rham complex of
a d-connected manifold is isomorphic to the homology of the mapping space Xs .

It is worth to mentioning that any functor F: r —>• Vect gives rise to an abelian spectrum,
thanks to the famous result of Segal (see [27], notice that our F is the opposite of the original
F of Segal). Let TT^F be the homotopy groups of the corresponding spectrum. It turns out that
the groups H^\F) (which are known as Harrison homology [16]) and TT^F are isomorphic in
the characteristic zero case. Therefore one can think of the groups TT^£(A, M) as a modification
of Andre-Quillen homology for characteristic p > 0. In [22] it is proved that it is isomorphic
to a "brave new algebra" version of Andre-Quillen homology constructed by Robinson and
Whitehouse(see[31]).

The paper is organized as follows: In Section 1 we describe the basic properties of the
category of functors from pointed finite sets to vector spaces. In the next Section we prove the
decomposition properties for 7^^F(Sd). In Section 3 we reprove Loday's decomposition theorem
for cyclic homology. We use the observation that the forgetful functor from F to the category of
nonempty finite sets is flat in some sense. In Section 4 we prove a version of the Hochschild-
Kostant-Rosenberg theorem for smooth 7^-modules, which is the main technical tool for the
calculation of higher order Hochschild homology for smooth algebras in the last section. In the
same section we also prove that the higher order Hochschild homology of the Sullivan cochain
algebra of a d-connected space X is isomorphic to the cohomology of the mapping space Xs .

This work was written during my visit at the Sonderforschungsbereich der Universitat
Bielefeld. I would like to thank Friedhelm Waldhausen for the invitation to Bielefeld. The author
wishes to thank the referee for many useful critical comments, helpful suggestions and pointing
out several mistakes. Proposition 1.6(iii), the last assertion in Corollary 2.5 and the first assertion
in Theorem 4.6 are due to the referee. He pointed out also the correct proofs of Proposition 1.12
and Theorem 5.6. After his suggestion now Section 3.2 looks much better than it was in the
previous version. The author was partially supported by the grant INTAS-93-2618-Ext and by
the TMR network J^-theory and algebraic groups, ERB FMRX CT-97-0107.

1. Properties of F-modules

1.1. F-modules

Let X be a field. In what follows all vector spaces are defined over K. Moreover 0j< and
Homj< are denoted by 0 and Horn respectively. Let Vect be the category of vector spaces.

Let F be the category of finite pointed sets. For any n ̂  0, we let [n] be the set (0,1,. . . , n]
with basepoint 0. We assume that the objects of F are the sets [n]. Let F-mod be the category
of all covariant functors from F to Vect. Similarly mod-F denotes the category of contravariant
functors from F to the category of vector spaces. The objects of F-mod (respectively mod-F )
are called left (respectively right) F'-modules. We will use the term F-module if we do not want
to distinguish between left and right J^-modules.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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The categories r-mod and mod-r are abelian categories with sufficiently many projective and
inject! ve objects. For any n ̂  0 one defines

F71 := K [Homr([n], -)] and Fn := K [Homr(-, [n])].

Here K[S] denotes the free vector space generated by a set S. It is a consequence of the Yoneda
lemma that for any left F-module F and any right F-module T one has natural isomorphisms

(1.1.1) Homr-^r^F) ̂  F([n])

and

(1.1.2) Hom^-r(rn,T) ̂  r([n]).

Therefore F72 (respectively -T^), n ^ 0, are projective generators of the category r-mod
(respectively mod-r). Clearly Jo ^nd r° are constant functors with the value K. Any pointed
map [m\ —>• [n] yields morphisms of r-modules Fm —^ Fn and F71 —^ F171.

We shall use the following simple and well known fact very extensively (see Proposition II. 1.3
of[ll]).

YONEDA PRINCIPLE. - Let Gi, Gz: r-mod —> Vect be right exact functors, commuting "with
~ p? (^

sums. Let Gi be the composition r^ —> r-mod —^ Vect, i = 1,2, where the first functor assigns
^n to [n]. //Gi ^ G2, then Gi ^ G2.

1.2. Duality and functors of finite type

For any vector space V one denotes the dual vector space by V*. One can extend this notion
for .r-modules. For a /^-module F one defines -F* by

F*([n]):=(F([n]))*.

Then F* is a right J^-module if -F is a left F-module and vice-versa. A functor is called of finite
type if it has values in finite dimensional vector spaces. Clearly F** ̂  F if F is a functor of finite
type. Let F be a left F-module and T be a right ^-module. Then one has a natural isomorphism

Homr-^(F, T*) ̂  Hom^-r(T, F*).

Therefore for any projective F-module F, the dual module F* is injective. Moreover the functors
F^ and r^ are injective cogenerators of the category r-mod and mod-r respectively and one
has natural isomorphisms

Homr-^F^*) ̂  (F([n]))* and Hom^-r(r,0 ̂  (T([n]))*.

Let us notice that the functors F71* and F^ are of finite type. We call them standard injective
objects. ,

1.3. Pointwise tensor product

For any left F-modules F and T we put

(F^r)([n]):=F([n])^r([n]).

4® SERIE - TOME 33 - 2000 - N° 2
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Clearly F (g) T is still a left F-module. In the same way one defines the same kind of operation
for right F-modules. It follows from the definition that

O o 1 \ pn ̂  -nm ̂  pn-\-m j p ^> p ^ p. j . i ) 1 09 J- —i dnu 1 n W ^ m—1 nm+n+m?

because [n] V [m] ̂  [n + m] and [n] x [m] ̂  [nm + n + m]. As a consequence we see that if
F and T are projective, then F (g) T is also protective. Moreover F71 ̂  (F1)071 for any n ̂  0.

We claim that ifF and T are injective, then F^T is also injective provided F or T is of finite
type. Indeed, any injective object is a retract of a product of standard injectives. One observes
that the functor (-) (g) T commutes with products provided T is of finite type. Therefore it is
enough to consider the case when both F and T are standard injectives. In this case the claim is
obvious.

1.4. The right F-modules t and 6^

Let t be the right F-module given by

t([n]):=Hom^4[n],X).

Here the field K is considered as a pointed set with basepoint 0. For an element i € [n] we let \i
be the characteristic function of z, i.e., ^(%) = 1 and ^(j) = 0 if j ̂  z. Let us remark that ̂  is
a pointed map if i -^ 0. One has an exact sequence

(IAI) ^2-Q->^l-^-^o.
Here a and f3 are given by

a([n]—42]) =p\of+p2°f-P°f

and

^(M-^m)- ̂  xz.
9(^)=1

where p and pz are defined as follows: For any nonzero element i € [n] we let ̂  : [n] —^ [1] be
the pointed map given by pz(i) = 1 and pi(j) == 0 if j ̂  i. The pointed map p : [2] -^ [1] is given
by p(l) = p(2) = 1. It is quite easy to check that the sequence (1.4.1) is indeed exact. We also
refer to [20], where a projective resolution SQ^ of t was constructed, whose beginning is just
the above exact sequence. Using this projective resolution one can describe the stable homotopy
groups of a functor (see Proposition 2.2) via the Eilenberg-MacLane cubical construction (see
also E.13.2.2 of [17]). One observes that

(1.4.2) t* ̂  Coker(r° -^ F1).

Indeed, the values of both functors on [n] are the same, namely the vector space generated by
[n], modulo the vector space generated by 0 e [n]. Here F0 —^ F1 is induced by the unique map
[1] -^ [O], which has a section. Hence F1 ̂  F0 9 f. Therefore t* is projective and t is injective.
Moreover the left F-modules t^* are projective generators, while the right F-modules t^ are
injective cogenerators.

Let Sym*: Vect —^ Vect (respectively A*: Vect -^ Vect) be the functor which assigns the
underlying vector space of the symmetric algebra Sym^(Y) (respectively exterior algebra A*(V))

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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to V. If K has characteristic zero, then A71 and Sym71 are natural direct summands of C^.
Therefore A^ o t, Symn o t and A72 o ^ 0 ̂ m71 o t are injective right F-modules, too.

The functor t played already an important role in Mac Lane homology theory (see [20,17,24])
and we will see that it is also very important in the present paper. We will need also the following
right modules 0n,n'^0. Let B be the left J^-module, whose value on [m] is the free vector space
generated by the subsets of [m], modulo the vector space generated by the subsets containing 0.
If /: [m] —^ [k], then the action of / on B([m]) is induced by the direct image of /. Let Bn be
the subfunctor of B generated by the subsets of cardinality ^ n. We define the functor 6n as the
dual of the quotient Bn/Bn-i' Clearly t ̂  01. One observes that (Bn/Bn-i)([m]) is isomorphic
to the vector space spanned by the n-element subsets of { 1 , . . . , m}. Hence, as a vector space,
we have ^([m]) ̂  ̂ (^([m])). But, as functors, ^n and A71 o t are different as soon as n > 1.

1.5. The bifunctor - (g)r -
For a right F-module N and a left F-module M we let N (g)r M be the abelian group

generated by all elements x 0 y , where x e N(\n}\ y e M([n]) and n ̂  0, modulo the relations

(xi + xi) 0 y = x\ 0 y + X2 0 y, x 0 (y\ + yz) = x (g) y\ + x 0 y^,

(ax) 0 ?/ = a(a; (g) y) = x ̂  (ay), a*(a/) <^y =x' ^ a^(y).

Here a:[n] —> [m] is a morphism in r, x\,x^ G A^([n]), 2/1,^/2 ^ M([?^]),.r/ € 7V([m]) and
a C K. In other words N 0r M is the quotient of ]̂  A^([n]) 0 M([n]) by the relation
a*(x') 0 y = x ' 0 (^(z/). It is well known (see Section 16.7 of [26]) that the bifunctor

— <^)r ~ '• mod-r x r-mod —^ Vect

is right exact with respect to each variable and preserves sums. Moreover, for any left F-module
F, any right F-module T and any n ̂  0, there exist natural isomorphisms

T 0r F" ̂  T([n]), F, 0r F ̂  F([n]).

Clearly — 0r — is a left balanced bifunctor in the sense of Cartan and Eilenberg ([7]). Therefore
the derived functors of — 0r — with respect to each variable are isomorphic and we will denote
the common value by Torf(—, —). This notion has the standard extension for chain complexes of
F-modules. Moreover, we will consider a hyperhomology spectral sequence for such Tor-groups.

1.6. PROPOSITION. - Let F be a left r-module and let C^ be a nonnegative chain complex,
"whose components are projective right r-modules.

(i) Then there exist a first quadrant spectral sequence

E^ = Tor^ (^(0,), F) => H^(C. (S)r F).

(ii) Suppose

(1.6.1) Ext^y{Hn(C^Hm(C.))=0, forn<m,

then the spectral sequence is degenerate at E2 and one has the decomposition

(1.6.2) Hn(C^rF)^ Q) Tor^(^(C7.),F)
p+g=n

which is natural in F.

4° SERIE - TOME 33 - 2000 - N° 2
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(iii) Suppose that not only the condition (1.6.1) holds, but also

(1.6.3) Ex^n^{Hn(C^Hm(C.))=^ forn<m,

then the decomposition (1.6.2) is natural with respect of the action of endomorphisms of
a.

Furthermore the statements are still true ifF is a chain complex of left F-modules.

Proof. - (i) is a standard tool of homological algebra (see, for example. Section 2.4 of [13] and
especially Remarque 3 on p. 148 of loc. cit.)

(ii) is implicitly in [8]. We give the argument here. A chain complex C^ is called of type
(A, n) if HiC^ == 0 for i -^- n and HnC^ ^ A. Let us denote such a complex by (A, n). A chain
complex C^ is called formal if it has the same weak homotopy type as Q^^HnC^.n). Dold in
[8] constructed the Postnikov decomposition of C^ as a kind of tower • • • —> C^1 —>• C^ — > • • ' .
Moreover he defined the zth invariant as an element in H^(C^,HiC^) and proved that C^
is formal iff all invariants are zero. Clearly it is enough to show that in our case C^ is formal.
We will show by induction that all invariants are zero. Thanks to Satz 5.2 [8] the first invariant
lies in Ext^.p(HQC^,HiC^) which is 0 by Assumption (1.6.1) and thus this invariant is zero.
Assume, now that all %-invariants are zero for i<n. Then C^~1 is formal. Thus it has the same
weak homotopy type as Q)^(HiC^, i). We can still use Satz 5.2 [8] to get

n-l

^n+i (c:-\H^} ̂  ®Ext^(J^, HnC.) = 0.
i=0

Therefore the nth invariant vanishes and (ii) is proved.
(iii) The homology yields the well-defined homomorphism from the set of homotopy clases of

endomorphisms of C^

(1.6.4) [C*,OJ -^ Y[Hommod-r(HnC,HnC).
n

Since C^ is formal the homomorphism (1.6.4) is an epimorphism. It is also monomorphism,
because

[G,,GJ^JJ \(H^n)^(H^m)\ C JJ [(H^n\(H^m)}
n. v- m. -J n,.m.n - m - n,m

and therefore

[C.,G*] C ]^Ext^(Hn(C^Hm(C.)) = ]^Hom^-r(HnC,HnC).^,^j ̂  ^^L..^^^_p^iin^^^-i-im\^^}
n,m n

Hence (1.6.4) is an isomorphism. This shows that any endomorphism of C^ is compatible with
the decomposition (B^o^^*5 z)vi?to homotopy and the result follows. D

1.7. (Co)algebras and F-modules

Let A be a commutative JC-algebra with unit and let M be an A-module, considered as a
symmetric A-A-bimodule. Following Loday [16,17] we let £(A, M) be the left r-module given
by

[nl^M^A071.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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For a pointed map /: [n] -^ [m], the action of / on £(A, M) is given by

(L7-1) /*(A) 0 • • • 0 aj :== bo (g) • • • (g) 6^,

where

67 = II aif J=0,...,m.
/^)=7

If A is an augmented algebra then £(A, J^) is denoted by £(A) for brevity. Dually, if C is a
cocommutative J^-coalgebra, and N is an A-comodule, one obtains a right F-module J(C, N),
which assigns N (g) C^ to [n]. Clearly, for a finite dimensional coalgebra C and a finite
dimensional comodule N , one has

^(G,AO*^£(G*,7V*).

In the coaugmented case we write J(C) instead of J(C, K).
We also need to extend the definition of the functor C(A,M) to commutative graded

differential algebras. Let A be a commutative graded differential 7-C-algebra with unit and let
M be a graded differential A-module. We let £(A, M) be the chain complex of left F-modules
given by

[nj^M^A^.

For a pointed map f:[n]-^ [m], the action of / on £(A, M) is given by

/*(ao 0 • • . ̂  an) : = (-1)^^% 0 • • • 0 &^,

where ̂  = Tif^j a^, ^ = 0,.. . , m. Of course now the product is the ordered one and

(L7-2) ^^-E^-fE^i)-
J=l ^CJ, /

Here ly;= [k > j \ 0 ̂  f(k) ̂  /(j)} (see [29]).
Let us note that for graded (co)algebras one obtains functors from F to the category of graded

vector spaces. Therefore for any integer z, the %th component of £(A) and J(C) defines left and
right F-modules, which are denoted by d(A) and Jz(C) respectively.

1.8. Example. - Let A = K[x]/(x2) be the commutative graded algebra where the generator
x has degree d > 0. We claim that there exist the following isomorphisms of left F-modules:

d {K[x]/(x2)) ̂ A3 ot\ i= jd and d is odd,

d (K[x]/(x2)) ̂  (6^)*, z = jd and d is even,

^i{K[x}/(xl))=^ i^jd.
Indeed

C{K[x]/(x2))[n]=(K+Kx)^n= Q) (Kx^\
O^j^n

4'̂  SERIE - TOME 33 - 2000 - N° 2
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where a^^^ = x®3 (g) x, j ^ 0. Therefore the zth dimensional part is zero if i -^ dj and it is
isomorphic to A^K^ if i = dj. Moreover the elements xj = x\ 0 • • • (g) Xn form a basis for
jC^KW/^x2))^]. Here J runs through the set of subsets of { 1 , . . .,n} with j elements and
Xi = x if i e J and x^ = 1 if i ̂  J. Since .r2 = 0 one observes that the action of /: [n] -^ [m] on
xj is zero if Cardf(J) < j and is equal up to sign to x^ if Cardf(J) = j. Based on (1.7.2)
one easily shows that the sign is always + for even d and corresponds to the sign in the exterior
power for odd d, and the result is proved.

1.9. Category of surjections

Let J? be the small category of all finite sets and surjections. We will assume that the objects
of Q are the sets

n:= { 1 , . . .,n}, n ̂  0,

where Q denotes the empty set. A covariant (respectively contravariant) functor Q —> Vect is
called a left (respectively right) J7-module. Clearly the functors

Qn=K [Hom^(n, -)] and Qn = K [Hom^(-, n)]

are projective generators in Q-mod and mod-Q respectively. We have a bifunctor - 0^ - : mod-
Q x Q-mod —^ Vect similar to 1.5 with the same kind of properties.

Let M be a left (respectively right) K[En\ -module. One denotes by 0(M) (respectively
©^(M)) the unique left (respectively right) J7-module, which assigns M to n and 0 to m, where
m -^ n and for which the action of En = Hom^(n, n) on M coincides with the given one. Clearly
if M is a simple X[rj-module, then 0(M) and 0°P(M) are simple JP-modules as well. We
claim that in this way one obtains all simple ^-modules up to isomorphism. Indeed, let T be
a left (respectively right) ^7-module and n be the minimal number, for which T(n) ̂  0. Since
K[En\ = K[Hom^(n,n)], we see that M = T(n) is a representation of En. Therefore Q(M)
(respectively O°P(M)) is well defined. Now one can show that there exists a unique morphism
of P-modules 0(M) -^ T (respectively T -^ 0^(M)) which is the identity on n. From this
observation one easily deduces the claim.

For a left J?-module T we let T\n) be the cokernel Qr(n+l) -> T(n), where the sum is
taken over all morphisms n+ 1 -> n. Let X be a right K[En]-mo(Me. We claim that there is a
natural isomorphism

(1.9.1) e^W (S)n T ̂  X 0^ T\n).

Indeed, it suffices to observe that Q^00p(X)(m) (g) T(m) has only one nontrivial component,
corresponding to m = n.

1.10. Dold-Kan type theorem for F-modules

For any n ̂  1 and any i such that 1 ̂  i ̂  n, one defines the pointed maps

TI : [n] -^ [n - 1]

by r,(i) = 0, r,(j) = j if j < i and n(j) = j - 1, if j > %. Thanks to (1.4.2) we see that
(F0 -^ r1)^72 is a resolution of F^. According to (1.3.1) the very beginning part of this
resolution looks as follows:

n

^ r71-1 -^ r71 -^ t^ -^ o.
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Here the first morphism is induced by (r\,..., r^). Therefore for each left F'-module T, one has
an isomorphism

n

(1.10.1) Homr-^^r) ̂  F|ker(r^ :T([n])^T([n- 1])).

Here r^ is the homomorphism induced by r^.
We claim that there exist an isomorphism

(1.10.2) Homr-m^*07^*0771) ^ ^[Hom^(m,n)].

Indeed, one observes that ̂ '^([n]) can be identified with the vector space spanned by all maps
m —> n. Then the action of /: [n] —^ [k] on a: m —> n is / o a if (/ o a)"1^) 7^ 0 and is 0
otherwise. Now it suffices to note that

ker(r^ : ̂ ^([n]) -. ̂ ^([n - 1]))

is spanned by maps m—^n whose image contains %, 1 ̂  i ̂  n. For a left F-module T one
defines the functor

cr(T): Q -. Vect

as follows. On objects one puts

n

cr(T)(n) := F| ker(r^ : T([n]) -. T([n - 1])).W'=\ \^r(r^:l\[_n\)-^l\[n

For a surjection f :n —^ m one denotes by /o '• M —^ [^] the unique pointed map which
extends /. Then one easily shows that the image of cr(T)(n) C T([n]) under the homomorphism
(/o)* :T([n]) -^ T(\m\) lies in cr(T)(m) and therefore cr(T) is well defined. According to
(1.10.1) and (1.10.2) we have cr^*071) ̂  ̂ n. Since the functors r^, n ̂  0 are small projective
generators, it follows from the Morita theory that the functor

cr: r-mod —> Q-mod

is an equivalence of categories (see also [21] for this and more general results). Let us notice that
a similar equivalence exists also for right modules

cr: mod-r ^ mod-Q.

Let F be a right jT-module and let T be a left -T-module. It is also a consequence of the Morita
theory that there is an isomorphism

(1.10.3) F 0r T ̂  cr(T) (g)^ cr(T).

We turn now to the functor £(A, M) defined in Section 1.7. Here A is a commutative J<"-algebra
and M is an A-module. We let A be the quotient A/(K • 1). For each element a € A, we let a be
the corresponding element in A. We need a homomorphism s: M (g) A^71 —^M(g) A^ which is a
section of the natural projection M (g) A^ —> M 0 A0^. Take an element x = (m, a i , . . . , On) €
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M (g) A071. For any subset S = { j i , . . . J k ] c n, we set ̂  = (rnaj, • • -a^,ai, . . . ,! , . . .,aJ,
where we put 1 in places labeled by j i , . . . j/,. Then the map 5 is given by 5(^) = ̂ (-l)151;^.
Clearly

(1.10.4) cr(£(A, M))(n) ̂  M 0 A071.

For a surjection /: n —^ m, the induced homomorphism f^: M (g) A071 -^ M (g) A0771 is obtained
by applying the formula (1.7.1) to each term of s(x). For example, if /: n -^ n- 1 is given by
/(I) = 1, f(i) = i - l, for i ̂  2, then

(1.10.5) f^(m,a\,...,dn) = (m,a\a^... ,dn) - (ma^a^.. .,a^) - (ma^a\,.. .,a^).

1.11. Polynomial modules

For a left (respectively right) .^[^n]-module M one denotes by 0(M) (respectively 6^(M))
the F-modules corresponding to 0(M) (respectively 00P(M)) under the equivalence 1.10. For
M = K with trivial action (respectively with sign representation) one has the isomorphism
O°P(M) ̂  6n (respectively 0°P(M) ̂  A71 o t\ This follows from the fact that cr(F)(m) = 0 if
n -^ m and cr(F)(n) = M for F = A" ot or F =0n.

We will say that the degree of a left ^-module T is less or equal to n if T(k) = 0 for
k > n. In this case we write deg(T) ̂  n. One writes deg(T) = n if deg(T) ̂  n and deg(T) ^
n - 1. We take the analogous definition for right modules. Then deg(T) ^ n if and only iff
deg(T*) ̂  n. We will say that the degree of a F-module T is n if deg(cr(T)) = n. For example
deg(^) = 1, deg^) = n, deg((971) = n. Therefore any left (respectively right) F-module of
degree ̂  n admits a projective (respectively injective) resolution whose components have degree
^ n. Moreover, if the F-module is of finite type, then one can choose the resolutions of finite
type as well. Let A be a connected graded commutative algebra, then

deg Ck(A) = k.

This follows from (1.10.4), because A071 is zero in dimensions < n. Similarly, if C is a connected
graded cocommutative coalgebra, then

(1.11.1) degJk(C)=k.

1.12. PROPOSITION. - IfK is afield of characteristic zero, then for any left F-module T of
degree ^ n the projective dimension ofT is ^ n — 1. Thus

pro]. dim(T) ̂  deg(T) - 1, T <E r-mod.

Similarly/or any right r-module T one has

inj. dim(T) ̂  deg(T) - 1, T e mod-F.

Proof. - Thanks to Section 1.10 one can work with ^7-modules. Let ̂ n: K[En\-mod —^ Q-
mod be a functor given by

^(A^M^^j^.

The functor ̂ n takes projective objects to projective objects. Moreover

deg(^(M))^n

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



162 T.PIRASHVILI

for any M 6 K[En]-mod. Since K has characteristic zero, we see that ^(^(n)) is projective.
Clearly there is a natural map ^(T^n)) —^ T, whose kernel and cokernel have degrees < n and
the result follows by induction. A similar argument based on the functor ujn '• mod-K[En] —>
mod-Q proves the result for right modules. Here

^n(M) = Hom;cJ^n, M). D

1.13. Koszul complexes for sets

One defines the transformations

d: A'+1 o r (g) Sym3 o C -^ A1 o C 0 Sym3^2 o C

and

d:Symnot^Bn/Bn-,

by their values on the basis

i

d(xo A • • • A Xi 0 yi • • • yj) := ̂ (- 1)^0 A • • • A Xk • • • A xi 0 x^y\ • ' ' Vj
k=o

and

d(z\ • • • Zn) := { ^ i , . . . , Zn}mod Bn-i.

Here XQ, . . . , Xz, yo , . . . , %, 2 ^ 1 , . . . ,Zn e [m]. We claim that for any n the following sequences are
exact

0 -^ A" o t* -^ A71-1 o r 0 Sym2 o r -^ A71-2 o r 0 ̂ m4 o r -^ . • •

• • • ̂  r 0 Sym2^2 o t* ̂  ̂ m271 o r ̂  62^/62^-1 ̂  0

and

o -^ A71 o r 0 r ̂  A'1-1 o r 0 ̂ m3 o r -....
• • . ̂  ̂ m2n+l 0 t* ̂  62n+l/K2n ̂  0.

These facts are true in any characteristic and can be proved as follows. Let JC be the bigraded
object which in bidegree (%, j) is zero if i is odd and is A1/2 o t* (g) Sym3 o t* if i is even. This object
is equipped with the differential of bidegree (—2,2) as defined above. We also consider the graded
object gr^B, whose component in degree n is Bn/Bn-i. We have to prove that the homology
of /C is zero if i > 0 and is isomorphic to gr^B if i == 0. One easily shows that JC(S V T) ̂
JC(S) 0 /C(T) as differential graded objects. Since gr^ B(S V T) ̂  gr^ B(S) 0 gr^ B(T\ everything
reduces to the case, when the above sequences are evaluated on [1]. In this case the assertion is
obvious.

1.14. PROPOSITION. -
(i) Let F be a right r-module of degree d, then Hom^^-r(^\ F) = 0 as soon as i> d.
(ii) Let K be afield of characteristic zero. Assume m> j — i. Then

ExCd-r(^)-0.
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Proof. - (i) Since cr(^)(m) -^ 0 only for m = i, we see that

Hom^-r2(cr(^),cr(F))=0

if z > d. Hence the result follows from Section 1.10.
(ii) Since we are in characteristic zero, one can take the dual of the exact sequences of

Section 1.13 to obtain

0 -^ 6^ -^ Sym" of->-•-> A71/2 o t -> 0

if n is even, and

0 -^ 6^ -^ Sym" o t -^ ' • • -^ t (g) A^-^2 o t -> 0
if n is odd. By 1.4 we know that A" o ̂  Syn^ o t and A71 o 10 5}wz71 o t are injective. Therefore
^C^-r^ ̂ ) is a subquotient of Hom^-r(<9\ A7" o ^ (g) Sym3-2^ o t). Since

deg^ o ^ (g) Sym3-^ o t) = j - m

the result follows from part (i). D

1.15. PROPOSITION. - Let Abe a commutative algebra and M be an A-module. Then there
exist natural isomorphisms

(7T o t) (g)r AA, M) ̂  M 0A %
0n 0r AA, M) ̂  M 0A ^vm^ (Q\).

w/^r^ J?^ denotes the Kdhler differentials.

Proof. - Since proofs in both cases are quite similar, we prove only the first isomorphism. By
(1.10.3) one can pass to the category Q. Let us recall that CT^A^ o t) is isomorphic to 00P(X),
where X is the sign representation of En. Therefore we can use (1.9.1) and (1.10.5) to conclude
that the tensor product in question is isomorphic to the quotient of M (g) A^(A) by the relation

m (g) (0102) A • • • A an = ma\ 0 a^ A < • • A dn + ma^ (g) a\ A • • • A an

and the result is proved. D

2. Decomposition of 7^^F(Sn)

2.1. The main idea and the link with homotopy theory

Let Sets^ be the category of all pointed sets. There is a standard way to prolong a left F-module
F to a functor from the category of simplicial pointed sets s.Sets^ to the category of simplicial
vector spaces s.Vect. First, one can prolong F by direct limits to a functor Sets^ —^ Vect, then by
the degreewise action one obtains a functor s.Sets^. —^ s.Vect. By abuse of notation we will still
denote this functor by F. Similarly any right F-module T can be prolonged to a functor from the
category of simplicial pointed sets s.Sets^ to the category of cosimplicial vector spaces cos.Vect.
It is of great interest to understand the structure of the groups TT^F(L) for a pointed simplicial
set L. Of course of special interest is the case L = S71. Let us remark that any F-set A (that is a
functor F -^ Sets^, with property A([0]) = [0]) gives rise to a binatural transformation

X A A(Y) -^ A(X A Y)
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as follows: For any x e X define x:Y —^ X A Y by y \-^ (x,y). Then apply A to get
A(^): A(V) -> A(X A Y). Now one defines X A A(V) -^ A(X A V), by (x, z) ^-> A(x)(z). Using
this transformation one obtains a map 51 A A(6'n) -^ A(S'?^+1). Here 5'1 is a simplicial model of
the circle, which has only two nondegenerate simplices and S^^ = S1 A 5^. Of course this can
be done with left F-modules as well. Indeed if F is a left F-module, then F = FQ 0 A, where
FQ is a constant F-module with value F([0]). Clearly A([0]) = 0 and one can define

7rf(F) := colim-K^nA^} ̂  colim^nF^}.

Similarly for a right F-module T one puts

Tr^F^limTr714-*^71).

Here TT* denotes the "cohomotopy groups" of a cosimplicial vector space, meaning the homology
of the associated cochain complex.

Mimicking Korollar 6.12 in [9] or use Proposition 5.21 of [18], one can prove that this limit
always stabilizes and one has an isomorphism

(2.1.1) 7rf(F) ̂  Tr^nF^) ifn>i.

Now we give the main idea of our approach. For simplicity we take the classical case n = 1.
Let us recall that S'1 is [n] in dimension n. Moreover Si: [n] —^ [n + 1] is the unique monotone
injection, whose image does not contain i + 1, while di: [n] —> [n — 1] is given by di(j) = j if
j < z, di(i) = i if z < n, dn(n) = 0 and di(j) = j - 1 if j > i. Thus 7r^F(S1) is by definition the
homology of the following complex

F(51) = (F([0j) ̂ - F([l]) ̂ - F([2]) ̂ - . . . ) ,

where the boundary map is the alternating sum of the face homomorphisms. Using the tensor
product of functors (see Section 1.5) we can write F([n]) = Fn 0r F. Therefore F(S1) =
Fgi (g)r F, where Fgi is the simplicial right r-module, which is Fn in dimension n. Now one
can use the result from Section 1.6 in order to construct a spectral sequence whose abutment
is 7r^F(S1). It turns out that in the characteristic zero case, this spectral sequence degenerates
and we obtain the expected decomposition. In order to realize this program we start with the
translation of "homotopy theory" in the language of homological algebra of F-modules.

2.2. PROPOSITION. - For any left F-module F, one has an isomorphism

Torf(^,F)^7r^F.

Moreover, for any right r-module T one has an isomorphism

<r^Ext;^.^,T).

Proof. - We use the well-known axiomatic characterisation of Tor functors. In order to show
the existence of the isomorphism in dimension 0, one observes that TT^F ^ 7TiF(5'1) thanks to
(2.1.2). By our choice of the model of S1 one sees that

7TiF(51) ̂  Coker{F([2]) -^ F([l]))
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and hence by the exact sequence (1.4.1) we get TT^F ̂  10r F, because F([n]) ̂  F^ ^r F.
Obviously the functors T ̂  TT^T form an exact connected sequence of functors F-mod —> Vect
and it is enough to show that they are zero in positive dimensions for any projective T. Therefore
one only needs to consider functors like T = ̂ n. The chain complex associated to the simplicial
abelian group ̂ (S^) is the same as the chains of the product of n copies of S171. Thanks to the
Klinneth theorem the homology of this complex is zero in dimensions > m and < 2m, and we
are done. A similar argument works for right modules. D

In what follows we give the formulation of results only for left F-modules. We leave the task
to the interested reader to make the trivial reformulation for the corresponding results for right
F-modules.

2.3. Fundamental spectral sequence

Let L be a pointed simplicial set. It is well-known that the homology H^(L) of L with
coefficients in K is a coaugmented coalgebra. Therefore one can consider the right F-module
Ji(H^L) for any i ̂  0 (see Section 1.7).

2.4. THEOREM. - Let F be a left r-module and let L be a pointed simplicial set. Then there
exists a spectral sequence

E2^ = Tor^ (J,(H,L), F) ̂  7Tp+, (F(L)).

A simplicial map L —> L' induces an isomorphism TT^(F(L)) —>• 7L,(.F(I/)) as soon as H^(L) —>
H^(L') is an isomorphism.

Proof. - For a pointed set X, we let Fx be the right F-module given by

Fx = coiimyry.

Here Y runs finite pointed subsets of X. Clearly

rx([n\) = colimYFY([n]) = colimyK [Homr([n], V)] = K^].

Moreover, one has the following isomorphisms

Fx 0r F ^ colimyrv ®r F = colimyF(Y) = F(X).

We know that Fx is a projective right F-module for finite X. We claim that this is still true
for arbitrary X. First consider the case when X is a countable. Without loss of generality we
can assume that X = IJnC71]- Since for any pointed injective map Z —» V, the induced map
FZ —> FY has a retraction, we see that Fx ^ (Qn Coker(Tn-\ —^ FJ. Hence Fx is a projective.

r-i

In general one observes that the functor Sets^ —^mod-r, which assigns Fx to X, preserves
filtered colimits. Based on this fact the claim can easily proved by transfinite induction. We let
FL be the following composition

A^^Sets^^mod-R

Therefore FL is a simplicial object in mod-r, which assigns F^ to [n\. By abuse of notation
we denote the chain complex associated to this simplicial right F-module also by FL. Let
us calculate the homology of this chain complex. Since ^([n]) ^ ^[^n], it follows by
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the Eilenberg-Zilber and Kunneth theorem that ^(rjr,)[n] = H^L)^. Hence one has an
isomorphism of right -T-modules

Hi(FL)^Ji(H^L)).

The relations from Section 1.5 show that F(L)([n]) ̂  FL^ 0r F. So one can write: F(L) ̂
FL 0r F. Thus the spectral sequence constructed in Proposition 1.6 for C^ = FL gives the
expected result. D

2.5. COROLLARY. - Let F be a left F-module. Then there exists a spectral sequence

E^^7^^F(Sd), d ^ l ,

with E^ = 0 ifq ̂  dj and

E^ = Tor^ {A3 o t, F) ifq = dj and d is odd

E^ = Tor^ (O3, F) ifq= dj and d is even.
Moreover, ifK is afield of characteristic sero, then the spectral sequence degenerates:

7r,F(^)^ ^ Tor^'o^F)
p-\-dj=n

ifd is odd and

T^F^)- (D Tor^F)
p-^-dj=n

if d is even. Furthermore, if (S^ is a fibrant model of 3d and f: (S^ -^ (S^ is a
simplicial map, whose realisation is of degree N -^ 0, then jthpart of the above decompositions
corresponds to the eigenspace of f^ : /^•nF(Sd) —^ 7TnF(Sd), where f^ acts as N3.

Proof. - Example 1.8 shows that J^H^)) = 0 if i ^ jd and for i = jd one has
J^H^)) ̂ A ^ o t or J^H^)) ̂  ^ depending on the parity of d. Hence the previous
result implies that the spectral sequence is of the expected form. By Section 1.4 we know that
A^ otis injective, so Ext^_^(-, A3 o t) = 0 for i > 0. By Proposition 1.14(ii) one easily shows
that

Ext;^ (0\ 0^=0= Ext^ (0\ 03)
if i < j. Therefore the expected decomposition follows from Proposition 1.6(ii). The fact that the
action of f^ on T^nF^) have expected form easily folows from Proposition 1.6(iii). D

2.6. Relation with Loday's decomposition

Observe that the summand of the decomposition 2.5 corresponding to j = 0 is trivial i fp>0,
because the functor A° o t is the constant functor with value K and thus it is isomorphic to FQ
and hence it is projective. Now we consider the case when d = 1. For every left F-module F one
has the following decomposition

(2.6.1) ^F(^)-^^)(F)
i=0
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if K has characteristic zero (see [16]). We will show that our decomposition in Corollary 2.5 for
d = 1 essentially coincides with Loday's decomposition. In fact we prove more, namely we give
an axiomatic characterization of the decomposition of7TnF(S1).

2.7. THEOREM. - Let K be afield of characteristic z.ero. Let

^{S^^^H^F)
2=0

be a natural decomposition with the properties'.
(i) H^\F)=Oifn>0.
(ii) For any i ̂  1, the sequence of functors H^^—): F-mod —^ Vect, n ̂  z, forms an exact

connected sequence of functors.
(iii) For any n ̂  0, the functor H^^—) is nonzero.
Then, for any i ̂  1 one has a natural isomorphism

H^\F) ̂  Tor^(A2 o ̂ ,F), n ̂  i.

Moreover for the decomposition (2.6.1) the properties (i)-(iii) hold and therefore our decompo-
sition is isomorphic to the one given in [16].

Proof. -The fact that (2.6.1) satisfies (i)-(iii) is very easy to check based on the definition
given in [16]. So it is enough to show the first statement. If n = 1, then the result is clear
because there is only one summand in both decompositions of 7Ti.F(S'1). In order to prove
the theorem, we still use the axiomatic characterization of Tor-groups. Since the functors
H^\—): r-mod —> Vect.n > i form an exact connected sequence of functors, it is enough to
show that for a projective F one has the isomorphisms

^(.F)^^^1) and H^\F)=0, forn>i.

Let us recall that the functors t*072, n ̂  0, are projective generators in the category of left F-
modules. Hence one only needs to consider the case F = t*^71. Let us calculate 7T^F(S1), when
F = ̂ (g)n. We recall that t*(S) is the free vector space generated by S, modulo the relation
* = 0. Thus 7r^*(51) is nothing but the reduced homology of S1. Therefore it is a consequence
of Eilenberg-Zilber and Ktinneth theorems that

(2.7.1) ^^{S^^K, ifk=m and ^^{S1) = 0 ifk^m.

It follows from property ii) that the functor H^\—) is right exact for any i ̂  0. Now consider the
case n = 2. The isomorphism (2.7.1) shows that H^y^) = 0 except for n = 2. If this were
also true for n == 2, then H^\F) = 0 for all projective F, and therefore H^\—) = 0, because
H^\—) is right exact. This contradicts the fact that all components are nontrivial in general. Thus
H^\t^2) = K. Comparing the Hodge decomposition for n = 2 with (2.7.1), we can conclude
that H^\F) = 0 for any projective F. This shows that the result is proved for n = 2. Now we
can finish the proof by induction, based on the same argument. D

2.8. Stable homotopy and Harrison homology

For any left F-module F, the vector space F([n]) is an K[En\ -module, because En =
Autr([n]). Therefore the subspace of shuffles Shn of K[En\ acts on F(\n\) (see [16]). Moreover,
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by [16], the subspaces Shn(F) := ShnF(\n\) C F({n\\n ̂  0, define the subcomplex of the
complex associated to the simplicial module F(S1) (let us recall that in dimension n, the
simplicial module F(S1) is just F([n])). By definition Harrison homology Harr^(F) of F is
the homology of the corresponding quotient.

2.9. COROLLARY. -Assume K has characteristic zero. Then one has a natural isomorphism

Harr^(F)^^\F).

Proof. - By Theorem 3.7 [16], we know that H^(F) ̂  Harr^F). Therefore our statement is
a consequence of Proposition 2.2 and Theorem 2.7. D

2.10. Link with Mac Lane homology

Let P(Z) be the category of finitely generated free abelian groups. Let ̂ (Z) be the category of
all functors from P(Z) to the category of all abelian groups. Let T <E ^(Z) be a functor. We refer
to [14] (see also [17] Chapter 13) for the definition of Mac Lane (co)homology HML(Z,T) of
Z with coefficient in T. For any functor T C ^(Z) one denotes by T the precomposition of T
with the functor Z: F -^ P(Z), given by S ̂  Z[S]. Here S is a pointed set and Z[S] is the free
abelian group generated by S modulo the relation * = 0.

2.11. PROPOSITION. - For any T G f(Z) one has a natural isomorphism

HML^ T) 0 Q ̂  Harr^ i (?) 0 Q.

Proof. - According to Corollary 2.9 one only needs to show that

HML^Z, T) (g) Q ̂  < (T) (g) Q.

This fact is probably well known to experts, but we give the argument here. Following Breen [4],
we consider the chain complex W^(X) of the simplicial set Z^] (g) X, where X e P(Z) and
n > 0 is a natural number. By the well known properties of Eilenberg-Mac Lane spaces we know
that Hi(W^(X)) (g) Q = 0 for i < In and i -^ n. Moreover Hn(W^(X)) = X and each component
of Wi(X) is of the form ZtX^] for some m. Varying X one obtains the componentwise
projective complex W((-)*) in the category ^(Z), whose homology up to torsion is the
functor J* in dimension < n and zero in dimensions < In. Here P(X) = X* = Hom(X,Z).
Therefore W^ can be used to calculate HML^Z, T) = Torf^F.r) up to torsion and the result
follows. D

2.12. The groups 7^^F(Sd) and playing with Chinese puzzles

Let d be an odd number. Comparing Corollary 2.5 and Theorem 2.7 one sees that in the
characteristic zero case the groups

(2.12.1) 7^(5^ ^ H^(F)
i-\-dj=n

for different d differ only by the way of taking the pieces H^\F) in the decomposition (2.12.1).
The same remark is true also for even d. The knowledge of the decomposition for d = 2
completely determines the decomposition for all even dimensional spheres. However in even
case, in the decomposition of 71-̂ (5 )̂, only the group Harrn-d-^\(F) ̂  H^_^(F) belongs
to Loday's decomposition; all other groups are new.
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2.13. Stable homotopy and homology of small categories

We refer to [3] for definition of the (co)homology of small category with coefficient in a
bifunctor. For any left F-module F and right F-module T, we let £^ and DT be the bifunctors
on r given by

DF([mUn])=t([m])^F([n]) and ^r([m],[n]) = T([m])^t^[n]).

Using Proposition 2.2 and Corollary 3.11 of [14] we obtain the following isomorphisms

(2.13.1) TT^T^H^F^DT) and TT^F^ fT(r,L^).

2.14. Generalization for chain complex of left F-modules

Let (F*,<9) be a chain complex of left F-modules. We can still apply (F*,<9) on 3d to get a
simplicial object in the category of chain complexes. We can take the total complex to^F^S^)
of the corresponding bicomplex. One denotes by TT^F^S^ the homology of to^F^S^).
We have F^(Sd) = Fgd 0 F^. Since in characteristic zero Fgd is homotopy equivalent to
(j)^(A7 o t,jd) or Q)j(03,jd) depending on the parity of d, one obtains the natural chain map

(2.14.1) tot(F^ (^)) ̂  (3) (A^' o t) 0r F,[dj]
3

or

(2.14.2) ^(F,(^)) ̂  Q) (0J) 0r ̂ [dj]
j

depending on the parity of d. This shows that the proof of the Corollary 2.5 is still valid and we
have a similar decomposition of TTnF^S^ in this generality.

3. Decomposition for cyclic homology

3.1. More categories

Let F be the small category of finite nonempty sets. We assume that objects of T are the
sets [n]. By forgetting the basepoint one gets a functor ^: F —^ 7. Let AC be Connes' cyclic
category (see [17]). It is well-known that the simplicial circle 5'1 has a natural cyclic structure,
meaning that the functor S1: A^ —^ F fits into the commutative diagram (see Proposition 2.11
of [16]):

^Op _____^ ^QOp

"| I.'Y Y
r——^T

Therefore any functor T ' . F —^ Vect gives rise to the cyclic module T(5'1). We let HC^(T) be
the cyclic homology of this cyclic module. Let us remark, that for T([n\) = A07^ one gets the
cyclic homology of A. Here A is any commutative algebra. In [16] Loday proved that the groups
HC^(T) have a canonical decomposition:

(3.1.1) HCn(T) ̂  HC^\T) ® • . . C HC^\T\ n ̂  1,
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in the characteristic zero case. Moreover he proved that there is a natural isomorphism

H^\T)^HC^\T) fo rn>3.

We give an alternative proof of these facts based on the same ideas which were used before.

3.2. From F-modules to ^-modules

A left (respectively right) F-module is a covariant (respectively contravariant) functor from F
to the category Vect. The categories of left and right ^-modules are abelian categories. It is clear
that for ^-modules one has duality and pointwise tensor products as for r-modules. Moreover
the functors

Fn=K [Hom^([n], -)] and Fn = K [Hom^-(-, [n])]

are projective generators in F-mod and mod-F respectively, while the dual functors F^ and
F^ are injective cogenerators. Clearly

^n^m^n+m+l ^ ^ ̂  ̂  ̂  ̂ m+n+m.

These are consequences of the facts that [n] ]J [m] ̂  [n + m +1 ] and [n] x [m] ̂  [nm + n + m].
Therefore ifF and T are projective F-module, then F (g) T is also projective. Similarly, ifF and
T are injective F-module, then F (g) T is also injective provided F or T has values in finite
dimensional vector spaces. We have a bifunctor — (g)jr — : mod-F x F-mod —> Vect similar to 1.5
with the same kind of properties. For example one has an isomorphism: F([n]) ̂  Fn ̂ y F. We
also observe that Proposition 1.6 is still valid for ̂ -modules. The precomposition with [i'.F —^ F
defines the functor from ^-modules to F-modules. We let ^ denote this functor. Thus for any
^-module F one has /^*(F)([n]) = F([n]). Let v '. F —^ F be the functor which adds a disjoint
basepoint. The precomposition with v defines the functor v " : mod-F —> mod-F. Thus for any
right r-module T one has (^*T)(X) = T(i^X) = T(X U *). The following isomorphism is a
consequence of the fact that v is left adjoint to the functor p,: F —^ F.

(3.2.1) Honw^(^*F, G) ̂  Homr-^(F, ̂ G).

Moreover for a left F-module F we let a F : F —^ Vect be the functor, which assigns the sum
©re ex ^(^x) to a finite set X. Here Xx is a set X with basepoint x. The proof of the following
isomorphism is immediate

(3.2.2) Hom^-^(aF, G) ̂  Homr-mod(F, ̂ G).

We see that (T^n ̂  F" and ^Fn ̂  Fn.

3.3. PROPOSITION. -
(i) The functor /^* is exact and sends injective F-modules to injective F-modules.

(ii) The functor a-: F-mod —^ F-mod ( respectively v* : mod-F -^ mod-F) is exact and sends
projective F-modules to projective F-modules.

(iii) One has isomorphisms

^.^(aF, G) ̂  Ext̂ (F, ̂ G),

Ext^.^(^*F, G) ̂  ̂ t^.r(F,^G)
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and

Tor^(z/*F, G) ̂  TorfCF, ̂ *G).

(iv) // F and G are right F-modules, then v\F 0 G) ̂  ^F 0 ^*G and ^*(A1 o F) ^
A^oz/*(F).

(v) One has the following isomorphism

^t^Homsets(-,K).

Proof. - The exactness of a left (respectively right) adjoint implies that the right (respectively
left) adjoint preserves injectives (respectively projectives). Clearly /^*, ^* and a are exact. This
implies (i) and (ii). The assertion (iii) is a consequence of (i), (ii), (3.2.1) and (3.2.2), while (iv)
and (v) are obvious. D

3.4. A spectral sequence for HC^(F)

According to [16] the cyclic homology HC^(F) of a left ^-module F is denned as the
homology of the bicomplex

1 \ \
F([2]) ^—— F([l]) <—— F([0])

1 1
F(W) ̂ —— F([0])

F(W),

where each column is the chain complex associated to the simplicial vector space F(S1). Let us
observe that one can write F([n]) ̂  Fn ®T F. Therefore, HC^(F) ̂  -H'*(-L*« 0y F), where L**
is the following bicomplex of right ^"-modules:

^2 ^———— 1̂ ^——— ^0

! 1
^i^—FQ

\
FQ.

Let us calculate the value of L** on [n]. Since

^-jS:[Hom^(-,[m])]
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we see that H^(L^^([n])) is the cyclic homology of the cyclic module associated to the cyclic
space S'1 x • • • x S'1 ((n +1 )-times). Now one can use standard facts about cyclic homology theory
(see Theorem 7.2.3 and Proposition 4.4.8 of [17]) to conclude that ^(L^([n])) is isomorphic
to the exterior algebra A*(a;i,.. .,Xn\ where each xi has degree 1. A similar argument as in
Example 1.8 shows that Hi(L^) ̂  A1 o t, where fis denned as follows: Let us recall that TQ is
the constant functor with value K. There is a canonical transformation TQ —>• v^i whose value
on [n] is a homomorphism which sends an element A C K to \n\ e ̂ t([n\) = Hom^([n], K).
Here A[^] : S —>• K is the constant map with value A. By definition t fits in the exact sequence:

(3.4.1) Q^^^^t->t->Q.

3.5. THEOREM. - Let Fbea left ^-module.
(i) Then there exists a spectral sequence

E^ = Tor^ (A^ o f, F) ̂  HCp^(F).

For q = 1 andp > 2 one has E^ ̂  Tor^, /2*F).
(ii) IfK is afield of characteristic zero, then the spectral sequence degenerates'.

HCp^(F)^ (]) Tor^of,F).
p+g=n

(iii) Furhermore in this case one has an isomorphism between our decomposition and Loday ' s
decomposition (3.1.1)

HC^(F) ̂  Tor^_, (A1 o f, F), n ̂  i.

Proof. - (i) One can apply the ^-version of Proposition 1.6 for C* = Tot(L^). By the above
calculation the spectral sequence is of the expected form. Since J^o is projective, the exact
sequence (3.4.1) shows that there exists an isomorphism E2^ ^ Tor^^t^F) provided p ^ 2.
Therefore the last statement is a consequence of Proposition 3.3(iii).

(ii) By Proposition 1.6 it is enough to show that in characteristic zero one has Ext^.^-^ o
f. A171 o t) = 0 if n < m and i ̂  2. We will work with tensor powers instead of exterior powers,
because these are retracts of tensor powers. The short exact sequence (3.4.1) shows that the
complex (JFo -^ ̂ t)^ is a (nonprojective) resolution of ^^ Therefore one has a spectral
sequence

^f^Ext^^^),

where E^ is the sum of ( n ) copies of

Fyt9 d^i-^P (^ /P®n~p f'^171}^^mod-T \^ b ^ ^ o ^ ) •

By Proposition 3.3(iv) we know that the functor z/* commutes with tensor products. Since
J^Q= K one can delete it in the tensor product. Therefore Proposition 3.3(iii) shows that E^
is a sum of several copies of

Fvt9 (i-^P i^ff^^}}^^mod-r^ ^ (t ) ) '
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One easily sees that ^(f^) ̂  ̂ m. Therefore E^ =0 if q> 0, because t^ is injective.
According to (1.10.2) we have

Hom^-r^,^) ̂ Homr-^r07^*^) =0,

because p < n. Therefore E^ = 0 even when q = 0.
(iii) By the argument given in the proof of Theorem 2.7 it is enough to show that

HCm^t^) = 0 for n -=/=- m and HCn^t^) = K for all n. By Proposition 4.3.10 of [17]
one can reduce the problem to the cases n = 0,1. For n = 0 one obtains the functor .Fo- Clearly
^o(S1) ̂  K[S1]. Therefore ^Co(^b) = K and HC^o) = 0 for m > 0, thanks to Theorem
7.2.3 of [17]. Similarly HC^) = HC^K[S1 x S1]) = A*(a;i), where x^ has dimension 1. It
follows from 1.4 that z/*r C FQ ̂  F^. Therefore HCm^t") = 0 for m ̂  1 and HC^ (z/*r) = K
and we are done. D

4. Hochschild-Kostant-Rosenberg theorem for functors

The goal of this section is to get a partial generalization of the Hochschild-Kostant-Rosenberg
theorem (see for Example 3.4.4 of [17]) which will play a crucial role for our calculations in
Section 5. In this section we assume that K is a field of characteristic zero.

4.1. Inner Ext and inner Tor

It is well known that in the category of ^-modules there exist an inner Horn and inner tensor
product. Thus for any left F-modules T and U and right F-modules V there exists left F-
modules Hom(T, U) and V © U, such that for any left F-module F and right F-module L, one
has the functorial isomorphisms:

Homr-moAF ̂  T, U) ̂  Homr-mod {F, Hom(T, £/)),

(L (g) V) (g)r U ̂  L 0r (V 0 U).

One puts F = F71 and L = Fn to get

Hom(T, U)([n]) ̂  Homr-^F71 (g) T, [/),

(V Q U)([n]) ̂  (Fn 0 V) 0r U.

Usually the inner Horn and inner tensor product are defined by these isomorphisms. This is
actually true in any category of functors. Since F admits sums and products one can describe the
inner Horn and inner tensor product more easily. For this purpose we need the functors An: F-
mod —>• r-mod, n ̂  0, and An : F-mod —> F-mod defined by

(Z,[/)([m]):=[/([n]V[m])

and

(AnU)([m]):=U([n]x[m]).

We claim that there exist natural isomorphisms

Homr-^r71 ̂  T, U) ̂  Homr-mod (T, AnU),

(Jn 0 V) (g)r U ̂  U (g)r (AnU).
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Indeed, one easily checks that these are isomorphic when T = ̂ k and V = Fk and therefore the
Yoneda principle (see Section 1.2) shows that they are isomorphic for any T and V. Hence

Hom(r, U)([n]) = Homr-mod (T, AnU) (V Q U)([n]) = V 0r (AnU).

Clearly for the right derived functors of Hom(T, U) one has a similar description

(4.1.1) Ext*(T, U)([n]) = Ext^(r, AnU).

Moreover, one has the spectral sequence

E^ = Ext^ (^ Ext^T, [/)) ̂  Ext^(F 0 T, [/),

which is a consequence of the spectral sequence for the composite of functors. We let Tor^Y, U)
be the left derived functors of V © U. Then one has an isomorphism

(4.1.2) Tor,(V, U)([n]) = Torf(Y, AnU)

and a spectral sequence

(4.1.3) E^ = Tor^ (F, Tor,(Y, £/)) ̂  Tor^(F 0 V, [7).

4.2. LEMMA. - For the functors F, T : r —^ Vect one has an isomorphism

^\F ^ T) = 7rf(F) 0 T([0]) C F([0]) 0 ̂ (T).

Proof.-This follows from the isomorphism (2.1.2) and from the Eilenberg-Zilber and
Ktinneth theorems. D

4.3. Smooth functors

For any left F-module T we let 77oT be the left F-module [n] ̂  ̂ (AnT) ̂  t (g)r (AnT) .
Thus 77oT ̂  t Q T. A left F-module F is called 0-smooth if 7rf(F) = 0 for any i > 0 and it is
called s-smooth for s > 0 if F-modules AnF and TToF are (s — l)-smooth for any n ̂  0. Since
/lo^ = F, we see that any 5-smooth functor is (s — l)-smooth as well. A left F-module F is
called oo -smooth or smooth for brevity if it is s -smooth for every 5^0.

4.4. LEMMA. - Let 0 ̂  s ^ oo. Then the following holds.
(i) The direct sum of s-smooth left r-modules is s-smooth.

(ii) IfF and G are s-smooth left r-modules, then F (S) G is s-smooth.
(iii) Any projective left r-module is smooth.
(iv) IfF is a s-smooth left F-module, then Torf^^, F) =- 0 , for i > 0, and 0 < r ^ s + 1.
(v) If F is a smooth left r-module and V is a right r-module of finite type and of finite

degree, then Torf(V, F) = 0,for i > 0.

Proof. - (i) follows from the fact that the functors Z\n, n ̂  0, and 77o commute with direct
sums. \

(ii) follows from Lemma 4.2 for 5=0. For s > 0, one works by induction. One observes that
the functors An, n ̂  0, commute with pointwise tensor product and

77o(F 0 T) = ITo(F) 0 T C F 0 77o(T),

which is a consequence of Lemma 4.2.
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(iii) By Proposition 2.2 any projective left F-module is 0-smooth. Now take s > 0. We need
to show that projective left F-modules are 5-smooth. One can restrict ourself to ^k,k ^ 0,
because they are projective generators. By part (ii) it is enough to consider the case k = 0,1.
Any constant functor is projective, because r° is constant. Therefore constant functors are 0-
smooth. Since the functor An,n ^ 0, takes constant functors to constant functors and since 77o
vanishes on constant functors, one obtains by induction that constant functors are smooth. Since
/^(J^) = F1 (^r\[n]) and Tr^F1 ̂  K we obtain IIo(F1) ̂  F1, which shows that F1 is smooth
too and the proof of (iii) is finished.

(iv) is clear when r = 0,1. For r ^ 2 it follows from the spectral sequence (4.1.2), because
(4.1.1) shows that Tor^(t, F) is zero for q > 0 and is (s - l)-smooth for q = 0.

(v) By Proposition 1.12 any such V has finite injective dimension and one can use induction
with respect of injective dimension of V. When V is injective then the statement reduces to (iv).
Indeed the functors ^0n are injective cogenerators, therefore in our circumstances V is a direct
summand of a finite sum of functors t^. The general case follows by embedding V in an
injective of the same type (see Section 1.11) and considering the long exact sequence for Tor-
groups. D

4.5. LEMMA. - Let Abe a smooth commutative algebra of finite type. Then £(A, A) is smooth.

Proof. - We need to prove that the functor F == £(A, A) is s-smooth for any s ^ 0. In the
characteristic zero case the stable homotopy coincides with Harrison homology and hence with
Andre-Quillen homology up to a shift of degree. Thus they vanish for smooth algebras (see [23]).
Therefore F is 0-smooth. One observes that one has the following isomorphism

A p^_f(^(n+V) ^(g)(n+l)\

Therefore Tr^AnF ^ HH^A^^). The Kunneth theorem for Hochschild homology yields
the following isomorphism

77o(F)^(A,^)0r1.

It is well known that the tensor product of smooth algebras is still smooth and for smooth algebra
A the module of differential forms Q\ is a finitely generated projective A-module. Therefore
£(A,Q\) is a direct summand of the finite sum of F-modules like £(A,A). According to
Lemma 4.4 the proof can be completed by induction. D

4.6. HKR THEOREM FOR FUNCTORS. -Let F be a smooth left r-module and let L be a
connected pointed simplicial set. Then

7Tk(F(L))^Jk(H^L)(S)rF.

In particular 7^(5^) = 0 ifk + jd and 7^(5^) ̂  Hf(F) ̂  (A3 o t) (g)r F if d is odd and
TTjdF^) ̂  O3 0r F ifd is even. Moreiver H^\F) = Ofor i < n.

Proof. - According to (1.11.1) the functor Jk(H^{L)) has finite degree. Therefore we can use
Lemma 4.4(v) to conclude that all higher Tor groups in Theorem 2.4 vanishe. D

4.7. Generalization for chain complex of left F-modules

A chain complex (F*,<9) of left F-modules is called smooth if it is smooth componentwise.
For example, if (A^, 6) is a free graded chain algebra, then the argument given in the proof of
Lemma 4.5 shows that C(A^,A^) is smooth as chain complex of left ^-modules. Thanks to
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Theorem 4.6 we see that if (F^,9) is smooth, then the chain maps (2.14.1) and (2.14.2) are
quasi-isomorphisms.

5. Higher order Hochschild homology and cohomology of mapping spaces

5.1. Definition of higher order Hochschild homology

Let A be a commutative algebra, M be an A-module and V be a pointed simplicial finite set.
Following an idea ofAnderson [1] one defines Y-homology of A with coefficient in M by

H^(A,M):=^(C(A,M)(Y)).

Here £(A,M) is the let F-module introduced in Section 1.7. Theorem 2.4 shows that this
definition depends only on the homotopy type of V. In the case, Y = 3d, we call this object
Hochschild homology of order d and denote it by

^(A.M), d^l.

Clearly, for d = 1 one recovers usual Hochschild homology. In the particular case M = A we
write HH^ (A) and HH^^A) instead of H^(A,M) and H^\A,A). Moreover, for augmented
algebra A we write H^(A) and H^A) instead of H^(A,K) and H^A.K). The standard
model of 6^ has only one 0-simplex and no nondegenerate simplices in dimensions > 0 and
< n. Therefore

^(A.M^M and HW(A,M)=0 f o r 0 < z < n .

The isomorphism (2.1.2) shows that

H^\A, M) ̂  H^\A, M) ̂  n\ (g)A M.

Thanks to Proposition 1.15 the natural maps (2.14.1) and (2.14.2) give rise to the homomorphism

(5.1.1) HH^A^Sym^sW^). ri^l

Here Sym\(E) denotes the symmetric A-algebra (in the graded sence) generated by an A-module
E, while 3d(E) denotes the enfold suspension of E. Thus the map (5.1.1) has degree zero.

5.2. PROPOSITION. - Let K be a field of characteristic ^ero. If d is odd, then for any
commutative algebra A and any A-module M one has a natural decomposition.

T^UM)^ Q) J .̂(A,M).
i-\-dj=n

The summand H^\A, M) is isomorphic to M 0A ̂ - Moreover, for even d one has a natural
decomposition

H^\A,M)^ Q) Torf(^,/:(A,M)).
i-\-dj=n

The summand corresponding to j = 1 is isomorphic to Jf^_\(A,M), while the summund
corresponding to i = 0 is isomorphic to M 0A Sym^Q^).
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Proof. - This is a consequence of (2.12) and (1.15). D

5.3. PROPOSITION. -If A is a smooth algebra over a characteristic zero field, then the map
(5.1.1) is an isomorphism.

Proof. - This is a consequence of the Hochschild-Kostant-Rosenberg Theorem 4.6, together
with Proposition 1.15. a

5.4. Higher order Hochschild homology of truncated polynomial algebras

Let r be a positive integer and let A = K[x]/(xr~{~l). According to Proposition 5.4.15 of [17]
one knows that HH^\A) = 0 except when n = 2q or n = 2q - 1 for any q ̂  1 and in these cases
it is isomorphic to A/(xr) ̂  K7'. Therefore one can use Proposition 5.2 to get HH[^(A) = 0 if
m ̂  n(d + 1) or m ̂  n(d + 1) — 1 and

HH^^^K7' i fm=7 i (d+ l )o rm=n(d+ l ) - 1.

Here d is odd.

5.5. Higher order Hochschild homology and cohomology of mapping spaces Xs

We use some ideas from [1] and [2] to relate the groups HH^^A) to the cohomology of the
mapping spaces Xs . For this we extend the definition of higher order Hochschild homology
to commutative graded differential algebras as follows: Let (A^,9) be a commutative graded
differential JC-algebra with unit and let M^ be a graded differential A-module. In Section 1.7 we
defined the chain complex C(A^, M,) of left F-modules. Now, one can define HH^^A^, M,) to
be the homology of the total complex associated to the simplicial chain complex £(A^, M^S^.
If A^ is a free graded algebra, then £(A^, A*) is a smooth chain complex of left F-modules and
therefore the homomorphism

HH^\A^) -^ H^ (Sym^ (5^^))),

is isomorphism thanks to Section 4.7 and Proposition 1.15.

5.6. THEOREM. -Let X be a finite-dimensional d-connected CW-complex. Let A*(X) be
the commutative cochain algebra ofX in the sense of Sullivan. Then

HH^^A^X^^H^X^^K).

For d = 1 this is the well-known isomorphism proved in [15].

5.7. The minimal model of X^

The following construction is a special case of the general construction due to Heafliger (see
for example [10, pp. 308-309]). Let X be a d-connected space and let X = (A*(V),9) be a
minimal model of X. By our assumptions the graded vector space V has no components in
dimension ^ d. One defines the commutative graded differential algebra M. = (A*(V ® V), 9)
as follows. Take V tobe E~dV. For each element x € V, we let x be the corresponding element
in V. Then x H-> x defines an isomorphism V —>• V of degree —d. Let i: X —> M. be the unique
derivation of degree —d extending x i—> x. Then 9 is given by

9(x) = 9x and 9(x) = (-1) ,̂ x e V.
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Then M is a minimal model of X^. Indeed, the direct inspection shows that for A = K +
Kx, x2 = 0, | x = d the algebra (AX, D) of [10] is isomorphic to M.

5.8. Proof of Theorem 5.6

The higher order Hochschild homology of commutative differential graded algebras sends
weak equivalences to isomorphisms. Therefore one can use the minimal model X of X instead
of A*(X). The minimal model M of X^ is isomorphic to the differential graded algebra
A^(J?^[-d]) or Sym^(^[-d}) depending on the parity of d (see (5.4.3) of [17]). Since
the underlying graded algebra is free, the homology of A^(^[-d]) and Sym^Q^-d}) is
isomorphic to the higher order Hochschild homology for odd and even d respectively (see Section
5.5), and the result follows.

5.9. Remarks. - (i) Theorem 5.6 and Proposition 5.2 shows that the cohomology H^^X^)
has a natural Hodge decomposition. Moreover the knowledge of this decomposition for d = 1
(respectively d = 2) completely determines ̂ (X^) for all d odd (respectively even).

(ii) It is well-known that the cohomology H*(X3 ) of a free loop space is isomorphic to the
Hochschild homology of the singular cochain algebra C*(X) of X, provided X is 1-connected.
This result is true in any characteristic. Since higher order Hochschild homology is defined only
for commutative algebras, we are not able to generalize this isomorphism for the mapping space
Xs , because G*(X) is not commutative. However in any characteristic there exist spectral
sequences

E2^ =HHY^H\X)) ̂ IT^), E^^H^H^X^^H^Map^Y^X))

provided Y is a finite complex and X is dim(X)-connected. Here Map^(Y,X) denotes the
space of pointed preserving maps. A homological version of the second spectral sequence was
constructed in [1] (see Theorem 2.3 of [1]), and in [5] it was proved that it actually converges
(see 4.2 of [5]). A similar argument gives also the first spectral sequence.

(iii) Proof of Theorem 2.1 of [28] shows that one can replace A*(X) by H"(X) in Theorem
5.6 if one of the following conditions holds:

(a) K = R and X is a compact Riemannian symmetric space,
(b) K = C and X is a compact Kahler manifold.
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