EI SEVIER

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris. Ser. I

www.sciencedirect.com

Potential theory/Complex analysis

A class of maximal plurisubharmonic functions *

Une classe de fonctions pluri-sous-harmoniques maximales

Hoang-Son Do

Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam

ARTICLE INFO

Article history: Received 28 June 2019 Accepted after revision 5 November 2019 Available online 27 November 2019

Presented by the Editorial Board

ABSTRACT

In this note, we introduce a class of maximal plurisubharmonic functions and use that class to prove some properties of maximal plurisubharmonics functions.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Dans cette note, nous introduisons une classe de fonctions pluri-sous-harmoniques maximales et utilisons celle-ci pour prouver certaines propriétés des fonctions pluri-sous-harmoniques maximales.

© 2019 Académie des sciences, Published by Elsevier Masson SAS, All rights reserved.

0. Introduction

Let $\Omega \subset \mathbb{C}^n$ be a bounded domain $(n \geq 2)$. A function $u \in PSH(\Omega)$ is called maximal if, for every open set $G \subseteq \Omega$, and for each upper semicontinuous function v on \overline{G} such that $v \in PSH(G)$ and $v|_{\partial G} \leq u|_{\partial G}$, we have $v \leq u$. There are some equivalent descriptions of maximality that have been presented in [8] (see also [6]). The set of all maximal plurisubharmonic functions in Ω is denoted by $MPSH(\Omega)$.

By [8] and by the comparison principle [1], $u \in MPSH(\Omega)$ iff for every $U \in \Omega$, there exists a sequence of functions $PSH(U) \cap C(U) \ni u_j \searrow u$ such that $(\mathrm{dd}^c u_j)^n$ is weakly convergent to 0 as $j \to \infty$. In the case where u belongs to the domain of definition of the Monge–Ampère operator $D(\Omega)$ (see [5,3]), this implies that maximality is a local notion. It has been conjectured by Blocki that maximality is also a local notion in the case where $u \notin D(\Omega)$.

In this note, we will introduce a class of plurisubharmonic functions and use it to study some properties of maximal plurisubharmonic functions. We say that a function $u \in PSH^-(\Omega)$ has property M_1 iff, for every open set $U \subseteq \Omega$, there are $u_j \in PSH^-(U) \cap C(U)$ such that u_j is decreasing to u in U and

[†] The author was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.02-2017.306. E-mail addresses: hoangson.do.vn@gmail.com, dhson@math.ac.vn.

$$\lim_{j \to \infty} \left(\int_{U \cap \{u_j > -t\}} (\mathrm{d}\mathrm{d}^{\mathrm{c}}u_j)^n + \int_{U \cap \{u_j > -t\}} \mathrm{d}u_j \wedge \mathrm{d}^{\mathrm{c}}u_j \wedge (\mathrm{d}\mathrm{d}^{\mathrm{c}}u_j)^{n-1} \right) = 0, \tag{1}$$

for any t > 0. Denote by $M_1PSH(\Omega)$ the set of negative plurisubharmonic functions in Ω satisfying property M_1 . We will show that $M_1PSH(\Omega) \subset MPSH(\Omega)$ and property M_1 is a local notion. Our main result is the following one.

Theorem 1. Let Ω be a bounded domain in \mathbb{C}^n and $u \in PSH^-(\Omega)$. Then the following conditions are equivalent:

- (i) $u \in M_1 PSH(\Omega)$.
- (ii) $\chi(u) \in MPSH(\Omega)$ for any convex non-decreasing function $\chi: \mathbb{R} \to \mathbb{R}$.
- (iii) For any open sets U, \tilde{U} such that $U \subseteq \tilde{U} \subseteq \Omega$, for any $u_j \in PSH^-(\tilde{U}) \cap C(\tilde{U})$ such that u_j is decreasing to u in \tilde{U} , we have:

$$\lim_{j\to\infty} \left(\int_{IJ} |u_j|^{-a} (\mathrm{dd}^{\mathsf{c}} u_j)^n + \int_{IJ} |u_j|^{-a-1} \mathrm{d} u_j \wedge \mathrm{d}^{\mathsf{c}} u_j \wedge (\mathrm{dd}^{\mathsf{c}} u_j)^{n-1} \right) = 0,$$

for all a > n - 1.

In particular, property M_1 is a local notion and $M_1PSH(\Omega) \subset MPSH(\Omega)$.

In Section 2, by using Theorem 1, we will show [2] the following properties of maximal plurisubharmonic functions.

Corollary 2. If $u, v \in MPSH_{loc}(\Omega)$ and $\chi : \mathbb{R} \to \mathbb{R}$ is a convex non-decreasing function, then $(z, w) \mapsto \chi(u(z) + v(w)) \in MPSH(\Omega \times \Omega)$.

Corollary 3. Let u be a negative maximal plurisubharmonic function in Ω and let U, \tilde{U} be an open subset of Ω such that $U \subseteq \tilde{U} \subseteq \Omega$. Assume that $u_i \in PSH^-(\tilde{U}) \cap C(\tilde{U})$ is decreasing to u in \tilde{U} . Then

$$\int_{IJ} |u_j|^{-a} (\mathrm{dd}^{\mathrm{c}} u_j)^n \xrightarrow{j \to \infty} 0, \, \forall a > n - 1.$$
 (2)

1. Proof of the main theorem

In this section, we prove Theorem 1.

 $(iii \Rightarrow i)$: Obvious.

 $(i \Rightarrow ii)$: Assume that $U \in \tilde{U} \in \Omega$. Let $u_j \in PSH^-(U) \cap C(U)$ such that u_j is decreasing to u in U and condition (1) is satisfied.

If χ is smooth and χ is constant in some interval $(-\infty, -m)$, then

$$\begin{split} (\mathrm{dd^c}\chi(u_j))^n &= (\chi'(u_j))^n (\mathrm{dd^c}u_j)^n + n\chi''(u_j)(\chi'(u_j))^{n-1} \mathrm{d}u_j \wedge \mathrm{d^c}u_j \wedge (\mathrm{dd^c}u_j)^{n-1} \\ &\leq C \mathbf{1}_{\{u_j>-t\}} (\mathrm{dd^c}u_j)^n + C \mathbf{1}_{\{u_j>-t\}} \mathrm{d}u_j \wedge \mathrm{d^c}u_j \wedge (\mathrm{dd^c}u_j)^{n-1}, \end{split}$$

where C, t > 0 depend only on χ . Hence,

$$\int_{U} (\mathrm{dd^{c}} \chi(u_{j}))^{n} \xrightarrow{j \to \infty} 0.$$

Then, $\chi(u)$ is maximal on U for any open set $U \subseteq \Omega$. Thus, $\chi(u) \in MPSH(\Omega)$.

In the general case, for any convex non-decreasing function χ , we can find $\chi_l \setminus \chi$ such that χ_l is smooth, convex and $\chi|_{(-\infty,-m)} = const$ for some m. By the argument above, $\chi_l(u) \in MPSH(\Omega)$ for any $l \in \mathbb{N}$. Hence $\chi(u) \in MPSH(\Omega)$. $(ii \Rightarrow iii)$: For any $0 < \alpha < \frac{1}{n}$, the function

$$\Phi_{\alpha}(t) = -(-t)^{\alpha}$$

is convex and non-decreasing in \mathbb{R}^- . Assume that u satisfies (ii), we have $\Phi_{\alpha}(u) \in MPSH(\Omega)$.

By [2] (see also [4]), for any $0 < \alpha < \frac{1}{n}$, we have $\Phi_{\alpha}(u) \in D(\Omega)$. Then, for any $u_j \in PSH^-(\tilde{U}) \cap C(\tilde{U})$ such that u_j is decreasing to u in \tilde{U} , we have

$$\int_{U} (\mathrm{d}\mathrm{d}^{\mathrm{c}} \Phi_{\alpha}(u_{j}))^{n} \stackrel{j \to \infty}{\longrightarrow} 0, \forall 0 < \alpha < \frac{1}{n},$$

which implies (iii).

By $(i \Leftrightarrow ii)$, we conclude that $M_1PSH(\Omega) \subset MPSH(\Omega)$. Finally, we need to show that property M_1 is a local notion. Assume that u has local property M_1 . Let $U \in \tilde{U} \in \Omega$ be open sets. By the compactness of \overline{U} and by the local property M_1 of u, there are open sets $U_1, ..., U_m, \tilde{U}_1, ..., \tilde{U}_m$ such that

$$\forall k = 1, ..., m : U_k \subseteq \tilde{U}_k \subseteq \tilde{U} \text{ and } u \in M_1 PSH(\tilde{U}_k),$$

and

$$\overline{U} \subset \bigcup_{k=1}^m U_k$$
.

Let $u_i \in PSH^-(\tilde{U}) \cap C(\tilde{U})$ such that u_i is decreasing to u in \tilde{U} , we have, by $(i \Leftrightarrow iii)$,

$$\lim_{j\to\infty} \left(\int_{U_k} |u_j|^{-a} (\mathrm{dd^c} u_j)^n + \int_{U_k} |u_j|^{-a-1} \mathrm{d} u_j \wedge \mathrm{d^c} u_j \wedge (\mathrm{dd^c} u_j)^{n-1} \right) = 0,$$

for all a > n - 1 and k = 1, ..., m. Hence,

$$\lim_{j \to \infty} \left(\int_{U} |u_{j}|^{-a} (\mathrm{dd^{c}} u_{j})^{n} + \int_{U} |u_{j}|^{-a-1} \mathrm{d} u_{j} \wedge \mathrm{d^{c}} u_{j} \wedge (\mathrm{dd^{c}} u_{j})^{n-1} \right) = 0, \ \forall a > n-1.$$

Then u satisfies (iii). Thus u has property M_1 .

2. Proof of Corollary 2 and Corollary 3

2.1. Proof of Corollary 2

Without loss of generality, we can assume that $u, v \in PSH^-(\Omega)$.

If $u, v \in MPSH_{loc}(\Omega)$ then for any $z_0, w_0 \in \Omega$, there are open balls $U, \tilde{U}, V, \tilde{V}$ such that $z_0 \in U \subseteq \tilde{U} \subseteq \Omega$, $w_0 \in V \subseteq \tilde{V} \subseteq \Omega$, $u \in MPSH(\tilde{U})$ and $v \in MPSH(\tilde{V})$. We need to show that u(z) + v(w) has property M_1 in $U \times V$.

Let $u_j \in PSH^-(\tilde{U}) \cap C(\tilde{U})$ and $v_j \in PSH^-(\tilde{V}) \cap C(\tilde{V})$ such that u_j is decreasing to u in \tilde{U} and v_j is decreasing to v in \tilde{V} . By [9], there are $\tilde{u}_j \in PSH^-(\tilde{U}) \cap C(\tilde{U})$, $\tilde{v}_j \in PSH^-(\tilde{V}) \cap C(\tilde{V})$ such that

$$\begin{cases} \tilde{u_j} = u_j & \text{in } \tilde{U} \setminus U, \\ \tilde{v_j} = v_j & \text{in } \tilde{V} \setminus V, \\ (dd^c \tilde{u}_j)^n = 0 & \text{in } U, \\ (dd^c \tilde{v}_i)^n = 0 & \text{in } V. \end{cases}$$

By the maximality of u and v, we conclude that \tilde{u}_j is decreasing to u in \tilde{U} and \tilde{v}_j is decreasing to v in \tilde{V} . In $U \times V$, we have:

$$\begin{split} &(\mathrm{dd^c}(\tilde{u}_j(z)+\tilde{v}_j(w)))^{2n}=C^n_{2n}(\mathrm{dd^c}\tilde{u}_j)^n_z\wedge(\mathrm{dd^c}\tilde{v}_j)^n_w=0\\ &d(\tilde{u}_j(z)+\tilde{v}_j(w))\wedge\mathrm{d^c}(\tilde{u}_j(z)+\tilde{v}_j(w))\wedge(\mathrm{dd^c}(\tilde{u}_j(z)+\tilde{v}_j(w)))^{2n-1}\\ &=C^{n-1}_{2n-1}\mathrm{d}_z\tilde{u}_j\wedge\mathrm{d}^c_z\tilde{u}_j\wedge(\mathrm{dd^c}\tilde{u}_j)^{n-1}_z\wedge(\mathrm{dd^c}\tilde{v}_j)^n_w+C^{n-1}_{2n-1}\mathrm{d}_w\tilde{v}_j\wedge\mathrm{d}^c_w\tilde{v}_j\wedge(\mathrm{dd^c}\tilde{v}_j)^{n-1}_w\wedge(\mathrm{dd^c}\tilde{u}_j)^n_z\\ &=0. \end{split}$$

Then u(z) + v(w) has property M_1 in $U \times V$. By Theorem 1, property M_1 is a local notion. Hence, $u(z) + v(w) \in M_1 PSH(\Omega \times \Omega)$. This implies that $\chi(u(z) + v(w)) \in MPSH(\Omega \times \Omega)$ for any convex non-decreasing function χ .

2.2. Proof of Corollary 3

Let $v = |z_1|^2 + ... + |z_{n-1}|^2 + x_n + y_n - M$, where $M = \sup_{\Omega} (|z|^2 + |x_n| + |y_n|)$. Then $v \in MPSH(\Omega)$. By Corollary 2, $\chi(u(z) + v(w)) \in MPSH(\Omega \times \Omega)$ for any convex non-decreasing function χ .

By [2,4], for any $0 < \alpha < \frac{1}{2n}$, we have $\Phi_{\alpha}(u(z) + v(w)) \in D(\Omega \times \Omega)$, where Φ_{α} is defined as in the proof of Theorem 1. Then

$$\int_{U\times U} (\mathrm{d}\mathrm{d}^{\mathrm{c}}\Phi(u_{j}(z)+v(w)))^{2n} \stackrel{j\to\infty}{\longrightarrow} 0,$$

for any $0 < \alpha < \frac{1}{2n}$. Hence,

$$\int_{\mathbb{R}^{n}} |u_{j}|^{-2n-1+2n\alpha} (\mathrm{dd}^{c} u_{j})^{n} \stackrel{j \to \infty}{\longrightarrow} 0, \ \forall 0 < \alpha < \frac{1}{2n}. \tag{3}$$

Moreover, $\Phi_{\beta}(u) \in D(\Omega)$ for any $0 < \beta < \frac{1}{n}$. Then, for any $0 < \beta < \frac{1}{n}$, there is $C_{\beta} > 0$ such that

$$\int_{U} (\mathrm{d}\mathrm{d}^{\mathrm{c}} \Phi_{\beta}(u_{j}))^{n} \leq C_{\beta}, \ \forall j > 0.$$

Hence.

$$\int_{U} |u_j|^{-n+n\beta} (\mathrm{dd}^{\mathrm{c}} u_j)^n \le C_{\beta}, \ \forall j > 0, \forall 0 < \beta < \frac{1}{n}. \tag{4}$$

Combining (3), (4) and using Hölder's inequality, we obtain (2).

3. Further remarks on the class $M_1 PSH(\Omega)$

In this section, we introduce some additional properties of the class $M_1PSH(\Omega)$. By Theorem 1, we have the following proposition.

Proposition 4. Let Ω be a bounded domain in \mathbb{C}^n .

- (i) If $u \in M_1 PSH(\Omega)$ then $\chi(u) \in M_1 PSH(\Omega)$ for any convex non-decreasing function $\chi : \mathbb{R}^- \to \mathbb{R}^-$.
- (ii) If $u_i \in M_1 PSH(\Omega)$ and u_i is decreasing to u, then $u \in M_1 PSH(\Omega)$.
- (iii) Let $u \in PSH^-(\Omega) \cap C^2(\Omega \setminus F)$, where $F = \{z : u(z) = -\infty\}$ is closed. If

$$(\mathrm{dd}^{\mathrm{c}}u)^{n} = \mathrm{d}u \wedge \mathrm{d}^{\mathrm{c}}u \wedge (\mathrm{dd}^{\mathrm{c}}u)^{n-1} = 0$$

in $\Omega \setminus F$, then $u \in M_1 PSH(\Omega)$.

In some special cases, we can easily check property M_1 using the following criteria.

Proposition 5. Let Ω be a bounded domain in \mathbb{C}^n . Let $\chi : \mathbb{R} \to \mathbb{R}$ be a smooth convex increasing function such that $\chi''(t) > 0$ for any $t \in \mathbb{R}$. Assume also that χ is lower bounded. If $u \in PSH^-(\Omega)$ and $\chi(u) \in MPSH(\Omega)$, then $u \in M_1PSH(\Omega)$.

Proof. Let $U \subseteq \tilde{U} \subseteq \Omega$ and $u_j \in PSH(\tilde{U}) \cap C(\tilde{U})$ such that u_j is decreasing to u. Then

$$dd^{c}(\chi(u_{i})) = \chi'(u_{i})dd^{c}u_{i} + \chi''(u_{i})du_{i} \wedge d^{c}u_{i}$$

and

$$(\mathrm{dd^{c}}\chi(u_{j}))^{n} = (\chi'(u_{j}))^{n} (\mathrm{dd^{c}}u_{j})^{n} + n\chi''(u_{j})(\chi'(u_{j}))^{n-1} \mathrm{d}u_{j} \wedge \mathrm{d^{c}}u_{j} \wedge (\mathrm{dd^{c}}u_{j})^{n-1}.$$

For any t > 0, there exists C > 0 depending only on t and χ such that

$$(\mathrm{dd^{c}}\chi(u_{j}))^{n} \ge C\mathbf{1}_{\{u_{j}>-t\}}(\mathrm{dd^{c}}u_{j})^{n} + C\mathbf{1}_{\{u_{j}>-t\}}\mathrm{d}u_{j} \wedge \mathrm{d^{c}}u_{j} \wedge (\mathrm{dd^{c}}u_{j})^{n-1}. \tag{5}$$

Note that $\chi(u) \in D(\Omega) \cap MPSH(\Omega)$. Hence,

$$\lim_{j \to \infty} \int_{L} (dd^{c} \chi(u_{j}))^{n} = 0.$$
 (6)

Combining (5) and (6), we have

$$\lim_{j\to\infty}\left(\int\limits_{U\cap\{u_j>-t\}}(\mathrm{d}\mathrm{d}^{\mathrm{c}}u_j)^n+\int\limits_{U\cap\{u_j>-t\}}\mathrm{d}u_j\wedge\mathrm{d}^{\mathrm{c}}u_j\wedge(\mathrm{d}\mathrm{d}^{\mathrm{c}}u_j)^{n-1}\right)=0.$$

Thus, $u \in M_1 PSH(\Omega)$. \square

Example 6. (i) If u is a negative plurisubharmonic function in $\Omega \subset \mathbb{C}^n$ depending only on n-1 variables, then u has M_1 property.

(ii) If $f: \Omega \to \mathbb{C}^n$ is a holomorphic mapping of rank < n then $(\mathrm{dd^c}|f|^2)^n = 0$ (see, for example, in [7]). By Proposition 5, $\log |f| \in M_1 PSH(\Omega)$ if it is negative in Ω .

References

- [1] E. Bedford, B.A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1-2) (1982) 1-40.
- [2] E. Bedford, Survey of pluri-potential theory, in: Several Complex Variables, Stockholm, 1987/1988, in: Math. Notes, vol. 38, Princeton University Press, Princeton, NJ, USA, 1993, pp. 48–97.
- [3] Z. Blocki, The domain of definition of the complex Monge-Ampère operator, Amer. J. Math. 128 (2) (2006) 519-530.
- [4] Z. Blocki, Remark on the definition of the complex Monge–Ampère operator, in: Functional Analysis and Complex Analysis, in: Contemp. Math., vol. 481, Amer. Math. Soc., Providence, RI, USA, 2009, pp. 17–21.
- [5] U. Cegrell, The general definition of the complex Monge–Ampère operator, Ann. Inst. Fourier (Grenoble) 54 (1) (2004) 159–179 (in English, with French summary).
- [6] M. Klimek, Pluripotential Theory, Oxford University Press, Oxford, UK, 1991.
- [7] A. Rashkovskii, Maximal plurisubharmonic functions associated with holomorphic mappings, Indiana Univ. Math. J. 47 (1) (1998) 297-309.
- [8] A. Sadullaev, Plurisubharmonic measures and capacities on complex manifolds, Russ. Math. Surv. 36 (1981) 61-119.
- [9] J.B. Walsh, Continuity of envelopes of plurisubharmonic functions, J. Math. Mech. 18 (1968) 143-148.