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RESUME

Dans cette note, nous introduisons une classe de fonctions pluri-sous-harmoniques
maximales et utilisons celle-ci pour prouver certaines propriétés des fonctions pluri-sous-
harmoniques maximales.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

0. Introduction

Let @ C C™" be a bounded domain (n > 2). A function u € PSH(Q) is called maximal if, for every open set G € €2, and
for each upper semicontinuous function v on G such that v € PSH(G) and v|s¢ < ulsg, we have v < u. There are some
equivalent descriptions of maximality that have been presented in [8] (see also [6]). The set of all maximal plurisubharmonic
functions in © is denoted by MPSH(S).

By [8] and by the comparison principle [1], u € MPSH(2) iff for every U € €, there exists a sequence of functions
PSH(U)NCU) > uj \ u such that (dd“u;)" is weakly convergent to 0 as j — oco. In the case where u belongs to the
domain of definition of the Monge-Ampeére operator D(2) (see [5,3]), this implies that maximality is a local notion. It has
been conjectured by Blocki that maximality is also a local notion in the case where u ¢ D(2).

In this note, we will introduce a class of plurisubharmonic functions and use it to study some properties of maximal
plurisubharmonic functions. We say that a function u € PSH~(2) has property M iff, for every open set U € €2, there are
uje PSH=(U)NC(U) such that u; is decreasing to u in U and
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lim / (dduj)" + / duj Anduj A ddup™ | =0, (1)
—00
! UN{uj>—t} UN{uj>—t}

for any t > 0. Denote by M{PSH(S2) the set of negative plurisubharmonic functions in 2 satisfying property M. We will
show that M1PSH(2) C MPSH(2) and property M; is a local notion. Our main result is the following one.

Theorem 1. Let Q2 be a bounded domain in C" and u € PSH™~ (2). Then the following conditions are equivalent:
(i) u € M1 PSH(Q).

(ii) x(u) e MPSH(R2) fot any convex non:decreasingfunction x:R - R. . y
(iii) For any open sets U, U such that U € U € , forany uj € PSH™(U) N C(U) such that u; is decreasing to u in U, we have:

lim /|uj|_“(ddcuj)"—i—/|uj|_‘1_1dujAdcuj/\(ddcuj)"‘1 =0,
j—o00
U U

foralla>n—1.

In particular, property M is a local notion and M{PSH(2) C MPSH ().
In Section 2, by using Theorem 1, we will show [2] the following properties of maximal plurisubharmonic functions.

Corollary 2.If u,v € MPSHo(2) and x : R — R is a convex non-decreasing function, then (z, w) > x(u(z) + v(w)) €
MPSH(Q2 x Q).

Corollary 3. Let u be a negative maximal plurisubharmonic function in 2 and let U, U be an open subset of  such that U € U € Q.
Assume that uj e PSH~(U) N C(U) is decreasing to u in U. Then

/'uj|_a(ddCUj)n j_)_o)o 0, Va>n—1. (2)
0]

1. Proof of the main theorem

In this section, we prove Theorem 1.
(iii = i): Obvious.
(i = ii): Assume that U € U € Q. Let uj e PSH=(U)NC(U) such that u; is decreasing to u in U and condition (1) is
satisfied.

If x is smooth and x is constant in some interval (—oo, —m), then

(ddx )™ = (¢ @)™ ddup™ +nx" (' @) duj A duj A (dduj)"!

< Cl{uj>,t}(ddcu1')" + Cl{uj>,t}du]' A chlj A (ddcuj')"il,

where C,t > 0 depend only on x. Hence,
/(ddcx(uj))" ~%o.
U

Then, y (u) is maximal on U for any open set U € 2. Thus, x (u) € MPSH(Q).

In the general case, for any convex non-decreasing function x, we can find x; \, x such that y; is smooth, convex and
X |(=00,—m) = const for some m. By the argument above, y;(u) € MPSH(2) for any | € N. Hence x (u) € MPSH(R).

(i = iii): For any 0 <« < 1, the function

Dy (t) = —(—t)*

is convex and non-decreasing in R~. Assume that u satisfies (ii), we have &, (u) € MPSH().
By [2] (see also [4]), for any 0 < o < % we have @y (u) € D(€2). Then, for any u;j PSH=(0) N C(0) such that uj is
decreasing to u in U, we have
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j— 1
/(dd°d>a(uj))” 220 v0o<a < =

which implies (iii).

By (i < ii), we conclude that M{PSH(2) C MPSH(S2). Finally, we need to show that property M; is a local notion.
Assume that u has local property M;. Let U € U € Q be open sets. By the compactness of U and by the local property M;
of u, there are open sets Uy, ..., Uy, Uy, ..., Un such that

Vk=1,..,m: U, €U, e UandueM;PSH(Uy),

and
m
UclJu
k=1

Let uj € PSH~(U) N C(U) such that u; is decreasing to u in U, we have, by (i < iii),

11m /‘|uj|“’(ddC hi ~|—/|u]|_“ Yduj Aduj A (ddu)" ! | =0,
Uy

foralla>n—1 and k=1, ..., m. Hence,
lim / [uj| = ddup™ + / |uj|’a’1duj AdCuj A (ddcuj)"*1 =0,Va>n—1.
j—oo
U

Then u satisfies (iii). Thus u has property M.
2. Proof of Corollary 2 and Corollary 3
2.1. Proof of Corollary 2

Without loss of generality, we can assume that u, v € PSH™ ().

If u,v e MPSHoc(Q) then for any zo, wo € , there are open balls U, U, V,V such that zpeUcU e Q, woeV eV e
Q,ueMPSH(U) and v € MPSH(V) We need to show that u(z) 4+ v(w) has property My in U x V.

Let uj € PSH™ (U) N C(U) and vje PSH™ (V) N C(V) such that uj is decreasing to u in U and vj is decreasing to v
in V. By [9], there are iije PSH™ ) nc), vjePSH™ (V)N C(V) such that

lf]' =Uj in U \ U,
\7]' =Vj in \7 \ vV,
(dd“aj)"=0 inU,
(ddv))"=0 inV.
By the maximality of u and v, we conclude that ii; is decreasing to u in U and vj is decreasing to v in V.InU x V, we
have:
(dd (it j(2) + 7 j(w)))?" = €8 (dd i1 ) A (ddV )T, =
d(ilj(z) + ¥ (W) Ad(@j(2) + 7 j(w)) A (ddC (il j(z) + 7 j(w)))>" !
=0l d i AdSTj A (AT )P A (AT )R, + Col dw T AdS, T A (ddT YT A (ddCE !
=0.

Then u(z) + v(w) has property My in U x V. By Theorem 1, property M; is a local notion. Hence, u(z) + v(w) €
M1PSH(2 x 2). This implies that x (u(z) + v(w)) €e MPSH(2 x 2) for any convex non-decreasing function y.
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2.2. Proof of Corollary 3

Let v =|z1|% + ...+ |zn—1|> +Xn + Yo — M, where M = sup(|z|2 + |xn| +|¥n|). Then v € MPSH(S). By Corollary 2, x (u(z) +
Q

v(w)) €e MPSH(2 x ) for any convex non-decreasing function y.
By [2,4], for any 0 <« < 21—” we have &4 (u(z) + v(w)) € D(Q2 x ), where &, is defined as in the proof of Theorem 1.
Then

/ (dd D u;j(2) + vw))n =0,
UxU

1
for any 0 < o < 5. Hence,

= 1
/ |uj| 722 (ddCy )" =20, vo<a < o 3)
u

Moreover, ®g(u) € D(R) for any 0 < 8 < % Then, for any 0 < 8 < % there is Cg > 0 such that
[(ddcd>,3(uj))” <Cg, Vj>0.
U

Hence,

1
/|uj|—”+”ﬂ(ddcuj)"gcﬁ,Vj>0,v0<;3<E. (4)
U

Combining (3), (4) and using Holder’s inequality, we obtain (2).
3. Further remarks on the class M PSH ()

In this section, we introduce some additional properties of the class M1 PSH(S2). By Theorem 1, we have the following
proposition.

Proposition 4. Let 2 be a bounded domain in C".
(i) Ifu e M{PSH(R) then x (u) € M1 PSH() for any convex non-decreasing function x : R~ — R™.
(ii) Ifuj € M{PSH(2) and u; is decreasing to u, then u € M1 PSH ().
(iii) Letu € PSH=(2) N C2(Q\ F), where F = {z: u(z) = —oo} is closed. If
(dd“u)" = du A d°u A (dd“u)" ' =0
inQ\ F,thenu € M{PSH(R).

In some special cases, we can easily check property M using the following criteria.

Proposition 5. Let 2 be a bounded domain in C". Let x : R — R be a smooth convex increasing function such that x”(t) > 0 for
any t € R. Assume also that y is lower bounded. If u € PSH~(2) and x (u) € MPSH(S2), then u € M1 PSH(2).

Proof. Let U e U € 2 and uj € PSH(U) N C(U) such that u; is decreasing to u. Then
dd(x (uj) = x'(upddu; + x"(ujpduj A du;
and
(ddy ()" = O )" [@ddup)” +nx " @y @)™ duj Aduj A (ddup™.
For any t > 0, there exists C > 0 depending only on t and x such that
(ddx ()" = Clyy > - (ddu )™ + Clyy;o _pyduj A duj A (dduj)™ 1. (5)
Note that x (u) € D(2) " MPSH(£2). Hence,
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lim /(ddcx(uj))" =0. (6)
j—o0
U

Combining (5) and (6), we have

lim / (ddu )" + / duj A duj A (ddup)" ! | =o0.
—00
! Uﬁ{uj>—t} Uﬂ{u]'>—l’}

Thus, u € M{PSH(2). O

Example 6. (i) If u is a negative plurisubharmonic function in 2 c C" depending only on n — 1 variables, then u has M
property.

(ii) If f:Q — C" is a holomorphic mapping of rank < n then (dd°|f|%)" =0 (see, for example, in [7]). By Proposition 5,
log|f| € Mq{PSH(Q) if it is negative in .
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