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Symmetric varieties are normal equivariant open embeddings of symmetric homogeneous 
spaces and they are interesting examples of spherical varieties. The principal goal of this 
article is to study the rigidity under Kähler deformations of smooth projective symmetric 
varieties with Picard number one.
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r é s u m é

Les variétés symétriques sont les plongements ouverts normaux équivariants des espaces 
homogènes symétriques et ce sont des exemples intéressants de variétés sphériques. 
L’objectif principal de cet article est d’étudier la rigidité sous les déformations kähleriennes 
des variétés projectives lisses symétriques de nombre de Picard un.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

For a connected semisimple algebraic group G over C and an involution θ of G , the homogeneous space G/H is called 
a symmetric homogeneous space, where H is a closed subgroup of G such that Gθ ⊂ H ⊂ NG(Gθ ) (see Section 2.1 for details). 
A normal G-variety X together with an equivariant open embedding G/H ↪→ X of a symmetric homogeneous space G/H is 
called a symmetric variety. Our interest in this paper is the rigidity property under Kähler deformation of smooth projective 
symmetric varieties with Picard number one.
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From the Kodaira–Spencer deformation theory (cf. [15]), the vanishing of the first cohomology group H1(G/P , TG/P ) of 
a rational homogeneous manifold G/P for a parabolic subgroup P ⊂ G implies the local deformation rigidity of G/P . The 
global deformation rigidity of a rational homogeneous manifold G/P with Picard number one was studied by Hwang and 
Mok in [9], [11], [12], [13], [8]: a rational homogeneous manifold with Picard number one, different from the orthogonal 
isotropic Grassmannian Grq(2, 7), is globally rigid. This result can be generalized to some kinds of quasi-homogeneous va-
rieties, for example, odd Lagrangian Grassmannians [20] and odd symplectic Grassmannians [8] among smooth projective 
horospherical varieties with Picard number one. It is then natural to ask the same questions about smooth projective sym-
metric varieties. Recently, the local deformation rigidity has been proven for smooth projective symmetric varieties with 
Picard number one, whose restricted root system is of type A2 in [6, Proposition 8.4] or [1, Theorem 1.1]. We obtain the 
global deformation rigidity of two smooth projective symmetric varieties of type A2 under the assumption that the central 
fibers, of their deformation families, are not equivariant compactifications of the vector group Cn , where n is the dimension 
of the symmetric varieties.

Theorem 1.1. Let π : X → � be a smooth projective morphism from a complex manifold X to the unit disc � ⊂C. Denote by S the 
smooth equivariant completion with Picard number one of the symmetric homogeneous space SL(6, C)/ Sp(6, C) or E6/F4 . Suppose 
that, for any t ∈ �\{0}, the fiber Xt = π−1(t) is biholomorphic to the smooth projective symmetric variety S. Then the central fiber 
X0 is biholomorphic to either S or an equivariant compactification of the vector group Cn, n = dim S.

According to Theorem 2 of [21], when smooth projective symmetric varieties with Picard number one have a restricted 
root system of type G2, they are the smooth equivariant completions of either G2/(SL(2, C) × SL(2, C)) or (G2 × G2)/G2. 
Recently, the smooth equivariant completion of G2/(SL(2, C) × SL(2, C)), which is called the Cayley Grassmannian, has been 
studied by Manivel [18]. Combining geometric descriptions of the Cayley Grassmannian in [18] with the normal exact 
sequence leads to the local deformation rigidity.

Theorem 1.2. The smooth equivariant completion S with Picard number one of the symmetric homogeneous space G2/(SL(2, C) ×
SL(2, C)) is locally rigid.

In Section 2, we will review the classification results of smooth projective symmetric varieties with Picard number one 
and some general results about the variety of minimal rational tangents (VMRT). Moreover, we will prove the deformation 
rigidity of VMRT as a projective manifold under the assumption in Theorem 1.1. In Section 3, we relate the automorphism 
group of a projective variety with the prolongations of the Lie algebra of infinitesimal automorphisms of the cone structure 
given by its VMRT. By considering the smooth projective symmetric varieties with Picard number one of type A2 and the 
affine cones of their VMRTs, we can prove Theorem 1.1. In Section 4, we prove Theorem 1.2 using the Koszul complex 
associated with the Cayley Grassmannian and the Borel–Weil–Bott theorem.

2. Symmetric varieties and VMRT

2.1. Smooth projective symmetric varieties with Picard number one

Let G be a connected semisimple algebraic group over C and θ be an involution of G , i.e. a nontrivial automorphism 
θ : G → G such that θ2 = id.

Definition 2.1. Let Gθ = {g ∈ G : θ(g) = g}.

(1) When H is a closed subgroup of G such that Gθ ⊂ H ⊂ NG(Gθ ), we say that the homogeneous space G/H is a symmetric 
(homogeneous) space. Here, NG(Gθ ) means the normalizer of Gθ in G .

(2) A normal G-variety X together with an equivariant open embedding G/H ↪→ X of a symmetric space G/H is called a 
symmetric variety.

Example. (1) For G = SL(n, C) × SL(n, C) and the involution θ(x, y) = (y, x), Gθ = {(x, x) ∈ SL(n, C) × SL(n, C)} ∼= SL(n, C). 
In particular, if n = 2 and H = Gθ , then the symmetric space G/H ∼= SL(2, C) is a closed subvariety of Mat2×2(C) ∼=C4. Let 
us consider an equivariant open embedding of G/H :

G/H ↪→ X := {[x : t] : det(x) = t2} ⊂ P (Mat2×2(C) ⊕C)

x �→ [x : 1].
Thus, the symmetric variety X is the 3-dimensional hyperquadric Q3 ⊂P 4.

(2) For G = SL(3, C) and the involution θ(g) = (gt)−1, we get Gθ = SO(3, C). The irreducible representation 
V SL(3,C)(2�1) = Sym2 C3 is decomposed into Sym2 C3 ∼= V SO(3,C)(4�1) ⊕ V SO(3,C)(0) = C5 ⊕ C as SO(3, C)-modules. 
From this result, we have an equivariant open embedding SL(3, C)/NG(SO(3, C)) ↪→P (Sym2 C3) ∼=P 5 = X .
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Vust [23, Theorem 1 in Section 1.3] proved that a symmetric space G/H is spherical, i.e. it has an open orbit under 
the action of a Borel subgroup of G . By using the Luna–Vust theory on spherical varieties, Ruzzi [22] classified the smooth 
projective symmetric varieties with Picard number one using colored fans.

Theorem 2.2 (Theorem 1 of [21]). Let X be a smooth equivariant completion of a symmetric space G/H with Picard number one. Then 
X is nonhomogeneous if and only if

(1) the restricted root system {α − θ(α) : α ∈ RG }\{0} has type either A2 or G2 , where RG denotes the root system of G, and
(2) H = Gθ (the closed subgroup of invariants of θ ).

Given a symmetric space G/H, there is at most one embedding of G/H with these properties. Furthermore, all these varieties are 
projective and Fano.

Moreover, Ruzzi gave a geometric description of smooth projective symmetric varieties with Picard number one whose 
restricted root system is of type A2 (Theorem 3 of [21]): these A2-type symmetric varieties are smooth equivariant com-
pletions of symmetric homogeneous spaces SL(3, C)/ SO(3, C), (SL(3, C) × SL(3, C))/ SL(3, C), SL(6, C)/ Sp(6, C), E6/F4, 
and are isomorphic to a general hyperplane section of rational homogeneous manifolds which are in the third row of the 
geometric Freudenthal-Tits magic square (see [3], [16], and Section 3.5 of [17]), respectively.

R C H O

R v4(P 1) P (TP2 ) Grω(2,6) OP2
0

C v2(P 2) P 2 ×P 2 Gr(2,6) OP 2

H LGr(3,6) Gr(3,6) S6 E7/P7

O F ad
4 Ead

6 Ead
7 Ead

8

The fourth row (O-row) of the square consists of the adjoint varieties for the exceptional simple Lie groups except 
G2. Taking the varieties of lines through a point, one obtains the third row which are Legendre varieties. The second row 
is deduced from the third row by the same process, which consists of Severi varieties. Then, by taking general hyperplane 
sections, we get the first row of the square.

2.2. Variety of minimal rational tangents

In 1990’s Hwang and Mok introduced the notion of the variety of minimal rational tangents on uniruled projective mani-
folds (see [10] and [7]). For the study of Fano manifolds, more generally uniruled manifolds, a basic tool is the deformation 
of rational curves. The study of the deformation of minimal rational curves leads to their associated variety of minimal ratio-
nal tangents, which is defined as the subvariety of the projectivized tangent bundle P (T X ) consisting of tangent directions 
of minimal rational curves immersed in an uniruled projective manifold X .

Let X be a projective manifold of dimension n. By a parameterized rational curve we mean a nonconstant holomorphic 
map f : P 1 → X from the projective line P 1 into X . We say that a (parameterized) rational curve f : P 1 → X is free if the 
pullback f ∗T X of the tangent bundle is nonnegative in the sense that f ∗T X splits into a direct sum O(a1) ⊕ · · · ⊕ O(an)

of line bundles of degree ai ≥ 0 for all i = 1, · · · , n. For a polarized uniruled projective manifold (X, L) with an ample line 
bundle L, a minimal rational curve on X is a free rational curve of minimal degree among all free rational curves on X .

Let J be a connected component of the space of minimal rational curves and let K := J / Aut(P 1) be the quotient 
space of unparameterized minimal rational curves. We call K a minimal rational component. For a point x ∈ X , consider the 
subvariety Kx of K consisting of minimal rational curves belonging to K marked at x. Define the (rational) tangent map
τx : Kx ��� P (Tx X) by τx([ f (P 1)]) = [df (ToP 1)] sending a member of Kx smooth at x to its tangent direction at x, where 
f : P1 → X is a minimal rational curve with f (o) = x. For a general point x ∈ X , by Theorem 3.4 of [14], this tangent map 
induces a morphism τx : Kx →P (Tx X), which is finite over its image.

Definition 2.3. Let X be a polarized uniruled projective manifold with a minimal rational component K. For a general point 
x ∈ X , the image Cx(X) := τx(Kx) ⊂ P (Tx X) is called the variety of minimal rational tangents (to be abbreviated as VMRT) of 
X at x. The union of Cx over general points x ∈ X gives the fibered space C ⊂ P (T X ) → X of varieties of minimal rational 
tangents associated with K.

From now on, S denotes the smooth equivariant completion with Picard number one of the symmetric homogeneous 
space SL(6, C)/ Sp(6, C) or E6/F4, respectively.

Proposition 2.4. For a general point s ∈ S, the VMRT Cs(S) of S is projectively equivalent to Grω(2, 6) ∼= C3/P2 ⊂ P 13 or OP 2
0

∼=
F4/P4 ⊂P 25 , respectively. Here, Pk ⊂ G means the k-th maximal parabolic subgroup of G following the Bourbaki ordering.
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Proof. For a nonsingular projective variety X covered by lines and a general hyperplane section X ∩ H , if Cx ⊂ P (Tx X) is 
the VMRT of X at a general point x ∈ X ∩ H and dimCx is positive, then the VMRT associated with a family of lines covering 
X ∩ H is Cx ∩P (Tx H) ⊂P Tx(X ∩ H) from Lemma 3.3 of [4].

From Theorem 3 of [21], the smooth equivariant completion S with Picard number one of the symmetric space 
SL(6, C)/ Sp(6, C) is isomorphic to a general hyperplane section of the 15-dimensional spinor variety S6. It is known that 
the VMRT of a rational homogeneous manifold G/P associated with a long simple root αi is isomorphic to the highest weight 
variety defined by the isotropy representation of a Levi factor of P from Proposition 1 of [11]. Note that, in this case, the 
VMRT of G/P at the base point is the homogeneous manifold associated with the marked Dynkin diagram having markings 
corresponding to the simple roots which are adjacent to αi in the Dynkin diagram of the semisimple part of P . Thus, the 
VMRT of S6 is isomorphic to the Grassmannian Gr(2, 6). Since we have the Plücker embedding Gr(2, 6) ↪→P (∧2C6) ∼=P 14

and a general hyperplane H in P (∧2C6) is given by the kernel of a nondegenerate skew-symmetric 2-form ω ∈ (∧2C6)∗ , 
the VMRT Cs(S) is projectively equivalent to the symplectic isotropic Grassmannian Grω(2, 6) ⊂P 13.

Similarly, the smooth equivariant completion with Picard number one of E6/F4 is isomorphic to a general hyperplane 
section of the 27-dimensional Hermitian symmetric space E7/P7 of compact type by Theorem 3 of [21]. Because the VMRT 
of E7/P7 is isomorphic to E6/P6 ∼= OP 2, the result follows from the standard facts on the geometric Freudenthal–Tits 
square summarized in Section 2.1. �
Corollary 2.5. Let π : X → � be a smooth projective morphism from a complex manifold X to the unit disc � ⊂ C. Suppose that, 
for any t ∈ �\{0}, the fiber Xt = π−1(t) is biholomorphic to the smooth projective symmetric variety S. Then the VMRT of the central 
fiber X0 at a general point x is projectively equivalent to Grω(2, 6) ⊂P 13 or OP 2

0 ⊂P 25 , respectively.

Proof. Choose a section σ : � → X of π such that σ(0) = x and σ(t) passes through a general point in S for t �= 0. 
Let Kσ(t) be the normalized Chow space of minimal rational curves passing through σ(t) in Xt . Then the canonical map 
μ : Kσ → � given by the family {Kσ(t)} is smooth and projective by the same proof as that of Proposition 4 of [9]. The 
main theorem of [13] says that Kσ(t) is isomorphic to Ks(S) for all t ∈ � because Ks(S) ∼= Cs(S) is a rational homogeneous 
manifold with Picard number one by Proposition 2.4. Thus it suffices to show that the image of the tangent map for the 
central fiber is nondegenerate in P (TxX0), that is, the image is not contained in any hyperplane of the projective space 
P (TxX0).

Since dim Grω(2, 6) = 7 > 1
2 dim(SL(6, C)/ Sp(6, C)) − 1 = 6 and dimOP 2

0 = 15 > 1
2 dim(E6/F4) − 1 = 12, the distribu-

tion spanned by the VMRTs is integrable by Zak’s theorem on tangencies ([25] and Proposition 1.3.2 of [10]). Since the 
second Betti number b2(X0) = 1, the VMRT Cx(X0) at a general point x is nondegenerate in P (TxX0) by Proposition 13 of 
[9]. �
3. Prolongations of cone structure defined by VMRT and proof of Theorem 1.1

3.1. Prolongations of a linear Lie algebra

Let M be a differentiable manifold. Fix a vector space V with dim V = dim M . A frame at x ∈ M is a linear isomorphism 
σ : V → TxM . A frame bundle F(M) on M is the set of all frames Fx(M) := Isom(V , TxM) at every point x ∈ M . Then F(M)

is a principal GL(V )-bundle on M . For a closed Lie subgroup G ⊂ GL(V ), a (geometric) G-structure on M is defined as a 
G-subbundle G ⊂ F(M) of the frame bundle. The subbundle V × G of the frame bundle F(V ) = V × GL(V ) is called the 
flat G-structure on V and the G-structure on M is locally flat if it is locally equivalent to the flat G-structure on V . The 
(algebraic) prolongations g(k) of a linear Lie algebra g ⊂ gl(V ) originate from the higher-order derivatives of the infinitesimal 
automorphisms of the flat G-structure on V .

Definition 3.1. Let V be a complex vector space and g ⊂ gl(V ) a linear Lie algebra. For an integer k ≥ 0, the space g(k) , called 
the k-th prolongation of g, is the vector space of symmetric multi-linear homomorphisms A : Symk+1 V → V such that for 
any fixed vectors v1, · · · , vk ∈ V , the endomorphism

v ∈ V �→ A(v1, · · · , vk, v) ∈ V

belongs to the Lie algebra g. That is, g(k) = Hom(Symk+1 V , V ) ∩ Hom(Symk V , g).

We are interested in the case where a Lie algebra g is relevant to geometric contexts, in particular, the Lie algebra of 
infinitesimal linear automorphisms of the affine cone of an irreducible projective subvariety.

Definition 3.2. Let Z ⊂ P V be an irreducible projective variety. The projective automorphism group of Z is Aut(Z) = {g ∈
PGL(V ) : g(Z) = Z} and its Lie algebra is denoted by aut(Z). Denote by ̂Z ⊂ V the affine cone of Z and by Tα̂Z ⊂ V the 
affine tangent space at a smooth point α ∈ ̂Z . The Lie algebra of infinitesimal linear automorphisms of ̂Z is defined by

aut(̂Z) = {A ∈ gl(V ) : exp(t A)(̂Z) ⊂ ̂Z , t ∈C},
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where exp(t A) denotes the one-parameter group of linear automorphisms of V . Its k-th prolongation aut(̂Z)(k) will be called 
the k-th prolongation of Z ⊂P V .

In [13], Hwang and Mok studied the prolongations aut(̂Z)(k) of a projective variety Z ⊂P V using the projective geometry 
of Z and the deformation theory of rational curves on Z . In particular, the vanishing of the second prolongation aut(̂Z)(2)

for an irreducible smooth nondegenerate projective variety Z embedded in the projective space P V was proven.

Proposition 3.3 (Theorem 1.1.2 of [13]). Let Z ⊂ P V be an irreducible smooth nondegenerate projective variety. If Z �= P V , then the 
second prolongation of Z vanishes, that is, aut(̂Z)(2) = 0.

From the definition of prolongations, it is immediate that g(k) = 0 for some k ≥ 0 implies g(k+1) = 0. Thus if Z � P V is 
an irreducible smooth nondegenerate projective variety, then aut(̂Z)(k) = 0 for k ≥ 2.

3.2. Infinitesimal automorphisms of cone structures

A cone structure C on a complex manifold M is a closed analytic subvariety C ⊂ P (T M) such that the natural projection 
π : C → M is proper, flat and surjective with connected fibers. We denote the fiber π−1(x) by Cx for a point x ∈ M . A 
germ of holomorphic vector field v at x ∈ M is said to preserve the cone structure if the local one-parameter family of 
biholomorphisms integrating v lifts to local biholomorphisms of P (T M ) preserving C .

Definition 3.4. Let C be a cone structure on a complex manifold M . The Lie algebra aut(C, x) of infinitesimal automorphisms of 
the cone structure C at x ∈ M is the set of all germs of holomorphic vector fields preserving the cone structure C at x.

The Lie algebra aut(C, x) is naturally filtered by the vanishing order of vector fields at x. More precisely, for each integer 
k ≥ 0, let aut(C, x)k be the subalgebra of aut(C, x) consisting of vector fields that vanish at x to the order ≥ k + 1. The Lie 
bracket gives the structure of filtration

aut(C, x) ⊃ aut(C, x)0 ⊃ aut(C, x)1 ⊃ aut(C, x)2 ⊃ · · · .

Let ξ be a germ of holomorphic vector field on M vanishing to order ≥ k + 1 at x. Then its (k + 1)-jet J k+1
x (ξ) defines an 

element of Symk+1(T ∗
x M) ⊗ TxM . Because J k+1

x (ζ ) = 0 for a vector field ζ vanishing to order ≥ k + 2 at x, this defines the 
inclusion aut(C, x)k/aut(C, x)k+1 ⊂ Hom(Symk+1(TxM), TxM). The following result follows from Proposition 1.2.1 of [13].

Proposition 3.5. Let C ⊂P (T M) be a cone structure on a complex manifold M and x ∈ M a point. For each k ≥ 0, if the quotient space 
aut(C, x)k/aut(C, x)k+1 is regarded as a subspace of Hom(Symk+1(TxM), TxM), then we have the inclusion

aut(C, x)k/aut(C, x)k+1 ⊂ aut(̂Cx)
(k).

From Proposition 3.5, we have the natural inequalities

dimaut(C, x)0 ≤ dimaut(̂Cx) + dimaut(C, x)1

≤ dimaut(̂Cx) + dimaut(̂Cx)
(1) + dimaut(C, x)2 ≤ · · · .

Because the codimension of aut(C, x)0 in aut(C, x) is at most dim M , we obtain the following direct consequence (see 
Proposition 5.10 of [4]).

Corollary 3.6. Let C ⊂P (T M) be a cone structure on a complex manifold M and x ∈ M. If aut(̂Cx)
(k+1) = 0 for some k ≥ 0, then

dimaut(C, x) ≤ dim M + dimaut(̂Cx) + dimaut(̂Cx)
(1) + · · · + dimaut(̂Cx)

(k).

3.3. Cone structure defined by VMRT

Let Z ⊂ P V be a (fixed) projective variety with dim V = dim M . A cone structure C ⊂ P (T M) is Z -isotrivial if, for a 
general point x ∈ M , the fiber Cx ⊂ P (Tx M) is isomorphic to Z ⊂ P V as a projective variety, i.e. there exists a linear 
isomorphism V → TxM sending Z to Cx .

For the affine cone ̂Z ⊂ V of Z , let G = Aut(̂Z) = {g ∈ GL(V ) : g(̂Z) = ̂Z} be the automorphism group of ̂Z ⊂ V . A 
Z -isotrivial cone structure C on M induces the G-structure G of cone type of which a fiber at general point x is

Gx = {σ ∈ Isom(V , TxM) : σ(̂Z) = ̂Cx}.
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An isotrivial cone structure C on M is locally flat if its associated G-structure G is locally flat. We know that if C is a 
locally flat cone structure on M with aut(̂Cx) = g and k is a nonnegative integer such that aut(̂Cx)

(k+1) = 0, then aut(C, x)
is isomorphic to the graded Lie algebra V ⊕ g ⊕ g(1) ⊕ · · · ⊕ g(k) . Conversely, if the equality in Corollary 3.6 holds, then the 
cone structure C is locally flat by Corollary 5.13 of [4].

Now, we are ready to prove Theorem 1.1 by considering the cone structure defined by VMRT which is Z -isotrivial.

3.4. Proof of Theorem 1.1

(i) If S is the smooth equivariant completion with Picard number one of the symmetric homogeneous space 
SL(6, C)/ Sp(6, C), then its automorphism group Aut(S) is generated by PSL(6, C) and the involution θ with SL(6, C)θ =
Sp(6, C) by Proposition 3 of [21].

From Corollary 2.5, we can compute the Lie algebras of infinitesimal automorphisms of the affine cones of VMRTs: 
aut(Ĉx(X0)) = aut(Ĉs(S)) ∼= sp(6, C) ⊕ C. Since the variety Cs(S) of minimal rational tangents of S is irreducible smooth 
nondegenerate and not linear, aut(̂Cs)

(k) = 0 for k ≥ 2 by Proposition 3.3. Furthermore, the classification of projective vari-
eties with non-zero prolongation in [5] implies that aut(̂Cs)

(k) = 0 for all k ≥ 1. Thus, for the cone structure C on a fiber Xt

given by its VMRT, we have the equalities:

dimaut(S) + 1 = dim S + dimaut(̂Cs) = dimX0 + dimaut(̂Cx).

Because the Lie algebra aut(X0) is isomorphic to the space H0(X0, TX0 ) of global sections of the tangent bundle TX0 , we 
know h0(X0, TX0 ) = dimaut(X0). Since the action of Aut(X0) preserves the VMRT-structure C on X0, we have an inclusion 
aut(X0) ⊂ aut(C, x). Hence, from Corollary 3.6, we have the inequalities:

h0(X0, TX0) = dimaut(X0) ≤ dimaut(C, x)

≤ dimX0 + dimaut(̂Cx)

= dimaut(S) + 1 = h0(S, T S) + 1.

Now, recall the standard fact that the Euler–Poincaré characteristic of the holomorphic tangent bundle T X on a Fano mani-
fold X is given by χ(X, T X ) = h0(X, T X ) −h1(X, T X ). In fact, the Serre duality and Kodaira–Nakano vanishing theorem imply 
that Hi(X, T X ) = Hn−i(X, T ∗

X ⊗ K X )∗ = 0 for i ≥ 2. Since the Euler–Poincaré characteristic is constant in a smooth family 
and we already know h1(S, T S) = 0 by Proposition 8.4 of [6], h1(X0, TX0 ) = h0(X0, TX0 ) − h0(S, T S ) ≤ 1.

Now, it suffices to consider two possible cases. Suppose that the above equality holds. Then we have dimaut(C, x) =
dimX0 + dimaut(̂Cx), which implies that the isotrivial cone structure C given by VMRT on the central fiber X0 should be 
locally flat by Corollary 5.13 of [4]. Thus X0 is an equivariant compactification of the vector group C14 from Theorem 1.2 of 
[6]. Next, if h1(X0, TX0 ) = 0, then the central fiber X0 is also biholomorphic to the general fiber S .

(ii) If S is the smooth equivariant completion with Picard number one of the symmetric homogeneous space E6/F4, 
then its automorphism group Aut(S) is generated by E6 and the involution θ with Eθ

6 = F4 by Proposition 3 of [21]. From 
Corollary 2.5, aut(Ĉx(X0)) = aut(Ĉs(S)) ∼= f4 ⊕C. Because aut(̂Cs)

(k) = 0 for all k ≥ 1 by [5], we also have the same equality 
as before:

dimaut(S) + 1 = dim S + dimaut(̂Cs) = dimX0 + dimaut(̂Cx).

By Proposition 8.4 of [6], a general hyperplane section of E7/P7 is locally rigid, so we see that h1(S, T S ) = 0. Therefore, the 
same argument as (i) works immediately. �
4. Local rigidity of smooth projective symmetric varieties of type G2

The smooth equivariant completion S with Picard number one of the symmetric space G2/(SL(2, C) × SL(2, C)), called 
the Cayley Grassmannian, has been studied by Manivel [18]. The Cayley Grassmannian is a smooth projective variety 
parametrizing four-dimensional subalgebras of the complexified octonions OC . Because all subalgebras contain the unit 
element, the Cayley Grassmannian is a closed subvariety of the Grassmannian Gr(3, 7) by considering only the imaginary 
parts. It can be also described as a subvariety of the Grassmannian Gr(4, 7) by mapping a subalgebra to its orthogonal 
complement contained in the imaginary part of OC . From now, we will consider the Cayley Grassmannian as a subvariety 
of Gr(4, 7).

Proposition 4.1 (Proposition 3.2 of [18]). The Cayley Grassmannian S is projectively equivalent to the zero locus of a general global 
section of the rank-four vector bundle ∧3U∗ on the Grassmannian Gr(4, 7), where U denotes the universal subbundle of rank four on 
Gr(4, 7).
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Remark 4.2. The symmetric variety S is a Fano eightfold of index 4 by the adjunction formula. Indeed, K S = KGr(4,7) ⊗
det(∧3U∗) =O(−7) ⊗O(3) = O(−4). This implies that the VMRT of S at a general point is isomorphic to a surface embed-
ded in P 7.

From the Kodaira–Spencer deformation theory, it suffices to prove H1(S, T S ) = 0 for Theorem 1.2. Now, we recall the 
Borel–Weil–Bott theorem to compute the cohomology groups of equivariant vector bundles on a rational homogeneous 
variety G/P .

Let G be a simply connected complex semisimple algebraic group and P ⊂ G a parabolic subgroup. For an integral 
dominant weight ω with respect to P , we have an irreducible representation V (ω) of P with the highest weight ω, and 
denote by Eω the corresponding irreducible equivariant vector bundle G ×P V (ω) on G/P :

Eω := G ×P V (ω) = (G × V (ω))/P ,

where the equivalence relation is given by (g, v) ∼ (gp, p−1.v) for p ∈ P .

Theorem 4.3 (Borel–Weil–Bott theorem [2]). Let ρ denote the sum of fundamental weights of G.

• If a weight ω +ρ is singular, that is, it is orthogonal to some (positive) root of G, then all cohomology groups Hi(G/P , Eω) vanish 
for all i.

• Otherwise, ω+ρ is regular, that is, it lies in the interior of some Weyl chamber, then H�(w)(G/P , Eω) = V G(w(ω+ρ) −ρ)∗ and 
any other cohomology vanishes. Here, w ∈ W is a unique element of the Weyl group of G such that w(ω+ρ) is strictly dominant, 
and �(w) means the length of w ∈ W , that is, the minimal integer �(w) such that w can be expressed as a product of �(w) simple 
reflections.

Proof of Theorem 1.2. Since S is the zero locus of a general global section of ∧3U∗ on Gr(4, 7), we have the normal exact 
sequence on S

0 → T S → TGr(4,7)|S → ∧3U∗|S → 0

and the Koszul complex of the structure sheaf OS

0 → ∧4(∧3U) → ∧3(∧3U) → ∧2(∧3U) → ∧3U → OGr(4,7) → OS → 0.

Using the isomorphisms ∧4U ∼=O(−1) and ∧3U ∼= U∗(−1) on Gr(4, 7), we get an exact sequence

0 → OGr(4,7)(−3) → U(−2) → ∧2U(−1) → ∧3U → OGr(4,7) → OS → 0.

Indeed, ∧3(∧3U) ∼= ∧3(U∗(−1)) = ∧3U∗ ⊗O(−3) ∼= U(1) ⊗O(−3) = U(−2). Taking the tensor product of the Koszul com-
plex with ∧3U∗ , we have

0 → ∧3U∗(−3) → U(−2) ⊗ ∧3U∗ → ∧2U(−1) ⊗ ∧3U∗ → ∧3U ⊗ ∧3U∗ → ∧3U∗ → ∧3U∗|S → 0.

Let ω1, · · · , ω6 be the fundamental weights of SL(7, C). Since ∧3U∗(−3) is the irreducible equivariant vector bundle 
associated with the weight ω3 − 3ω4 and the weight ω3 − 3ω4 + ρ is singular, as a straightforward application of the 
Borel–Weil–Bott theorem, we see that Hi(Gr(4, 7), ∧3U∗(−3)) = 0 for all i. Also, because

U(−2) ⊗ ∧3U∗ ∼= U(−2) ⊗ U(1) ∼= (∧2U ⊕ Sym2 U) ⊗O(−1) = Eω2−2ω4 ⊕ E2ω3−3ω4

and both ω2 − 2ω4 + ρ and 2ω3 − 3ω4 + ρ are singular weights, we have that Hi(Gr(4, 7), U(−2) ⊗ ∧3U∗) = 0 for 
all i. From the Littlewood–Richardson rule (see Section 2.3 of [24] for details), we can check that ∧2U(−1) ⊗ ∧3U∗ ∼=
Eω1−ω4 ⊕ Eω2+ω3−2ω4 , which implies that Hi(Gr(4, 7), ∧2U(−1) ⊗ ∧3U∗) = 0 for all i. Since we know that ∧3U ⊗ ∧3U∗ ∼=
Eω1+ω3−ω4 ⊕ O by the Littlewood–Richardson rule, Hi(Gr(4, 7), ∧3U ⊗ ∧3U∗) = 0 for i > 0 and H0(Gr(4, 7), ∧3U ⊗
∧3U∗) = H0(Gr(4, 7), O) =C. Again, the Borel–Weil theorem says that H0(Gr(4, 7), ∧3U∗) = ∧3C7. Therefore, we conclude 
H0(S, ∧3U∗|S) = ∧3C7/C.

Using the Littlewood–Richardson rule, we get the Koszul complex of the structure sheaf OS tensored with the tangent 
bundle TGr(4,7) = U ⊗Q = Eω1+ω6 :

0 → Eω1−3ω4+ω6 → Eω1+ω3−3ω4+ω6 ⊕ E−2ω4+ω6 → Eω1+ω2−2ω4+ω6 ⊕ Eω3−2ω4+ω6

→ E2ω1−ω4+ω6 ⊕ Eω2−ω4+ω6 → TGr(4,7) → TGr(4,7)|S → 0.

Since all bundles except the last two terms are acyclic, using the Borel–Weil–Bott theorem again, we obtain H0(S, TGr(4,7)|S) =
H0(Gr(4, 7), TGr(4,7)) = sl7 and H1(S, TGr(4,7)|S) = H1(Gr(4, 7), TGr(4,7)) = 0.



896 S.-Y. Kim, K.-D. Park / C. R. Acad. Sci. Paris, Ser. I 357 (2019) 889–896
Then, from the normal exact sequence on S , we deduce an exact sequence

0 → H0(S, T S) → sl7 → ∧3C7/C → H1(S, T S) → 0.

Hence, H0(S, T S) = aut(S) = g2 (Lemma 16 of [21]) implies H1(S, T S) = 0, from which the local rigidity of S follows by the 
Kodaira–Spencer deformation theory. �
Remark 4.4. By Theorem 2 of [21], the smooth projective symmetric varieties with Picard number one whose restricted 
root system is of type G2 are either the Cayley Grassmannian or the smooth equivariant completion of (G2 × G2)/G2. 
Recently, Manivel also studied the latter, called the double Cayley Grassmannian, and proved that it is locally rigid in [19]. 
The double Cayley Grassmannian is projectively equivalent to the zero locus of a general global section of the rank-seven 
vector bundle U ⊗L on the 21-dimensional spinor variety S14 = Spin(14, C)/P7, where U denotes the tautological bundle 
of rank seven on S14 and L is the very ample line bundle defining the minimal embedding S14 ↪→ P63. Consequently, we 
conclude that all smooth projective symmetric varieties with Picard number one are locally rigid. On the other hand, the 
global deformation rigidity problem on smooth projective symmetric varieties of type G2 remains open.
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