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RESUME

Dans cet article, nous considérons le probléme de la diffusion inverse pour l'opérateur
de Schrodinger avec un potentiel électrique a courte portée. Nous prouvons en dimension
n > 2 que la connaissance de l'opérateur de diffusion détermine le potentiel électrique
et nous établissons une estimation de stabilité de type Holder pour la détermination du
potentiel électrique a courte portée.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main results

This paper concerns inverse scattering problems for a large class of Hamiltonian with short-range electric potential. A
single quantum particle in an external potential is described by the Hilbert space L2(R") and the family of Schrodinger
Hamiltonians:

1
H:—EA—FV(X), xeR". (1.1)

We suppose that the electric potential V € C!(R", R), with the short-range condition
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VRl <Cx~°,

for some § > 1, where (x) = (1 + |x|*)!/2. Then we define
Vs={VeC'®"), [V®I=Cx™®, §>1}.

Let Ho = %A be the free Hamiltonian. We consider two strongly continuous unitary groups: e Ho generate the free dy-
namic of the system and e~ M a perturbation of this free dynamic. The state u € L>(R") is said asymptotically free as
t — +oo if there exists ¥+ € L2(R™) such that

Jim le”iHy —e~itHoy, | = 0. (12)

Here 4 is the outgoing (resp. incoming) asymptotic of the state u. The condition (1.2) is equivalent to the following two
conditions:

lim [eitfoe=tHy — =0, lim |eFe tHoy, —y|=o0.
t—+o0 t—+o0

The fundamental direct problems of scattering theory are: (a) to determine the set of asymptotically free states, i.e. the set
of u € L2(R™) such that

lim el[Hoe—ltHu — wi
t—+o00

exist, (b) the condition of the scattering operator that maps the incoming _ into the corresponding outgoing one ..
Let V be a short-range electric potential, by [10], Theorem 14.4.6, the wave operators, defined by

W.i(H,Hou= lim elHe itHoy 4 e [2(RY)
t—+o0
exist as strong limits, are isometric operators, they intertwine the free and full Hamiltonian H and Hy:

Wi (H,Ho)Ho = HW1(H, Ho).

Their range is the projection of the space L2(R") onto a continuous spectrum. Moreover, the wave operators W (Hg, H)
also exist and adjoint to W (H, Hg). The scattering operator Sy : y_ — v, is defined as

Sy = W (Ho, HW_(H, Ho) = W..(H, Ho)*W_(H, Ho).
It is well known that Sy is a unitary operator on L%(R"). We call S as a mapping from Vs into the set of bounded operators
L(L2(R")), S(V) = Sy, the scattering map.
For s > 0, introducing the space L!(R") be the weighted L' space in R" with norm
Ul ey =l () ullp gy

The following is the main result of this paper.

Theorem 1.1. Let M > 0, § > n and s € (0, 1). There exist constants C > 0 and v € (0, 1) such that the following stability estimate
holds

V1= Vallg-1@rey < ClISv, = Sv, ||2(L2(Rn)) (1.3)
forevery V1, Vo € Vs such that (Vq — V) € L>(R™) N L1(R") and
”V”LZ(R“) + ”V”L; (RM) <M. (1.4)

In particular, the scattering map
S:Vs — L(L*(R™), V+—> Sy,

is locally injective.

We describe now some previous results related with our problem. Let S"~! be the unit sphere in R". Define the unitary
operator

FL2RY) — L2RT, LS YY), FW)(w,r) =212 2/45 (V) w),
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where L2(R*, L2(S"™ 1)) denote the L%-space of functions defined on R* with value in L2(S"~1). The spectral parameter A
plays the role of the energy of a quantum particle. Then,

F(Syu)(d) =Sy (M)F W)(R).

The unitary operator Sy (%) : L2(S" 1) — L2(S"1) is called the scattering matrix at fixed energy A with respect to the
electric potential V.

The problem of identifying coefficients appearing in Schrédinger’s equation was treated very well and there are many
works that are relevant to this topic. In the case of a compactly supported electric potential and in dimension n > 3,
uniqueness for the fixed energy scattering problem was given in [7,15,21,24]. In the earlier paper [23], this was done
for small potentials. It is well known that, for compactly supported potentials, knowledge of the scattering amplitude (or
the scattering matrix) at a fixed energy A is equivalent to knowing the Dirichlet-to-Neumann map for the Schrodinger
equation measured on the boundary of a large ball containing the support of the potential (see [29] for an account). Then
the uniqueness result of Sylvester and Uhlmann [28] for the Dirichlet-to-Neumann map, based on special solutions called
complex geometrical optics solutions, implies uniqueness at a fixed energy for compactly supported potentials. Melrose [14]
proposed a related proof that uses the density of products of scattering solutions.

The uniqueness result with fixed energy was extended by Novikov to the case of exponentially decaying potentials [22].
Another proof applying arguments similar to the ones used for studying the Dirichlet-to-Neumann map was given in [30].
The fixed energy result for compactly supported potentials in the two-dimensional case follows from the corresponding
uniqueness result for the Dirichlet-to-Neumann map of Bukhgeim [3], and this result was recently extended to potentials
decaying faster than any Gaussian in [9].

We note that, in the absence of exponential decay for the potentials, there are counterexamples to uniqueness for inverse
scattering at fixed energy. In two dimensions, Grinevich and Novikov [8] give a counterexample involving V in the Schwartz
class, and in dimension three there are counterexamples with potentials decaying like |x|~3/2 [16,26]. However, if the
potentials have regular behavior at infinity (outside a ball they are given by convergent asymptotic sums of homogeneous
functions in the radial variable), one still has uniqueness even in the magnetic case by the results of Weder and Yafaev
[33,34] (see also Joshi and Sa Barreto [11,12]).

In the case of two-body Schrédinger Hamiltonians H with V short range, such a problem has been studied in [27] with
high-frequency asymptotic methods. For short or long-range potentials, Enss and Weder [6] have used a geometrical method.
They show that the potential is uniquely recovered by the high-velocity limit of the scattering operator. This method can
be used to study Hamiltonians with electric and magnetic potentials on L%(R"), the Dirac equation, [8] and the N-body
case [6]. In [19], Nicoleau used a stationary method to study Hamiltonians with smooth electric and magnetic potentials
that have to be C* functions with stronger decay assumption on higher derivatives, based on the construction of suitable
modified wave operators (see also [17,18,20]). This approach gives the complete asymptotic expansion of the scattering
operator at high energies. In [11], the author sees that the problem with obstacles can be treated in the same way by
determining a class of test functions that have negligible interaction with the obstacle.

All the above-mentioned papers are concerned only with uniqueness or reconstruction formula of the coefficients. In-
spired by the works of Arian [1], Enss [4,5], Enss and Weder [6], Jung [13], Weder [31,32] and following the same strategy
as in [6], we prove in this paper stability estimates in the recovery of the unknown coefficient V via the scattering map.

The paper is organized as follows. In Section 2, we examine the scattering problem associated with (1.1), by using the
geometric time-dependent method developed by Enss and Weder. In Section 3, we prove some intermediate estimate of
the X-ray transform of the potential V. In Section 4, we estimate the X-ray transform and the Fourier transform of the
potential, in terms of the scattering map and we prove Theorem 1.1.

2. Scattering map

Here we recall some basic definitions of the scattering theory used throughout the paper. The Fourier transform on
functions in R" is defined by

F &) =FHE) = / e f () d,
]Rn
and the inverse Fourier transform is

feoy=F 1=

1
2m)n/2

[,

Rl’l

1
(zn)n/z

For s > 0, letting H*(R™) stand for the standard Sobolev space of those measurable functions f whose Fourier transform ]’
satisfies
1/2
I 11 brs ey = / EFIFGPAE]  <oo, ()=+]-PV

Rn



M. Bellassoued, L. Robbiano / C. R. Acad. Sci. Paris, Ser. 1357 (2019) 784-798

For § > 0, introducing the Hilbert space L(SZ(R") as the weighted L2(R") space in R" with norm

Il 3 ey = 11(-)° ull 2 e

we see that the Fourier transform F is a unitary transformation from HS(R") onto L?(R"), that is,

||u||L§(Rn) = ”]:(U)HHJ(R")» Yue S(Rn).

Let e~itHo be the Schrédinger propagator, in term of the Fourier transform, this is given by

e—itHoy — 71 (e—if#}"(u))(x) =

/ eixé it (&) dt.

Rn

1
(ZTC)”/Z
We also record the following properties of the wave operators W

Wiwi=I, e Hw, =w_ e itHo,
By Duhamel’s formula, we have
+oo
Wo=1I+i / eltHye~itHo g
0

787

(2.1)

(2.2)

(2.4)

The proof of (2.4) proceeds by differentiation and subsequent integration: For u € 2(Hg) = Z(H) one has the product rule

a (eltHefltHou) — eltHlHefltHou _ eltHlHo efltng

=ieltfy e~ithoy,
This is now integrated to yield
t
eitHe—itng —u= i/ eisH Ve—isHou dS,
0

from which (2.4) follows after taking the limit t — oo.
Then from (2.4), we find out that

o0
Wi —W_)u=i / eltHye=itHoy gt

—0o0

for any state u € L>(R") for which the integral is well defined. We have a similar formula for Wi

0
Wi =1+i / eitHoy it ¢
+oo

It follows from the definition of the scattering operators that

Sy —I=W4 —-W_)y*w_.

Then by Duhamel’s formula and the intertwining relation (2.3), we have the following identity, giving a relation between

the scattering operator Sy and the potential V
+00
i(Sy —Du= f ethoyw_e—itHoy de e L2(RM).

—0o0

We need some elementary facts about pseudo-differential operators defined by the equality

a(D)u(x) =

/ S Ea@)a(E) s, Yue SR,
Rn

1
(27‘5)”/2

where the symbol a € Cg°(R™). It is then known that, for any a € C§°(R"), a(D) is bounded operator on L2(R").

(2.6)
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For o € R", we define the conjugate pseudo-differential operator a, (D) by
ap(D) = e *a(D)e*? :=a(D + o). (2.7)
The symbol of the operator a, (D) is given by a,(§) =a(¢ + ¢). Indeed, using the fact that Fe*eu)(E) =€ — 0), we get

ap(D)u(x) = /ei"'@—@)a(g)a(g —0)dé, YueSRM.

Rn

1
2m)n/2

We define the linear unitary operator EE, from LZ(R™) into itself by the integral representation

Ebu(x) = e lteDy(x) = /ei"fe_ité’fﬁ(g) de =u(x—to), VueSR".

Rn

1
(27‘5)"/2
Hence, we obtain the following identity

E',wELu(x) = wx+to)u(x), Yw,u € L>(RM). (2.8)
By a simple calculation, it is easy to see that
e—x0g—itHogixo _ o-itlol® Etge’itHO inL2(R™M). (2.9)

Let us recall the following result proved in Reed and Simon [25], XI, p. 39. The key of the proof is the application of the
stationary phase method.

Lemma 2.1. Let g € S(R™) be a function such that g has a compact support. Let O be an open set containing the compact Supp(g).
Let

B0 = / e Fe 216 5g) de. (210)
Rn
Then, for any m € N, there exists C > 0 depending on m, g, and Supp(g), such that

18:(x)] < C(A+ x|+ |t~
forall x, t with xt—1 ¢ O.

In the sequel, for t € R* and ¢ € R", we denote by A1 and A; the following sets
1 1
A= IX—fQ|>§|tQ| , A= |X|<Z|tQ| . (211)
For a measurable set A C R", we denote by x4 the characteristic function of A.

Lemma 2.2. Let 0 € R" such that |o| > 4, t € R*, and let consider the two measurable sets A1 and A; given by (2.11). Then, for any
aeC§(B(0,1)), and all k € N, there exists C such that

—i —k
llca,e " Moa_p (D)kayull 2y < C{t0) ™ Nl 2y (2.12)

for any u e L>(R"). Here C depends only on k and n but does not depend on o.

Proof. Let a € C3°(B(0,1)), Ay and A; given by (2.11). For u € S(R"), using (2.2) and (2.10), we easily see that

Kap € it Oa_Q(D)KAzu(X)z

/eix-ée—i%\élzKAl (aE — o) F(ka,u)(&)de
Rﬂ

/ efe 13y (a(E — o) / ek, (y)u(y) dy dé
Rn R

/ K, (K a, (V)AL (x — y)u(y) dy,
]Rn

1
(2m)n/2

1
- @2nr

1
-~ Qon

where the kernel @ is given by
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()= [ e*e i ae - o) de.
Rn
Therefore, we have
1

—itH 2 _
”KAle Oa—Q(D)KAzu”LZ(]Rn) = (2T|:)2”

/KAl(X)I/KAz(y)&f(X—y)u(y)dylzdx
RTI RH

<C / Kay (%) / KayDIEE x = )P dy | dx | llulF g,

R Rn
~0 2 2
< /Iat @ /Km (Oka,(x = 2)dx | dz | [[ull}> gny
R R
=<

/ a; @17 (kay *Kap)(2) dz | Ul g (213)
Rn

where K4, (X) = ka, (—X).
By a simple computation, we get

50(x) = eivee-ijlol / eil—t0)1€ g=1516P £ e

Rﬂ
= e 1310 5 (x — t0), (2.14)
where
g = [erteitilag e = [eree iy dg
Rn Rn

with g = F~1(a). Thus, we arrive at

/ |af (2)|*(ka, % Ka,)(2)dz < / 18 (012 (ka, * Ka,) (X + to) dx
Rn Rn

< [ 1P a, * oo 0
Rn
Since, Supp(ka, * Ka,+t0) C A1 — (A2 +1t0) C {|x| > %|tQ|}, and
lica, * &ay oo ey < llca, Il ey < Cleol™,

the above, inserted in (2.13), yields the following inequality

lica, e Hoa_o (DY aullFs gy < Cleol" / 12017 dx | [UllZ g - (2.15)
{ixi Lo}

Let r = }l|tQ|. In view of (2.14), we get from Lemma 2.1 for m € N, with 2m — k > 2n, that

ltol" / 18 (0)*dx < Cr" / |8 (%)% dx

[ix1=41ccl} (Ixizr)

< C (T')ik\/ <X>72m+k+n dX, (216)
Rn
provided that r > |t|, which is satisfied if |o| > 4.

Combining (2.16) and (2.15), we immediately deduce (2.12).
This completes the proof. O
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Lemma 2.3. Let V € V. Then, for any a € C§°(B(0, 1)) and every o € R", we have
Ve ™Hoa_, (Dyul 2 gny = IIV (x + to)e Hoa(D)e ™ Cu|| 12 gn)
forany u € L2(R™).
Proof. By a density argument, it is enough to consider (2.17) for u € S(R"). By (2.7), we get
Ve ™Hoa_,(D)ul 2 gy = Ve Hoe™Ca(D)e ™ Cul| > g
Using (2.8) and (2.9), we deduce that
Ve tHoeCa(D)e ™ Cu | 2 ga) = ||V CEL e Hoa(D)e™ ™ Cul| 2 gn)
—itH, —ix-
= |EL,VE e 0a(D)e™ ™ Cul 2 gy
= |V (x+te)e " Moa(D)e ™ Cul| ;2 gn).
Thus we conclude the desired equality. O
Lemma 2.4. Let V € V;. Then for any a € C3°(B(0, 1)), and every ¢ € R", |o| > 4, we have
» r o _s
Ive ™ oa_g(Dyull2gn) = IV (x+to)e ™ oa(D)e™ Cul| 2 gy < C{te) ™ llull 2 rns

forany u € LZ(R™).

(2.17)

(2.18)

(2.19)

Proof. By a density argument, it is enough to consider (2.19) for u € S(R"). Let A; and A; are given by (2.11). Then, we

obtain

Ve Hoa_,(D)ull2gny < IVia, e Hoa_o (Dyull 2 g,

+[IViace ™ oa_ o (Dyullpogey =11 + 1.

To estimate I, note that

I < [Vicae ™ 0a_o (D)kayull 2 gy + Vica @00 o (D)kagull 2 gen)-
Hence, by Lemma 2.2, we get

IVica e Hoa_, (Dyayull 2 gy < llica, e Hoa_ o (Dyica,ull 2 gy

-3
<C{to) " lull2gn)-

Furthermore, for any u € S(R"), one has

Via,e lfH"Cl—g(D)K,L\gU||L2(]R”) =< lkagull2rny < C{to) Il 2 )
Taking into account (2.20), (2.21), we see that

-5

I =< Clte) ™ lull 2 @n-

On the other hand, since A C {|x| > 1|to|} and V € Vs, we also have that
i -
I =|IVicace " 0a_o (D)ull 2 gy < C{to) " lle™0a_o (Dyullj2(rn)

< C{to)”’ llull 2 gny-

Hence, by combining (2.23) and (2.22), we conclude the proof of the Lemma. O

Lemma 2.5. Assume that V € Vs. Then, there exists C > 0 such that, for any ® € S(R") with Supp(®) C B(0, 1), we have

I(W+ = De 0@, | 2gn) < Clol M| @Il g

for any o0 € R", |o| > 4, and uniformly for t € R. Here, &, = elx0 .

(2.20)

(2.21)

(2.22)

(2.23)



M. Bellassoued, L. Robbiano / C. R. Acad. Sci. Paris, Ser. 1357 (2019) 784-798 791

Proof. It follows from Duhamel’s formula (2.4) that
o0
(Wi — e Hogp, = i/ elHye~ishogitHog , ds.
0

Take a € C3°(B(0, 1)), such that a(§ — Q)&)(g —0) = <f>($ —0), that is, a_,(D)®, = ®,. Then, by Lemma 2.4, we get

400
I(W4 — De ™Hod, || 2 ga) < / Ve S oa_, (D)®q | 2 gy ds

—00

scuﬂwY%sn@@mw

R
C o0
<— | [ @ dr | I®l2gn
m|Z L ®RY

and the Lemma follows for W.. The proof for W_ is similar. O

3. Stability of the X-ray transform of the potential

In this section, we prove some estimate for the X-ray transform of the electric potential V. We start with a preliminary
property of the X-ray transform, which is needed to prove the main result.

Let w € S™1, and w' the hyperplane through the origin orthogonal to @w. We parametrize a line £(w,y) in R" by
specifying its direction w € S™! and the point y € w where the line intersects the hyperplane w=. The X-ray transform
of function f e L1(R™) is given by

X(NH)(x, w) = Xp(fH(x) = / fx+tw)dr, xewh.
R
We see that X(f)(x, ®) is the integral of f over the line £(w, y) parallel to @, which passes through x € w'. The following
relation between the Fourier transform of X, (f) and f, called the Fourier slice theorem, will be useful: we denote by F, 1

the Fourier transform on the function in the hyperplane w<. The Fourier slice theorem is summarized in the following
identity (see [2]):

EMMMDXM=QMWW”/€WWMDQMX

(l)L
:(275)(]7”)/2/e’i""’ff(ijsa))dsdx
wt R
=(2n)“‘”)/2/e‘iy"’f(y)dy
RH
=V2rF (), neo’. (31)

The main purpose here is to present a preliminary estimate, which relates the difference of the short-range potentials to
the scattering map. As before, we let V1, V, € Vs, j =1, 2 be real valued potentials. We set:

V=V;-Vy,
such that
||V||L2(Rn) <M.

We start with the following lemma.

Lemma3.1.Let Vje Vs, j=1,2. Then there exist C > 0, Ao > 0 and y € (0, 1) such that, for any w € S™1and &, ¥ e S(R™) with
Supp(dA>), Supp(\i/) C B(0, 1), the following estimate holds true
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| / X(V)(x, @) ®TE) dx| < CVAISy, — Sv 1@ 2y 1¥ ] 2y
Rn

272 (19N +1®lz@n) (192 + 19113 @n) .

forany A > Ag. Here V =V — V.

Proof. Let o0 = /A with A > 0 and w € S"!. In what follows for ®, ¥ € S(R") with Supp(®), and Supp(¥) C B(0, 1), we
denote

D, = eXe @, Y, = eley, o= Viw.
From the identity (2.6) of the wave and scattering operators, it is easily seen that
«/X(i(Svj — D, lIJQ) = /Ej(r,k,w)dr +Rj(M,w), j=1,2, (3.3)

R
where the leading ¢; is given by

(T, @) = (Vje—ir)rUZHoq)Q, e—ir)ﬁl/ZHo‘yQ)7
and the remaining term R; is given by
Rj(h, @) = / (Wl = perimPHogy, v et PHoy, ) dr.
R

At first, we estimate the remaining term R;j. Let a € C§°(B(0,1)) such that a(é)&(&) = ED(.S) and a(g)\il(é) = \i'(é).
Lemma 2.4 gives uniformly in A the integral bound

iy —1/2 iy —1/2
Ivie™™ ey | = v e Hoa_g (D)@
—ita—1/2 —
= Vi(x+tw)e”™ THaD)d < (1) [l 2. (3.4)
Similarly, we get
_ira—1/2 _
IV je™ ™ oW, || < € (T) 72 Wil 2 o)- (3.5)

By Lemma 2.5 and (3.5), we obtain

Ryl =€ [ HWT — Dee P Hoag v e Howg T < g 1 ¥z
R
Thus R;j(X, w) satisfies the remaining estimate in (3.2).
We consider now the leading term ¢;. Taking into account (2.8), (2.9) a simple calculation gives
6@ 3, 0) = (Vj(x+ e ™ Hog et oy
and therefore
(.0 o) = (Vix+ 1)@, W) =" (1, 0, 0) + 7 (1,1, 0)
where
Zgl)(f, W) = (Vj(x n .L.w)e—ir)ﬁ]/zHo(D’ (e—izrl/ZHo _ I)\l!),
and
(@0 = (@ H - o, Vix+ )W),
Since ¥ has compact support, we obtain:
T/Vh T/vh

(e—irr”zHo _ 1) W= / g(e_iSl'IOlI—') ds=—i / e SHOHwds.
ds
0 0
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Therefore, we have
_ /2H |T| |T|
@™ Ho — D 2 gey < —=[HoWl 2y < —= W]l g2 R
L2(R™) 7 L2(R™) 7 H2(R™)
and using the fact that
1122 Ho — Wl o gy < 20192 gy
we deduce the following estimation

|
O—I)‘IJ”LZ(]R" C(ﬁ) ||‘IJ||H2(Rn)a (3.6)

for all y € (0, 1). Then by (3.6) and (3.4), we find

” (e—if)\fl/zH

M C o \—6-p
16,7 (T, A, 0)| < Y22} (T) ||‘I’||H2(Rﬂ)||q>||L§(Rn)-

Hence, by selecting y small such that § — y > 1, it follows that

1 C
[ 0@ 0, @) AT < S W gen | 92 - (37)

Moreover, we have
/|Vj(x+ta))\ll(x)|2dx§C / x4+ 1) 2 | W(x)|> dx
! [ix+rol=1il}
+ / (x+ Tw) "2 | W(x)|? dx
PERZEL
<C <r>—25/|W<x>|2dx+<r>—25f<x>25|w<x)|2dx < CO 7 IV ey

Rn
Then we show as the proof of (3.7) that

2 i —1/2
162 @ nondr = 10— Dl v+ T Wl de

C
—(6—=y)
<=7 / (0 dr | 1@l n 112 -
R
Then, we easily see that
C
1M )
[1e @ nondr+ [P @ olde < 7 (WhemnlOsms + 19wl ¥z (38)
R R

From (3.8) and (3.3), we deduce that

iﬁ((Sv] —Sv,)®p, \I/Q) = /(Zl —£)(t, A, w)dT + (R1 — R2)(A, w) ::/Z(r,k,w) dt + R(A, w),
R R
where the leading and remaining terms, respectively, satisfy

|/(E(r L) — (VX + Tw)®, ¥)dT| <Zf E(])(r w o) +16P (T, 4, w)l)
j=1p

C
= =75 (1@ 121z g + 192 192 @n) -

and
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C
IR, w)| < [R1 (A, w)| + |Ra (A, w)| < ﬁ||¢”[_52(]gn)”w”[_§(]1{n)-

This completes the proof of Lemma 3.1. O

4. Proof of the stability estimate

In this section, we complete the proof of Theorem 1.1. We are going to use the estimate proved in the previous section;
this will provide information on the X-ray transform of the difference of short-range electric potentials.
Let w € S" ! and V € V5. We denote

Fx) =X(V)(x, w) :/V(x+tw)dt.
R

Then f satisfies the following estimate

IfOI=1fx—(w-0w)| < C/ (x— (- +tw) ™ dt
R

C s .
EW/“) dt, VxeR"

In particular, we have f e L!(w™), since § > n.
For any ®, ¥ with Supp(®) C B(0, 1) and Supp(¥) C B(0, 1), we have, by (3.2):

| / FOPETX) dx| < VAISv, — Sv, 112 12 ke,
RH

+ G2 (102, + 1PNz ) (11 2y + 19120y ) -

Let n € ™t be fixed and let W e L>(R") such that Supp(¥) C B(n/2,1). Denote by W, = e*"/2W, then Supp(¥,/2) C
B(0, 1). Applying the last inequality with ¥ = W, 5, we find:

I/f—n/z(X)CD(X)E(X) dx| < VAlISv, = Sy, 11® 2y Wl 2 ey
RH

+C2 A2 (1@l ey + 1912 ) (IWlin + 12 gn)) (41)

where f_; = e xn/2f,

Lemma 4.1. Let Vj € Vs, j =1, 2. Then there exist C > 0, Ao > 0, ¥ € (0,1) and 0 > n/2 + y such that, for any w € S"™ 1 and
@ € S(RM) such that Supp(®) C B(0, 1), the following estimate holds true

IF(f @) < e7"*ValISv, = Sv, 19 2Rn)
+C AT 22 (10l gy + [Pz g, ) + CE” 112 g,
forany A > Ao, n € wt and & € (0, 1).
Proof. Let o € Cg°(B(0, 1)), with ||yoll;1rn) = 1, we define

Ve (§) =€ "Yo(e" (6 —n/2)), Supp(¥e) C B(n/2,€) C B(n/2,1),
and let W, = F~1(4). By Plancherel’s formula, we get:

/f—n/z(X)Q(X)Es(X)dXZ/f(f—n/ﬂ’)(é)\/fa(é)dé (4.2)
R™ R™

Taking into account (4.2) and applying (4.1) with ¥ = W, we obtain:
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| / F(fonpp® E)We ) dE| < VAlISv, — Svy 1P 2 1We Il 2 Ry
Rn

+C2 A2 (1@l ey + 19l 2ge) ) (1 li2ny + 1 2 )

Furthermore, there exists C > 0 such that

el gny =" / [Yo(®)*ds <Ce ™",
Rn

and
IWell3n gy = / €)* [Ye )P ds = / (€)* [yoe™ (& —n/2))PdE <Ce™" (m)*.
Rn Rn
Using the fact that
FWe)(y) =e V124 (ey)
and (2.1), we get:

el 2y = el ery < C& 272,

Then, by (4.3), (4.4), (4.5) and (4.6), one gets

| / F(fonpa®) €)W €) dz| < VA 2[5y, — Sy, [1]l,20em,
]Rn

+C TP ([Pl gy + 1Pl 2(ee) )

Moreover, we have:

F(fnp®@n/2)= / F(f-np2®)(E)Ye(6)dE
Rn

+ / (Ffn2a®)(11/2) = F(fnp®)(©)) e &) .

]Rn
Furthermore, for any y € (0, 1), there exists C = C(y) > 0 such that

|F(f-y2®)(1/2) — F(fonp2®)E)| < Cl& —n/2" / x| ®x)| dx
Rn
1/2

<cle—n2r | [ w2 ax] 101,
]Rn
for some o > y +n/2. We deduce that

| / (F(f=n2®)(/2) = F(foy2®)(©)) Yo (§) dt|
Rn

<Cl®ll2 @ / 11/2 — £ 19 (8)] dE < Ce” [ Pll 2 g
RH

which imply
|F(F R = F(fn2®)(1/2)] < e VAISv, = Sv, 1@l 2wy
+ AT 2T ([l oy + 19l 2gey ) + CEV 19N2 oy

This completes the proof of the lemma. O

We give now the following lemma to be used later.

795

(4.6)
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Lemma 4.2. Let 6 € C°((— 3., 1)) and ¢ € C5°(w* N B(0, 1)). Putting
() =F, Oy o) F, L)y — (y-@)w), yeR",
where Fy denote the Fourier transform on the function in R. Then we have Supp(dA)) C B(0,1) and

D) =0(w-E)pE — (w-§w), VER™

Moreover, for all s > 0, we have

1Pl s ny < 1012 1912000
Finally, for any § > 0, there exists C > 0 such that

”(DHL%(]RH) = C”QD“H‘s(a)L)'

Here C depends on norms of 6.

The next step in the proof is to deduce an estimate that links the Fourier transform of the unknown coefficient to the
measurement Sy, — Sy,.

Lemma4.3. Let Ve Vs, j=1,2. Then there exist C > 0,10 >0,y € (0,1) and @j > 0, j =1, 2, 3, such that, for any w € S"1 the
following estimate holds true:

|Fpt (YD < Ce ™ VA|Sy, — S, | + 277272 () + Ce*, (4.7)

forany > o, n € w' and & € (0, 1).
Proof. Let 6 € C3°(—1/4,1/4) and ¢ € Cgo(wl- N B(0, 1/2)). Putting

D(y) =Fy O - O)F @)y - (y- o), yeR"

We assume further 6(0) =1 and [0 ;2(g) = 1. Then we have, by Lemma 4.2, Supp(®) c B(0, 1). The change of variable
x=y+twew" ®Ro, dx=dydt yields, after noting that n € w=

F(fo)() = 2m)~"/? / e MIFT(x - ) F, () (x = (X @)w) f (1) dx

Rn
—em 2 [ [errtoor, wmmad

R ol
= (2m)~ =D/ / e VNF- L@ () f(y) dy
= For (FF, @) ) = Foyr () % (), (4.8)

where we have used f(y —tw) = f(y) for any t € R. Taking into account (4.8) and applying Lemma 4.1 and Lemma 4.2,
one gets

I/FwL(f)(E)w(n —&)dg| <& "2VASy, = Sv, @l 20t

4 C (a2 (||¢||L§(wl) + ||<p||H5(wl)) +Ce7 9l o L- (4.9)
Now, we specify the choice of the function ¢. Let ¢p € C5° (ot N B(0,1/2)) with l@oll 1Ly =1, we define, for h small

PnE) =h""oh7'E), Eewh
Applying (4.9) with ¢ = ¢}, we get

| / For (E)gn(n — ) dz| < e V2VA1Sy, — Sy, ll@nll 2,

+C ()t ar/2gn/20 (”‘Ph”l_%(wi) + llen IIHa(wL)) +Ce”llnll o @1y
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Since
I@nll 2ty = h(l—n)/2||(p0||Lz(wi), l@n ”L%(wl) < Ch(-m/2 ||<P0||L%(wL)
and,
101l o @y < Ch= 2100 o (1),
we obtain
[ For D@m= 6 del 67 VIR s, <)
wl
+C (7’))4 )»_V/ZS_H/Z_Sh_(H—(]_n)/Z 4 ngh—(r+(1—n)/2.
Moreover

]:wl(f)(ﬂ)z/wa(f)(§)¢h(ﬂ—§)d§—/(wa(f)(E)—]'—wL(f)(n))%(??—é)dé-
wt wt

Using the fact that,

|Fpt (HE) = Fpr (HI < C / le™ X% — e X7|| £ (x)| dx

w+

<Clg—n” / X" 1f (x| dx

wt

< Clg =17 IV I -

with ¢’ > 0 sufficiently small. We deduce that
| f(@(f)(s) — Ful (DD)en(n — &) d| < CM/ & — 01" lon(n — €| dé
wt wt

< CMh'.

We obtain, for any 1 € o+

[Fot (N < &7V AhOR|ISy, — Sy, || 427727270 (qytp=0+(=m/2
+CeV o+ A=m/2 L cpy’,
Selecting h such that e¥ h—°+(1-1/2 = p¥’ we obtain:
[Ful (D] < e VRISy, = Sv, [l + 277267 (n)* + Ce®.
This completes the proof of the lemma. O

We return now to the proof of Theorem 1.1. Since w is arbitrary, we deduce, from (4.7) and (3.1),
(4.10)

IF(VY] < e VASy, — Sv, |l + 2772792 (n)4 4+ Ce®, Vi eR™

In light of the above reasoning and decomposing the H~!(R") norm of V as

W= [ 02 F@mPd+ [ 2 1Fm P

nI=R nl>R

then, by (4.10), Plancherel’s Theorem and (1.4), we get
- —y M?
IV I gy <€ (R"(S N VASy, — Sy, Il + 27726792 R? 4 Ce®) + F) .

The next step is to choose in such a way €% R™ = R~2. In this case, we get



798 M. Bellassoued, L. Robbiano / C. R. Acad. Sci. Paris, Ser. 1357 (2019) 784-798

_ 1
VI -+ gy < C (Rﬂu/iusv1 — Sy, Il +A7Y/2RP2 ﬁ) .
Now we choose R > 0 in such that a way A~¥/2R#2 = R=2, In this case, we get

V131 @y < € (F11ISv, = Sv, | +2712),

for some positive constants ft1, (7. Finally, minimizing the right-hand side with respect to A, we obtain the desired estimate
of Theorem 1.1.
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