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Let F be the category of functors that send a finite-dimensional vector space over F2 to 
a vector space over F2. In this note, we describe the first extension groups between some 
exponential functors such as Ext1

F (S∗, �∗), Ext1
F (S∗

4, �∗), and Ext1
F (S∗

4, S∗
4), where S∗, �∗, 

S∗
4 are the symmetric power, the exterior power, and the truncated symmetric power at the 

power 4, respectively. Three main techniques are used: tri-graded Hopf algebra structure of 
the extension groups between two exponential functors, the polynomial filtration of these 
functors, and the hypercohomology spectral sequences.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit F la catégorie des foncteurs depuis la catégorie des F2-espaces vectoriels de 
dimension finie vers celle des F2-espaces vectoriels. Dans cette note, nous décrivons les 
premiers groupes d’extensions entre certains foncteurs exponentiels tels que Ext1

F (S∗, �∗), 
Ext1

F (S∗
4, �∗) et Ext1

F (S∗
4, S∗

4), où S∗, �∗, S∗
4 sont respectivement la puissance symétrique, 

la puissance extérieure et la puissance symétrique tronquée à la puissance 4. Trois 
techniques principales sont utilisées : la structure d’algèbre de Hopf tri-graduée des 
groupes d’extensions entre deux foncteurs exponentiels, la filtration polynomiale de ces 
foncteurs et les suites spectrales d’hypercohomologie.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let F be the category of functors that send a finite-dimensional vector space over F2 to a vector space over F2. Recall 
that a graded functor E∗ is called “exponential” if there are two natural (graded) isomorphisms E∗(V ⊕W ) ∼= E∗(V ) ⊗ E∗(W )

and E0(V ) ∼= F2 (see [2]). This isomorphism equips E∗ with a canonical Hopf algebra structure. Let A∗ and B∗ be two 
exponential functors. Then Ext∗F (A∗, B∗) becomes a tri-graded Hopf algebra and HomF (A∗, B∗) a sub-Hopf algebra (see 
[3]). We note that the product structure of Ext∗F (A∗, B∗) (and HomF (A∗, B∗)) is not the Yoneda product. In Section 2, we 
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describe the bi-graded Hopf algebra structure of HomF (A∗, B∗), which will be used when we apply the theorem of Franjou, 
Friedlander, Scorichenko and Suslin [3, Theorem 1.7] to find a decomposition of Ext1

F (A∗, B∗).
It is deduced from a result of Milnor and Moore ([6, Theorem 4.4]) that

Ext∗F (A∗, B∗) ∼= HomF (A∗, B∗) ⊗ [
F2 ⊗HomF (A∗,B∗) Ext∗F (A∗, B∗)

]
.

This means that Ext∗F (A∗, B∗) is a free module over HomF (A∗, B∗). It follows that Ext1
F (A∗, B∗) is also free over 

HomF (A∗, B∗). In this note, we describe a basis of Ext1
F (A∗, B∗) over HomF (A∗, B∗) where A∗ and B∗ are chosen among 

S∗ , �∗ , S∗
4.

The following computations are the main results of this note.

Theorem 1.1. As a module over HomF (S∗, �∗), Ext1
F (S∗, �∗) is freely generated by two classes, which are the generators of the 

1-dimensional F2-vector spaces Ext1
F (S1, �2) and Ext1

F (S2, �2).

Theorem 1.2. As a module over HomF (S∗
4, �

∗), Ext1
F (S∗

4, �
∗) is freely generated by three classes, which are the generators of the 

1-dimensional F2-vector spaces Ext1
F (S1

4, �
2), Ext1

F (S4
4, �

1), and Ext1
F (S2

4, �
2).

Theorem 1.3. As a module over HomF (S∗
4, S

∗
4), Ext1

F (S∗
4, S

∗
4) is freely generated by four classes, which are the generators of the 

1-dimensional F2-vector spaces Ext1
F (S1

4, S
4
4), Ext1

F (S4
4, S

1
4), Ext1

F (S2
4, S

4
4), and Ext1

F (S4
4, S

2
4).

A motivation of this work comes from the decreasing filtration of the functor V �→ K (2)∗(B V �), where K (2)∗(−) is 
the second Morava K -theory at p = 2, V a finite-dimensional vector space over F2 and B V � the classifying space of the 
dual vector space of V (see [7]). Each successive quotient of this filtration is isomorphic to Sk

4. To understand the functor 
V �→ K (2)∗(B V �) in relation to its sub-objects and sub-quotients, it is necessary to study the extension group Ext1

F (S∗
4, S

∗
4). 

The group Ext1
F (S∗

4, �
∗) appears when we use the hypercohomology spectral sequences to compute Ext1

F (S∗
4, S

∗
4). In a 

similar way, we obtain the result about Ext1
F (S∗, �∗). This is the case that was not considered in [3]. These computations 

should be useful to decide whether or not there exists, up to isomorphism, a unique indecomposable (in each degree) 
filtered functor having the same subquotients as V �→ K̃ (2)∗(B V �), where K̃ (2)∗(−) is the reduced Morava K -theory. If 
one has an exponential structure on the functor, work of A. Touzé shows that this is true (see [8]). This result should be 
analogous to the well-known fact that the functor V �→ K̃ (1)∗(B V �) is uniserial.

In order to prove the above theorems, let us recall that S2k1 +···+2ks
is a direct factor of S2k1 ⊗ · · · ⊗ S2ks

if k1, . . . , ks are 
distinct (the same thing happens to �∗ and S∗

4). Because of this fact, if m �= 2k or n �= 2h , all elements of Ext1
F (Am, Bn) are 

decomposable. Hence, to understand Ext1
F (A∗, B∗), it suffices to compute the groups Ext1

F (A2k
, B2h

). To do this, we use the 
hypercohomology spectral sequences associated with a certain complex that begins with B2h

. This technique was first used 
by Franjou, Lannes, Schwartz (see [4]), then by Franjou and coworkers (see [2], [3]).

2. Bi-graded Hopf algebra structure over the hom-sets between exponential functors

Let A∗ and B∗ two exponential functors chosen among S∗ , �∗ , S∗
4. First, using Kuhn’s techniques about the charac-

teristic of a natural transformation from Sm to Sn (see [5, Lemma 6.15]), we can easily calculate the linear structure of 
HomF (A∗, B∗). Then, using the definition of Hopf product, we obtain some algebraic relations on this basis. For example, the 
vector space HomF (S∗, �∗) is freely generated by bm : Sm → �m for all m ∈N , where bm(x1 · · · xm) = x1 ∧ · · · ∧ xm . Further-
more, when we consider the Hopf product on HomF (S∗, �∗), we always have two facts: f 2 = 0 for all f ∈ HomF (S∗, �∗), 
and bm = b2k1 · · ·b2ks where m = 2k1 + · · · + 2ks (k1 < · · · < ks). We deduce the following result:

Proposition 2.1. As bi-graded Hopf algebras, HomF (S∗, �∗) ∼= ⊗
k∈N �(b2k ). Moreover, the coproduct is determined by δ(bm) =∑m

i=0 bi ⊗ bm−i .

In the same way, we get the following result for HomF (S∗
4, �

∗).

Proposition 2.2. As bi-graded Hopf algebras, HomF (S∗
4, �

∗) ∼= ⊗
k∈N �(b̃2k ), where b̃2m : S∗

4 → �m is induced by bm. The coproduct 
is characterized by the Verschiebung morphism, which is determined by V (b̃1) = 0, V (b̃2k ) = b̃2k−1 for k ≥ 1.

For the case of HomF (S∗
4, S

∗
4), let us remark that f : Sm

4 → Sn
4 is non-zero if and only if m ≤ n ≤ 2m. In this case, consider 

the morphism b[m,n] : Sm
4 → Sn

4 defined by b[m,n](x1 · · · xm) = ∑
|I|=2m−n xI x2{1,...,m}\I , where xL := xl1 · · · xls and x2

L := x2
l1

· · · x2
ls

for L = {l1, . . . , ls} (we also agree that xL = x2 = 1 ∈ F2 if L =∅).
L
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Proposition 2.3. As bi-graded Hopf algebras,

HomF (S∗
4,S∗

4)
∼=

⊗
k∈N

�(b[2k,2k]) ⊗
⊗
l∈N

�(b[2h,2h+1]).

Moreover, the coproduct is characterized by the Verschiebung morphism given by V (b[1,1]) = V (b[1,2]) = 0, V (b[2k,2k]) = b[2k−1,2k−1]
and V (b[2k,2k+1]) = b[2k−1,2k] for k ≥ 1.

3. Proof of Theorem 1.1

We first recall some notations about the hypercohomology spectral sequences (see [1, Chapter XVII] for more informa-
tion). Let C be an abelian category that has enough injectives. Let C∗ be a complex in C and I∗,∗ a Cartan–Eilenberg injective 
resolution of C∗ . Consider the bi-complex formed by applying the functor HomC(A, −) to I∗,∗ , where A ∈ C . Then the initial 
pages of the associated hypercohomology spectral sequences are given by Is,t

1
∼= Extt

C(A, C s) and IIs,t
2

∼= Exts
C(A, Ht(C∗)). The 

differentials dr of the rth pages are of bi-degree (r, 1 − r).
We now describe the linear structure of Ext1

F (S2k
, �2h

) for k, h ∈N .
Among the cases where k = 0 or h = 0 or h > k ≥ 1, the only one that gives a non-vanishing result is the case k = 0 and 

h = 1 where Ext1
F (Id, �2) ∼= F2. We can prove this by using the polynomial filtration of the functor Sn , which was studied 

carefully in the work of A. Troesch [9]. In fact, among the successive quotients of the polynomial filtration of S2k
, the one 

that has the highest degree is the cosocle �2k
. The result is deduced from the fact that Ext1

F (�i, � j) = 0 if |i − j| �= 1.

For the case of k > h ≥ 1, we can also prove that Ext1
F (S2k

, �2h
) is zero. Consider the complex

�∗
2h : 0 → �2h → �2h−1 ⊗ �1 → ·· · → �2h−1 ⊗ �2h−1 → ·· · → �1 ⊗ �2h−1 → �2h → 0

where the differential from �i ⊗ � j to �i−1 ⊗ � j+1 is induced from the diagonal �i → �i−1 ⊗ �1 and the product 
�1 ⊗ � j → � j+1. This complex is exact at all positions except the middle one, whose homology is �2h−1

. We now 
study the hypercohomology spectral sequences where the initial pages are given by Is,t

1 = Extt
F (S2k

, �2h−s ⊗ �s) and 
IIs,t

2 = Exts
F (S2k

, Ht(�∗
2h )). Using Proposition 2.1, it is clear that II0,∗

2 , II∗,0
2 and I∗,0

1 are null. It follows that the differen-

tial from I0,1
1 = Ext1

F (S2k
, �2h

) to I1,1
1 = Ext1

F (S2k
, �2h−1 ⊗ �1) is injective. It is also easy to prove that I1,1

1 is isomorphic to 
Ext1

F (S2k−1, �2h−1), which is included in Ext1
F (S1 ⊗ S2 ⊗ · · · ⊗ S2k−1

, �2h−1). Moreover, it follows from [3, Theorem 1.7] that 
Ext1

F (S1 ⊗ S2 ⊗ · · · ⊗ S2k−1
, �2h−1) is isomorphic to 

⊕k−1
i=0 Ext1

F (S2i
, �2h+2i−2k

), which is trivial because 2h + 2i − 2k ≤ 0 for 
0 ≤ i ≤ k − 1. So, I0,1

1 is null.

If k = l ≥ 1, we prove by induction that Ext1
F (S2k

, �2k
) is a 1-dimensional vector space. The first step can be easily 

checked. In order to compute Ext1
F (S2k

, �2k
), we use the hypercohomology spectral sequences associated with the complex 

�∗
2k and we get an inclusion from Ext1

F (S2k
, �2k

) into Ext1
F (S2k

, �2k−1 ⊗ �1) ∼= Ext1
F (S2k−1, �2k−1). From the inductive 

hypothesis, we deduce that the dimension of last one is at most 1. Hence, Ext1
F (S2k

, �2k
) is of dimension 1 because it is 

generated by the Hopf product b2k−2ε[2,2] , where ε[2,2] is the generator of Ext1
F (S2, �2).

4. Proof of the Theorem 1.3

We first show that Ext1
F (S2k

4 , S2h

4 ) is null for positive numbers k, h such that |k − h| ≥ 2. We use the polynomial filtration 
of S2h

4 which is induced by that of S2h
(see [9, §1.5.3] or [7]).

Lemma 4.1. The functor S2h

4 admits the polynomial filtration

0 ⊂ F h
0 ⊂ F h

1 ⊂ · · · ⊂ F h
2h−1+1 = S2h

4 ,

whose successive quotient F h
i /F h

i−1 is isomorphic to �2i−2 ⊗ �2h−1−i+1 .

The vanishing of Ext1
F (S2k

4 , S2h

4 ) in the case under consideration follows from the fact that Ext1
F (�i, � j) is null if |i − j| ≥

2. Using this result, the remaining cases that we need to compute are Ext1
F (S2h+1

4 , S2h

4 ), Ext1
F (S2h

4 , S2h

4 ) and Ext1
F (S2h

4 , S2h+1

4 ).
In order to study the first two cases, we make use of the hypercohomology spectral sequences associated with the 

complex

(S4)
∗

h : 0 → S2h → S2h−1 ⊗ S1 → S2h−2 ⊗ S2 → S2h−3 ⊗ S3 → ·· · → S1 ⊗ S2h−1 → S2h → 0
2 4 4 4 4 4 4 4 4 4 4



696 N.L.C. Quyet / C. R. Acad. Sci. Paris, Ser. I 357 (2019) 693–696
where H1((S4)
∗
2h ) = H2((S4)

∗
2h ) = 0, H0((S4)

∗
2h ) ∼= �2h−1

and H3((S4)
∗
2h ) ∼= �2h−1−2 ⊗ �1. It follows that part of the second 

hypercohomology spectral sequence can be deduced from Ext1
F (S∗

4, �
∗). This group can be completely determined by the 

same method as in the previous section, and thus we obtain Theorem 1.2.
Using this result, we can easily show that Ext1

F (S2h+1

4 , S2h

4 ) = 0 if h > 1. The case h = 1 is reduced to the computation of 
Ext1

F (S4, S2) by using the short exact sequence 0 → S1 → S4 → S4
4 → 0.

Similarly, we can compute Ext1
F (S2h

4 , S2h

4 ) for h ≤ 2. The case where h > 2 is more complicated. We can find two indepen-

dent generators of I0,1
1 and we have an inclusion from I0,1

1 = Ext1
F (S2h

4 , S2h

4 ) into I1,1
1 = Ext1

F (S2h

4 , S2h−1
4 ⊗ S1

4). The difficulty is 
that we want to prove that I0,1

1 is of dimension 2, but the dimension of I1,1
1 is 3. To solve this difficulty, we have to analyze 

the differential from I1,1
1 to I2,1

1 , which is induced by the Hopf algebra structure of Ext∗F (S∗
4, S

∗
4). It is non-trivial by an ad 

hoc argument. We then get the result.
For the case of Ext1

F (S2h

4 , S2h+1

4 ), we use the polynomial filtration of S2h+1

4 . In detail, using the long exact sequences

· · · → HomF (S2h

4 ,�2i ⊗ �2h−i) → Ext1
F (S2h

4 , F h+1
i ) → Ext1

F (S2h

4 , F h+1
i+1 ) → Ext1

F (S2h

4 ,�2i ⊗ �2h−i) → ·· ·
for 1 ≤ i ≤ 2h , we get an isomorphism of groups Ext1

F (S2h

4 , S2h+1

4 ) ∼= Ext1
F (S2h

4 , F h+1
2 ), where the latter can be computed using 

the Loewy structure of F h+1
2 .

5. Perspective

By considering an appropriate complex, we can reduce the problem of computing Ext1
F (S∗

2m , S∗
2n ) to Ext1

F (S∗
2m , S∗

2n−1 ). 
So, if we are interested in this type of extension group, the first one that we have to study is Ext1

F (S∗
2m , �∗). This can be 

computed by the same method as that described in the proof of Theorem 1.1 or 1.2.
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