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Both optimal transport and minimal surfaces have received much attention in recent years. 
We show that the methodology introduced by Kantorovich on the Monge problem can, 
surprisingly, be adapted to questions involving least area, e.g., Plateau-type problems as 
investigated by Federer.
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r é s u m é

Le transport optimal, ainsi que les surfaces minimales, ont été abondamment étudiés au 
cours de ces dernières décennies. Nous mettons en évidence une analogie surprenante, au 
niveau méthodologique, entre l’approche de Kantorovich pour le problème de Monge et 
la minimisation de l’aire dans des problèmes géométriques de type Plateau étudiés par 
Federer.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

This note originates in [10], where one of the topics is the minimization of the W 1,1-energy of S1-valued maps with 
prescribed singularities. For example, if we consider a given closed curve � in R3, then

inf

{∫
R3

|∇u|; u ∈ C∞(R3 \ �;S1), deg(u,�) = 1

}
= 2πM0(�), (1)

where M0(�) is the least area spanned by � and deg(u, �) is the degree of u restricted to any small circle linking �. This 
formula was conjectured by Brezis, Coron and Lieb [9, formula (8.22)]. It was established in [9] for planar curves �; in full 
generality it is due to Almgren, Browder and Lieb [2].
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A similar formula holds in any dimension N ≥ 3. The proof of “≥” in [2] relies on geometric measure theory (= GMT) 
techniques, and in particular it uses the coarea formula. As we will see below (see Remark 1), (1) can be derived easily from 
the tools presented in Section 3.

In the special case N = 2, the role of � is played by finite collections of points (Pi), (Ni), i = 1, . . . , m, and the condition 
deg(u, �) = 1 is replaced by deg(u, Pi) = 1, ∀ i (resp. deg(u, Ni) = −1, ∀ i), where deg(u, a) is the degree of u on a small 
circle around a. Then (1) holds with

M0(�) = min
σ∈Sm

m∑
i=1

|Pi − Nσ (i)|, (2)

a quantity originally introduced by Monge in the context of optimal transport; the minimum in (2) is taken over the set 
Sm of all permutations of {1, . . . , m}. Moreover, when N = 2, it is possible to establish “≥” in (1) using the celebrated 
Kantorovich formula M = D (see Theorem 1 below). This approach was originally used in [9]. It turns out that Federer, 
unaware of the Kantorovich formula, rediscovered it (thirty years later) using tools of GMT [15, Section 5.10].

This suggests a possible connection between three topics: optimal transport, the Plateau problem, and S1-valued maps. 
The main purpose of this note is to present a common methodology that fits both the Monge–Kantorovich problem (in its 
discrete version) and the Plateau problem in codimension 1 (i.e. minimizing the area of a hypersurface with given boundary). 
Concerning the connections with S1-valued maps, we refer the reader to [10]; note however that such maps occur in this 
paper as a tool, e.g., in Lemma 1.

There is a huge literature dealing with the Monge–Kantorovich optimal transport problem; see, e.g., Evans [12], Villani 
[31,32], Santambrogio [29], Brezis [8], and the references therein. In this note, we concentrate on the simplest possible 
setting, namely a finite number of points with a uniform distribution of masses. We first recall a basic result in this theory; 
see Theorem 1 below (as stated in [6] and [8]; see also [9] and [10]). Let d = d(x, y) be a pseudometric (i.e. the distance 
between two distinct points can be zero) on a set Z . Let Pi , Ni , i = 1, . . .m, be points in Z such that Pi �= N j , ∀ i, j (but 
we allow that Pi = P j or Ni = N j for some i �= j). We introduce three quantities. The first one, denoted M (for Monge) is 
defined by

M = min
σ∈Sm

m∑
i=1

d(Pi, Nσ (i)), (3)

where the minimum in (3) is taken over the set Sm of all permutations of {1, 2, . . . , m}.
The second one, denoted K (for Kantorovich), is defined by

K = min

{
m∑

i, j=1

aij d(Pi, N j); A = (aij) is doubly stochastic

}
. (4)

Recall that a matrix A = (aij)1≤i, j≤m is doubly stochastic (DS) if

aij ≥ 0, ∀ i, j,
m∑

i=1

aij = 1, ∀ j,
m∑

j=1

aij = 1, ∀ i.

Finally, define D (for duality) by

D = sup
ζ :Z→R

{
m∑

i=1

ζ(Pi) −
m∑

j=1

ζ(N j); |ζ(x) − ζ(y)| ≤ d(x, y), ∀ x, y ∈ Z

}
. (5)

Theorem 1. We have

M = K = D. (6)

There are, by now, several proofs of Theorem 1; see, e.g., [8] and the references therein. The first goal of this note is to 
discuss a proof whose structure can be easily adapted to the Plateau problem, as explained in Section 3 below.

The main features of this proof, presented in Section 2, are the following ones.

1. As in [9], we use the Birkhoff theorem [5] on the extreme points of DS matrices combined with the Krein–Milman 
theorem [25] to prove that M = K .

2. We prove that K = D via the analytic form of the Hahn–Banach theorem. This approach provides a natural alternative 
to the standard proofs; see, e.g., [31, pp. 23–25, pp. 34–36], which relies on convex analysis (resp. [12], based on linear 
programming). As we will see later, it fits well with the proof of K (�) = D(�) in Theorem 2.



H. Brezis, P. Mironescu / C. R. Acad. Sci. Paris, Ser. I 357 (2019) 597–612 599
In Section 3, we turn to the Plateau problem in 3D.
Let � ⊂R3 be a smooth compact connected oriented curve (without boundary). By the Frankl–Pontryagin theorem (see 

[17]; see also Seifert [30]), there exists a smooth compact oriented surface S ⊂R3 with boundary �. We may thus consider 
the finite quantity

M0(�) = inf{|S|; S ⊂ R3 is a smooth oriented surface such that ∂ S = �}. (7)

Here, |S| = H 2(S) is the area of S .
By Stokes’ theorem, for each smooth compactly supported vector field, that we identify with a 1-form ζ ∈ C∞

c (R3; �1), 
we have∫

S

dζ =
∫
�

ζ. (8)

If ν (resp. τ ) denotes the orienting unit normal to S (resp. the orienting unit tangent vector to �), then (8) is equivalent 
to

curl(νH 2 � S) = τH 1 �� in D ′(R3;R3). (9)

With an abuse of notation, we identify S with νH 2 � S (resp. � with τH 1 ��), and then (9) reads

curl S = � in D ′(R3;R3). (10)

One can also investigate a minimization problem involving “generalized surfaces” (that we will identify later with 
2-rectifiable currents in the sense of GMT) satisfying an appropriate version of (10). More specifically, we consider a count-
able family of Borel subsets Si of C1 oriented surfaces 	i ⊂ R3 such that 

∑
i |Si | < ∞ and, with νi the unit orienting 

normal to 	i , we have

curl
(∑

i

Si

)
= � in D ′(R3;R3). (11)

By analogy with the Monge–Kantorovich problem, we introduce three quantities, M(�), K (�), and D(�). The first one is 
a “GMT version” of M0(�):

M(�) = inf{|S|; S =
∑

i

Si such that (11) holds}. (12)

Here, |S| is the mass of the vector-valued measure S = ∑
i Si (identified with 

∑
i νiH 2 � Si ). When S is a classical 

surface, |S| equals the area of S .
Set

R = {S; S is a minimizer in (12)}. (13)

(A priori, R could be empty.)
Even more generally, we may consider finite measures μ ∈ M (R3; R3) satisfying

curlμ = � in D ′(R3;R3) (14)

and the convex minimization problem

K (�) = min{‖μ‖M ; μ ∈ M (R3;R3) is a measure such that (14) holds}. (15)

(In GMT’s terminology, up the action of the Hodge ∗ operator, the competitors in (12) are called integral currents with 
boundary �, while the competitors in (15) are called real currents with boundary �.)

From the above definitions, we have

M0(�) ≥ M(�) ≥ K (�).

Consider the set

Q = {μ ∈ M (R3;R3); μ is a minimizer in (15)}. (16)

Clearly, Q is non empty, convex, and weak∗ compact in M (R3; R3). By the Krein–Milman theorem, Q has at least one 
extreme point.
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We associate with (15) a “dual” problem

D(�) = sup

⎧⎨⎩
∫
�

τ · ξ dH 1; ξ ∈ C∞
c (R3;R3) and ‖ curl ξ‖L∞ ≤ 1

⎫⎬⎭
= sup

{
〈�, ξ〉; ξ ∈ C∞

c (R3;R3) and ‖ curl ξ‖L∞ ≤ 1
}

.

(17)

If μ (resp. ξ ) is a competitor in (15) (resp. (17)), then∫
�

τ · ξ dH 1 = 〈�, ξ〉 = 〈curlμ,ξ〉 = 〈μ, curl ξ〉 ≤ ‖μ‖M ‖ curl ξ‖L∞ , (18)

so that K (�) ≥ D(�), and therefore

M0(�) ≥ M(�) ≥ K (�) ≥ D(�). (19)

The central result in this direction is

Theorem 2. Let � ⊂R3 be a smooth compact connected oriented curve. Then,

M0(�) = M(�) = K (�) = D(�). (20)

Moreover,

every extreme point of Q belongs to R, (21)

and consequently

conv R
weak∗ = Q. (22)

Assertion (22) is an immediate consequence of (21) and of the Krein–Milman theorem.
The fact that R �= ∅ is a fundamental result in GMT, and is usually established using the Federer-Fleming compactness 

theorem [16]. In our presentation, this assertion is a consequence of (21) and of the existence of extreme points. Previously, 
Hardt and Pitts [21] established that R �= ∅ without relying on the compactness theorem.

Equality M(�) = K (�) is originally due to Federer [15, Section 5.10]. Hardt and Pitts [21] devised a different proof of this 
result; see also Almgren, Browder and Lieb [2, Remark (3), pp. 9–10] for another approach. Assertion (21) seems to be new; 
its proof relies heavily on a beautiful argument due to Poliakovsky [28], who answered a question raised in [11], concerning 
extreme points in the framework of S1-valued maps.

Equality K (�) = D(�) is obtained via Hahn–Banach, very much in the spirit of the proof of Theorem 1. This idea, in a 
slightly different context, goes back to Federer [14, Section 4.1.12]; see also Brezis, Coron and Lieb [9, Theorem 5.1] and 
Giaquinta, Modica and Souček [19, Section 4.2.5, Proposition 2, p. 414].

In order to obtain the equality M0(�) = M(�), we rely on the coarea formula. The effectiveness of this tool in related 
problems was originally pointed out in Almgren, Browder and Lieb [2]; see also Alberti, Baldo and Orlandi [1].

In Section 4, we present various generalizations of Theorem 2.

2. A proof of Theorem 1

We divide the proof into two independent parts:

M = K (23)

and

K = D. (24)

Proof of (23). Choosing for A in (4) a permutation matrix yields K ≤ M . The reverse inequality, K ≥ M , relies on Birkhoff’s 
theorem on DS matrices (also called Birkhoff–von Neumann’s theorem because von Neumann [33] rediscovered it indepen-
dently a few years later). It asserts that the extreme points of the convex set of DS matrices are precisely the permutation 
matrices. Applying the Krein–Milman theorem, one deduces that any DS matrix is a convex combination of permutation 
matrices, and consequently K ≥ M . �
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In fact, this argument yields an additional information. Denote by σ1, . . . , σk the optimal permutations in (3) and by 
Q 1, . . . , Q k the associated permutation matrices. Set

Q = {A; A is a DS matrix which achieves the minimum in (4)}. (25)

Proposition 1. We have

Q = conv{Q 1, . . . , Q k}, (26)

and in particular the extreme points of Q correspond precisely to the optimal permutations in (3).

Proof. Let A = (aij) be any minimizer in (4). We may write A = ∑�
n=1 αn Q̂ n , with αn > 0, ∀ n, 

∑�
n=1 αn = 1 and each Q̂ n a 

permutation matrix associated with a permutation σ̂n . Then,

M =
∑
i, j

ai j d(Pi, N j) =
∑
i,n

αn d(Pi, Nσ̂n(i)) ≥ M.

Thus 
∑

i d(Pi, Nσ̂n(i)) = M , ∀ n = 1, . . . �, i.e. each Q̂ n , n = 1, . . . , �, is an optimal permutation matrix. �
Proof of (24). Clearly,

D ≤ K . (27)

Indeed, if A = (aij) is DS and ζ satisfies |ζ(x) − ζ(y)| ≤ d(x, y), ∀ x, y ∈ Z , then∑
i

ζ(Pi) =
∑
i, j

ai j ζ(Pi), (28)

∑
j

ζ(N j) =
∑
i, j

ai j ζ(N j) (29)

and thus∑
i

ζ(Pi) −
∑

j

ζ(N j) =
∑
i, j

ai j (ζ(Pi) − ζ(N j)) ≤
∑
i, j

ai j d(Pi, N j). (30)

Taking supζ and infA in (30) yields (27).
Both quantities D and K involve the maximization (resp. minimization) of linear functionals over convex sets. We present 

here a very natural and elementary approach leading to the equality D = K , which relies on the analytic form of Hahn–
Banach (i.e. extension of linear functionals). A totally similar device will be used in Section 3 in the framework of the 
Plateau problem.

The proof of D ≥ K consists of three simple steps.

Step 1. Set

L = sup

{
m∑

i=1

λi −
m∑

j=1

μ j; λi − μ j ≤ d(Pi, N j), ∀ i, j = 1, . . . ,m

}
. (31)

We claim that

L = K . (32)

In the proof of (32), we do not use the assumption that d is a pseudometric; it could be any nonnegative cost function.
Clearly (as in (28)–(30)), L ≤ K , and thus it remains to prove that K ≤ L.
Adding an ε > 0 (and then passing to the limit as ε → 0), we may assume that d(Pi, N j) > 0, ∀ i, j.
Let X be the linear subspace of Rm2

defined by

X =
{

ξ = (ξi j) ∈ Rm2; ∃ (λi), (μ j) ∈Rm such that ξi j = λi − μ j, ∀ i, j

}
and set, for every ξ = (ξi j) ∈ X as above,

�(ξ) =
m∑

λi −
m∑

μ j. (33)

i=1 j=1
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It is easy to see that � : X →R is well-defined and linear.
From (31) and scaling, we obtain

�(ξ) ≤ L

∥∥∥∥∥
(

ξi j

d(Pi, N j)

)+∥∥∥∥∥
�∞

, ∀ ξ = (ξi j) ∈ X,

where ‖(ηi j)‖�∞ = supi, j |ηi j|. Equivalently, we have

�(ξ) ≤ p(ξ), ∀ ξ ∈ X, (34)

where p is defined on Rm2
by

p(ξ) = L

∥∥∥∥∥
(

ξi j

d(Pi, N j)

)+∥∥∥∥∥
�∞

, ∀ ξ ∈ Rm2
.

Since p satisfies

p(αξ) = αp(ξ), ∀α > 0, ∀ ξ ∈Rm2
, p(ξ + η) ≤ p(ξ) + p(η), ∀ ξ,η ∈Rm2

,

(34) and the Hahn–Banach theorem in analytic form (see, e.g., [7, Theorem 1.1]) yield the existence of a linear functional �
on Rm2

such that

�(ξ) = �(ξ), ∀ ξ ∈ X, (35)

�(ξ) ≤ p(ξ), ∀ ξ ∈Rm2
. (36)

We may thus write, for some matrix A = (aij),

�(ξ) =
m∑

i, j=1

aij ξi j, ∀ ξ ∈Rm2
. (37)

From (33), (35) and (37), we see that

m∑
i=1

λi −
m∑

j=1

μ j =
m∑

i, j=1

aij(λi − μ j), ∀λi, ∀μ j, (38)

and thus, by identification of coefficients in (38), we have

m∑
j=1

aij = 1, ∀ i = 1, . . . ,m (39)

and

m∑
i=1

aij = 1, ∀ j = 1, . . . ,m. (40)

On the other hand, choosing

ξi j =
{

−1, if i = i0, j = j0

0, otherwise,

and applying (36) yields

ai0 j0 ≥ 0, ∀ i0, j0. (41)

By (39)–(41), the matrix A = (aij) is DS.
Returning to (36) and choosing ξi j = d(Pi, N j), ∀ i, j, we find that∑

i, j

ai j d(Pi, N j) ≤ L, (42)

and thus
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K ≤
m∑

i, j=1

aij d(Pi, N j) ≤ L.

Step 2. Let λi , μ j achieve the maximum in (31). Set Y = {Pi; i = 1, . . . , m} ∪ {N j; j = 1, . . . , m} ⊂ Z and let ζ : Y → R, 
ζ(Pi) = λi , ∀ i, ζ(N j) = μ j , ∀ j. We claim that

|ζ(x) − ζ(y)| ≤ d(x, y), ∀ x, y ∈ Y . (43)

Unlike in Step 1, here we use the assumption that d is a pseudometric.
The key observation is the following. Let (bij) be a DS matrix achieving the minimum in (4). By (32) and the constraints

ζ(Pi) − ζ(N j) = λi − μ j ≤ d(Pi, N j), ∀ i, j, (44)

we have

m∑
i, j=1

bij d(Pi, N j) = K = L =
m∑

i=1

λi −
m∑

j=1

μ j =
m∑

i, j=1

bij (λi − μ j) ≤
m∑

i, j=1

bij d(Pi, N j),

and thus

bij (λi − μ j) = bij d(Pi, N j), ∀ i, j. (45)

Since for each i (resp. each j) there exists some k (resp. some �) such that bik > 0 (resp. b� j > 0), we find from (45) that

for each i there exists some k = k(i) such that ζ(Pi) − ζ(Nk) = λi − μk = d(Pi, Nk) (46)

and

for each j there exists some � = �( j) such that ζ(P�) − ζ(N j) = λ� − μ j = d(P�, N j). (47)

Step 2 is then a consequence of the following claim. If ζ : Y →R satisfies (44), (46) and (47) for some pseudometric d, 
then (43) holds.

Indeed, with k = k(i), we have (using (46))

ζ(Pi) − ζ(P j) = d(Pi, Nk) + ζ(Nk) − ζ(P j) ≥ d(Pi, Nk) − d(P j, Nk) ≥ −d(Pi, P j).

Exchanging i and j, we find that (43) holds when x = Pi and y = P j . Similarly, using (47) we obtain (43) for x = Ni and 
y = N j .

Finally, using (46) and (43) for Nk and N j , we find

ζ(Pi) − ζ(N j) = d(Pi, Nk) + ζ(Nk) − ζ(N j) ≥ d(Pi, Nk) − d(N j, Nk) ≥ −d(Pi, N j).

Combining this with (44) yields (43) with x = Pi and y = N j .

Step 3. By (43), ζ has an extension to Z such that |ζ(x) − ζ(y)| ≤ d(x, y), ∀ x, y ∈ Z . By (27), Steps 1 and 2, we find that

K = L ≤ D ≤ K ,

and thus (24) holds. �
3. Proof of Theorem 2

In view of (19), the first assertion in Theorem 2 amounts to proving the inequalities

K (�) ≤ D(�), (48)

M(�) ≤ K (�) (49)

and

M0(�) ≤ M(�). (50)

The proof of Theorem 2 consists of five steps.
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Step 1. Proof of K (�) ≤ D(�). Consider the mapping

T : {curl ξ ; ξ ∈ C∞
c (R3;R3)} →R, T (curl ξ) =

∫
�

τ · ξ dH 1 = 〈�, ξ〉. (51)

Let μ be any competitor in (15). By (18), we have T (curl ξ) = 〈μ, curl ξ〉, and thus T is well defined. By homogeneity 
and the definition of D(�), we have

|T (curl ξ)| ≤ D(�)‖ curl ξ‖L∞ , ∀ ξ ∈ C∞
c (R3;R3). (52)

By Hahn–Banach, T extends to a linear continuous functional, still denoted T , on Cc(R3; R3), of norm D(�). Let μ ∈
M (R3; R3) be the measure such that T (η) = 〈μ, η〉, ∀ η ∈ Cc(R3; R3), and ‖μ‖M = D(�). By the definition of T , we have

〈curlμ,ξ〉 = 〈μ, curl ξ〉 =
∫
�

τ · ξ dH 1 = 〈�, ξ〉, ∀ ξ ∈ C∞
c (R3;R3),

and thus μ is a competitor in (15). We find that K (�) ≤ ‖μ‖M = D(�). �
Step 2. Proof of M(�) ≤ K (�). This is a clear consequence of (21). �
Step 3. Proof of (21). This step relies heavily on the fine structure of BV functions.

Set ḂV(RN ) = {ϕ ∈ L1
loc(R

N ); Dϕ ∈ M (RN ; RN )}; we define similarly Ẇ 1,1(RN ).
Let μ be an extreme point of Q. Let S ⊂ R3 be any smooth compact oriented surface in R3 such that (10) holds, and 

set μ0 = μ − S .
Since μ0 is a measure satisfying curlμ0 = 0 in D ′(R3; R3), there exists some ψ ∈ ḂV(R3) such that μ0 = Dψ , and thus

μ = S + Dψ. (53)

We claim that

there exists some constant C ∈R such that ψ − C is Z-valued. (54)

This remarkable assertion is essentially due to Poliakovsky [28]; we postpone its proof, which follows closely [28], to 
Step 4.

Assuming the claim proved, we continue as follows. By the Fleming–Rishel coarea formula for BV functions (see, e.g., [3, 
Theorem 3.40]), for a.e. t ∈R the set [ψ > t] = {x ∈R3; ψ(x) > t} has finite perimeter, denoted Per [ψ > t], and we have

‖Dψ‖M =
∞∫

−∞
Per [ψ > t]dt. (55)

Equivalently, for a.e. t ∈R we have χ[ψ>t] ∈ ḂV(R3), and

‖Dψ‖M =
∞∫

−∞
‖Dχ[ψ>t]‖M dt.

Let j ∈ Z and set F j = [ψ ≥ j]. Since, for each t ∈ ( j − 1, j), we have [ψ > t] = F j , we find that F j has finite perimeter 
for every j, and that

‖Dψ‖M =
∞∑

j=−∞
Per F j. (56)

Let now, for j ∈Z,

E j =
{

F j, if j ≥ 0

(F j+1)
c =R3 \ F j+1, if j < 0.

(57)

By (56), we have

‖Dψ‖M =
∞∑

Per E j . (58)

j=−∞
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We claim that

ψ =
∞∑

j=−∞
(sgn j)χE j in ḂV(R3). (59)

This is proved as follows. Let m ≥ 1 be an integer and set

ψm =

⎧⎪⎨⎪⎩
ψ, if |ψ | ≤ m

m, if ψ ≥ m

−m, if ψ ≤ −m.

Clearly, we have

ψm → ψ in L1
loc(R

3) as m → ∞. (60)

The coarea formula yields

‖D(ψ − ψm)‖M =
∑

| j|>m

Per F j → 0 as m → ∞. (61)

On the other hand, we clearly have

ψm =
m∑

j=−m

(sgn j)χE j in ḂV(R3). (62)

We obtain (59) from (60)–(62).
Granted (54), we complete the proof of (21) as follows. For each j, let R j be the reduced boundary of E j , which is a 

2-rectifiable set, and let ν j be the (measure theoretic) inner unit normal to R j . Then Per E j = H 2(R j) and DχE j = R j ; see, 
e.g., [3, Section 3.5]. Using this and (59), we find that

μ = S + μ0 = S +
∑
j∈Z

(sgn j) R j;

this leads (via (58)) to (21). �
Step 4. Proof of (54). Argue by contradiction and assume that (54) does not hold. This is equivalent to the fact that (at least) 
one of the functions sin(2πψ), cos(2πψ) is not constant. Assume, e.g., that sin(2πψ) is not constant, and set

ψ± = ψ ± 1

2π
sin(2πψ), μ± = S + Dψ±.

By (53) and the assumption on ψ , we have μ± �= μ and μ = (μ+ + μ−)/2. On the other hand, μ± is a competitor in 
(15). We will prove that

‖μ‖M = ‖μ+‖M + ‖μ−‖M

2
. (63)

Clearly, this contradicts the fact that μ is an extreme point of Q.
In order to prove (63), we rely on the structure of Dψ with ψ ∈ ḂV and on Volpert’s chain rule; see, e.g., [3, Chapter 

3]. Recall that, if ψ ∈ ḂV, then the measure Dψ can be (uniquely) written as a sum of an absolutely continuous part with 
respect to the Lebesgue measure, Daψ , whose density is denoted ∇ψ , a Cantor part Dcψ and a jump part D jψ . With an 
abuse of notation, we write this decomposition as:

Dψ = ∇ψ + Dcψ + D jψ = ∇ψ + Dcψ + (ψ+ − ψ−) Jψ. (64)

Here, Jψ is the jump set of ψ , which is a 2-rectifiable set, ν is an orienting unit normal to Jψ , and ψ± are the 
approximate one-sided limits of ψ on Jψ .

On the other hand, Volpert’s chain rule asserts that, when f is C1 and Lipschitz, we have (for the precise representative 
of ψ )

D( f ◦ ψ) = f ′(ψ)∇ψ + f ′(ψ)Dcψ + ( f (ψ+) − f (ψ−)) Jψ . (65)
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Using (65), we find that

Dψ± =[1 ± cos(2πψ)]∇ψ + [1 ± cos(2πψ)]Dcψ

+ [(ψ+ − ψ−) ± (sin(2πψ+) − sin(2πψ−))/(2π)] Jψ

=∇ψ± + Dcψ± + D jψ±.

(66)

We next note the following. If S , S ′ are 2-rectifiable sets, with orienting unit normals ν and ν ′ , then ν = ±ν ′ H 2-a.e. 
on S ∩ S ′; see, e.g., [18, Section 2.1.4]. With no loss of generality, we may assume that, H 2-a.e. on S ∩ Jψ , S and Jψ have 
the same orienting unit normal ν , and then (66) yields

Dμ± =∇ψ± + Dcψ± + (S \ Jψ)

+ [(ψ+ − ψ−) ± (sin(2πψ+) − sin(2πψ−))/(2π)] ( Jψ \ S)

+ [1 + (ψ+ − ψ−) ± (sin(2πψ+) − sin(2πψ−))/(2π)] ( Jψ ∩ S).

(67)

We now make the following observations:

1 ± cos(2πψ) ≥ 0, (68)

(ψ+ − ψ−) ± (sin(2πψ+) − sin(2πψ−))/(2π) and ψ+ − ψ− have the same sign, (69)

1 + (ψ+ − ψ−) ± (sin(2πψ+) − sin(2πψ−))/(2π) and 1 + ψ+ − ψ− have the same sign; (70)

(69) and (70) are immediate consequences of the fact that t �→ t ± sin t is non decreasing.
Using (68)–(70), we find that

‖μ+‖M + ‖μ−‖M

2
=

∫
�

|∇ψ | + ‖Dcψ‖M + H 2(S \ Jψ) +
∫

Jψ\S

|ψ+ − ψ−|dH 2

+
∫

Jψ∩S

|1 + ψ+ − ψ−|dH 2 = ‖μ‖M ,

whence (63). �
Step 5. Proof of M0(�) ≤ M(�). We rely on the following auxiliary results.

Lemma 1. Let � ⊂R3 be as in Theorem 2. Then,

1. There exist some ε > 0 and an orientation preserving diffeomorphism

� : � ×D(0, ε) → {x ∈R3; dist(x,�) ≤ ε}
such that:
(a) �(x, z) ∈ Nx (the normal plane at x to �), ∀ x ∈ �, ∀ z ∈D(0, ε).
(b) |�(x, z) − x| = |z|, ∀ x ∈ �, ∀ z ∈D(0, ε).

2. There exist some u ∈ C∞(R3 \ �; S1) and f ∈ C∞(�; S1) such that

u(�(x, reiθ )) = f (x)eiθ , ∀ x ∈ �, ∀0 < r ≤ ε/3, ∀ θ ∈R (71)

and

∇u ∈ L1(R3). (72)

3. Any u = u1 + iu2 as in item 2 satisfies

1

2π
curl (u ∧ ∇u) = 1

2π
curl (u1 ∇u2 − u2 ∇u1) = � in D ′(R3;R3). (73)

Here, “∧” stands for the vector product of complex numbers: if u = u1 + iu2, then

u ∧ ∇u = u1∇u2 − u2∇u1. (74)

Lemma 2. Let F ∈ L1(RN ; RN ) and ψ ∈ ḂV(RN ). Then, there exists a sequence (ψn) ⊂ C∞(RN ) such that:
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(1) ψn ∈ Ẇ 1,1(RN ), ∀ n;

(2) lim inf
n→∞

∫
�

|F + ∇ψn| ≤ ‖F + Dψ‖M ;

(3) let K ⊂RN be a compact set such that H N−1(K ) = 0. Then we may choose ψn such that, in addition, ψn = 0 in a neighborhood 
of K .

Granted Lemmas 1 and 2, we prove the inequality M0(�) ≤ M(�) as follows. Let S = ∑
i Si be a competitor in (12). By 

Lemma 1 item 3, we have

curl
(

S − 1

2π
u ∧ ∇u

)
= 0 in D ′(R3;R3),

and thus (using Lemma 1, item 2)

S = 1

2π
u ∧ ∇u + Dψ (75)

for some ψ ∈ ḂV(R3).
Set F = u ∧ ∇u ∈ L1(R3; R3) and K = �. Let (ψn) be as in Lemma 2 and set un = u eiψn .
Clearly, un is smooth in R3 \ �. Let α = eiξ ∈ S1 be a regular value of un in R3 \ � and set Sα = [un = α], which is a 

smooth 2-submanifold of R3 \ �, oriented by un ∧ ∇un . Since ψn = 0 near �, for each x ∈ � there exists some ε0 > 0 such 
that near x, we have

Sα = �
(
{(y, reiα(y)); y ∈ �, 0 < r < ε0}

)
, with α(y) = ξ + i ln f (y). (76)

Here, −i ln f is a smooth local phase of f .
By (76), Sα ∪ � has boundary �, and thus Sα ∪ � is a competitor in (7). Combining this with the coarea formula, we 

obtain∫
R3

|∇un| =
∫

R3\�
|∇un| =

∫
S1

|Sα|dα =
∫
S1

|Sα ∪ �|dα ≥ 2π M0(�). (77)

On the other hand, we have

|∇un| = |un ∧ ∇un| = |u ∧ ∇u + ∇ψn|. (78)

Combining Lemma 2 item 2, (75), (77) and (78), we find that for every competitor S = ∑
i Si in (15) we have |S| ≥ M0(�).

Granted Lemmas 1 and 2, the proof of Theorem 2 is complete. �
Remark 1. We return here to (1), which we derive from Theorem 2 and its proof.

Step 1. Proof of “≥” in (1). If u is as in (1), then

curl(u ∧ ∇u) = 2π� in D ′(R3;R3) (79)

(see [9, equation (8.30)]). Therefore, for every ξ ∈ C∞
c (R3; R3) satisfying ‖ curl ξ‖L∞ ≤ 1, we have∫

R3

|∇u| =
∫
R3

|u ∧ ∇u| ≥
∫
R3

(u ∧ ∇u) · curl ξ = 〈u ∧ ∇u, curl ξ〉

=〈curl (u ∧ ∇u), ξ〉 = 2π 〈�, ξ〉 = 2π
∫
�

τ · ξ dH 1.

(80)

Taking in (80) sup over ξ and using the equality M0(�) = D(�), we obtain “≥” in (1).

Step 2. Proof of “≤” in (1). Let μ ∈ Q, so that ‖μ‖M = K (�) = M0(�) (by Theorem 2). Let u ∈ C∞(R3 \ �) ∩ Ẇ 1,1(R3) be a 
competitor in (1). By (79), we have curl(2π μ − u ∧∇u) = 0 in D ′(R3; R3), and thus there exists some ψ ∈ ḂV(R3; R) such 
that 2π μ = u ∧ ∇u + Dψ . By Lemma 2, there exists a sequence (ψn) ⊂ C∞(R3; R) ∩ Ẇ 1,1 such that

2π M0(�) = 2π‖μ‖M = lim
n→∞

∫
3

|u ∧ ∇u + ∇ψn|. (81)
R
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Set un = u eiψn , which is clearly a competitor in (1). We thus have (using (81))

lhs of (1) ≤ lim
n→∞

∫
R3

|∇un| = lim
n→∞

∫
R3

|un ∧ ∇un| = lim
n→∞

∫
R3

|u ∧ ∇u + ∇ψn| = 2π M0(�).

Remark 2. There is an alternative proof of Theorem 1 (presented in Brezis [6,8]) which avoids completely Birkhoff, 
Krein–Milman and Hahn–Banach; it is totally self-contained (and reminds of the original proof of Kantorovich [23]). 
The heart of the matter is the construction of an explicit function ζ such that |ζ(x) − ζ(y)| ≤ d(x, y), ∀ x, y ∈ Z , and ∑

i ζ(Pi) − ∑
j ζ(N j) ≥ M .

It would be very interesting to perform a similar construction in the framework of Theorem 2. More precisely, given 
�, can one find an explicit ζ ∈ C∞

c (R3; R3) such that ‖ curl ζ‖L∞ ≤ 1 and 
∫
�
τ · ζ dH 1 ≥ M(�) − ε (with ε > 0 arbitrarily 

small)?

Finally, we turn to the auxiliary results used in the proof of Theorem 2.

Proof of Lemma 1, item 1. Let S ⊂ R3 be a smooth compact oriented surface with boundary �. Let, for x ∈ �, X(x) denote 
the outward unit normal to S at x. Let τ (x) be the orienting unit tangent vector at x ∈ �. Let Y (x) ∈ R3 be the unique 
unit vector such that (X(x), Y (x), τ (x)) is a direct orthonormal basis of R3. Clearly, X and Y are smooth and, for each 
x ∈ �, we have X(x), Y (x) ∈ Nx . By the inverse function theorem and the properties of the nearest point projection on �, for 
sufficiently small ε > 0, the map

�(x, (y1, y2)) := x + y1 X(x) + y2 Y (x), x ∈ �, 0 ≤ |(y1, y2)| ≤ ε

has all the required properties. �
Proof of Lemma 1, item 2. When v ∈ C∞(R3 \ �; S1), we may define the “degree of v around �”, deg(v, �), as follows. Let 
x ∈ � and let Nx be the normal plane to � at x. On Nx , we have a natural orientation induced by the orientation of � (such 
that a direct basis of Nx , completed with τ (x), forms a direct basis of R3). Let, for small δ, C(x, δ) = {y ∈ Nx; |y − x| = δ}. 
This circle inherits an orientation from Nx and does not intersect �. We let deg(v, �) = deg(v, C(x, δ)). By a homotopy 
argument, this definition does not depend on x or on small δ. One can define similarly deg(v, �) when v is merely defined 
on �(� ×D(0, ε)).

We now invoke the existence of some v ∈ C∞(R3 \ �; S1) such that deg(v, �) = 1. Moreover, we may choose such v
satisfying ∇v ∈ L1

loc(R
3); see [1, Section 4]. We next modify v at infinity as follows. Let R > 0 be such that �(� ×D(0, ε)) ⊂

B(0, R). On R3 \ B(0, R), we may write v = eiϕ for some smooth ϕ . By replacing ϕ with an appropriate smooth function ϕ̃
that agrees with ϕ near S(0, R), we may assume that v = 1 on R3 \ B(0, R + 1), and thus ∇v ∈ L1(R3).

Define, for x ∈ �, 0 < r ≤ ε and θ ∈R, w(�(x, reiθ )) = eiθ .
We now note the following straightforward result, whose proof is left to the reader.

Lemma 3. Let g ∈ C∞(� × (D(0, ε) \ {0}); S1) be such that deg(g(x, ·), C(0, ε)) = 0, ∀ x ∈ �.
Set f (x) = g(x, ε), ∀ x ∈ �. Then there exists some smooth function ψ : � × (D(0, ε) \ {0}) →R such that g(x, z) = f (x) eiψ(x,z) , 

∀ (x, z) ∈ � × (D(0, ε) \ {0}).

Clearly, the above lemma applies to g = (v w) ◦ � : � ×
(
D(0, ε) \ {0}

)
→S1.

Set U = � × (D(0, ε1) \ {0}). Consider some η ∈ C∞(U ; R) such that η(x, z) = ψ(x, z) if |z| > ε/2 and η(x, z) = 0 if 
0 < |z| < ε/3.

Define h(x, z) = f (x) eiψ(x,z) and set, for y ∈R3 \ �,

u(y) =
{

h(�−1 y) w(y), if 0 < dist(y,�) < ε

v(y), if dist(y,�) ≥ ε.

It is easy to see that u has all the required properties. �
Proof of Lemma 1, item 3. See [9, equation (8.30)]. �
Proof of Lemma 2. When F = 0, the existence of a sequence (ψn) satisfying items 1 and 2 and such that ψn → 0 in L1

loc(R
N )

when n → ∞ is classical; see, e.g., [20, Theorem 1.17]. The case of an arbitrary F ∈ L1(RN ; RN ) is established in an appendix 
of [10].

Item 3 follows from the fact that the W 1,1-capacity of K is zero (see, e.g., [13, Section 4.7.1, Theorem 2]). �
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4. Generalizations of Theorem 2

We first discuss the generalization of Theorem 2 to RN with N ≥ 4. It will be more convenient to adopt the terminology 
of GMT. In this language, (8) asserts that ∂ S = �, where this time ∂ stands for the boundary operator (not the geometric 
boundary). Let us recall the definition of ∂ (which coincides with d∗ , the formal adjoint of d acting on forms), first in 3D. 
By definition, ∂ S (i.e. ∂ acting on the 2-current S) is the 1-current satisfying

〈∂ S, ζ 〉 = 〈S,dζ 〉 =
∫
S

ν · curl ζ = 〈curl S, ζ 〉, ∀ ζ ∈ C∞
c (R3;�1) � C∞

c (R3;R3). (82)

More generally, if T ∈ D ′(RN ; �k) for some 1 ≤ k ≤ N , then ∂T ∈ D ′(RN ; �k−1) is defined by

〈∂T , ζ 〉 = 〈T ,dζ 〉, ∀ ζ ∈ C∞
c (RN ;�k−1). (83)

This applies in particular to the case where S ⊂ RN is an oriented k-dimensional manifold with (geometric) boundary 
�. Then S defines a k-current (still denoted S) through the formula

〈S, ξ〉 =
∫
S

ξ, ∀ ξ ∈ C∞
c (RN ;�k),

and

〈∂ S, ζ 〉 = 〈S,dζ 〉 =
∫
S

dζ =
∫
�

ζ (by Stokes) = 〈�,ζ 〉, ∀ ζ ∈ C∞
c (RN ;�k−1),

where � is viewed as a (k − 1)-current.
We now return to the higher dimensional version of Theorem 2. Let N ≥ 3 and let � ⊂ RN be a smooth compact 

connected oriented (N − 2)-manifold (without boundary).

Remark 3. In 3D, � is a curve and its orientability is not an issue. However, when N ≥ 4 we have to assume � orientable, 
since this “does not come with �”. (Think of the Klein bottle.)

Given such �, there exists a smooth compact oriented hypersurface S ⊂RN with (geometric) boundary �; see, e.g., Kirby 
[24, Theorem 3, p. 50]. We may thus associate with � the finite quantities

M0(�) = inf{|S|; S ⊂ RN is a smooth oriented hypersurface with boundary �}, (84)

M(�) = inf{|S|; S is an (N − 1)-rectifiable current in RN such that ∂ S = �}, (85)

K (�) = min{‖μ‖M ; μ ∈ M (RN ;�N−1) is a measure such that ∂μ = �}, (86)

D(�) = sup

⎧⎨⎩
∫
�

ζ ; ζ ∈ C∞
c (RN ;�N−2) and ‖dζ‖L∞ ≤ 1

⎫⎬⎭ . (87)

Here, |S| is the mass of S; it coincides with H N−1(S) when S is smooth.
Consider also the (possibly empty) set

R = {S; S is a minimizer in (85)} (88)

and the non-empty set

Q = {μ ∈ M (RN ;�N−2); μ is a minimizer in (86)}. (89)

We have the following result.

Theorem 3. Let � ⊂RN be a smooth compact connected oriented (N − 2)-manifold. Then

M0(�) = M(�) = K (�) = D(�). (90)

Moreover,

every extreme point of Q is a minimizer in (85), (91)

and consequently

conv R
weak∗ = Q. (92)
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The proof of Theorem 3 is very similar to the one of Theorem 2; see [10, Chapter 4] for the full proofs and more general 
results. We mention below the main adaptations required.

1. If S is a competitor in (85) and μ is a competitor in (86), then ∂(μ − S) = 0 and thus ∗μ = ∗S + dψ for some 
ψ ∈ ḂV(RN ). Here, ∗ stands for the Hodge operator, and thus ∗μ is a 1-current with coefficient finite measures, which 
we may identify with a vector field. The same for ∗S .

2. If u ∈ C(RN \ �; S1), then we may define the integer deg(u, �), thanks to the fact that the (two-dimensional) normal 
plane Nx at some x ∈ � has a natural orientation (such that a direct basis of Nx completed with a direct basis of Tx(�)

forms a direct basis of RN ).
3. Lemma 1, items 1 and 2, holds (with the same proof) in any dimension.
4. If u is as in the previous item, then (see, e.g., Jerrard and Soner [22, Section 3, Example 4])

∂(∗(u ∧ du)) = 2π� in D ′(RN). (93)

5. Let u be as above and let ψn be as in Lemma 2 (with F = u ∧ ∇u K = �). Set un = u eiψn . Then, for a.e. α ∈ S1, the set 
[un = α] ∪ � is a smooth hypersurface with boundary �.

We next go beyond smooth �’s. Set

F = {�; � is an (N − 2)-current in RN such that � = ∂ S for some

(N − 1)-rectifiable current S in RN}. (94)

Given � ∈ F , we define

M(�) = inf{|S|; S is an (N − 1)-rectifiable current in RN such that ∂ S = �}, (95)

K (�) = inf
{
‖μ‖M ; μ ∈ M (RN ;�N−1) is a measure such that ∂μ = �

}
, (96)

D(�) = sup
{
〈�,ζ 〉; ζ ∈ C∞

c (RN ;�N−2), ‖dζ‖L∞ ≤ 1
}

, (97)

R = {S; S is a minimizer in (95)} (98)

and

Q = {μ ∈ M (RN ;�N−2); μ is a minimizer in (96)}. (99)

Then we have the following straightforward extension of Theorems 2–3 (without M0).

Theorem 4. Let N ≥ 2. Then

M(�) = K (�) = D(�), ∀� ∈ F . (100)

Moreover,

every extreme point of Q is a minimizer in (95), (101)

and consequently

conv R
weak∗ = Q. (102)

The proof of Theorem 4 is essentially the same as the one of Theorem 2.

Remark 4.

1. The above theorem does not hold under the weaker assumption that � = ∂μ for some μ ∈ M (RN ; �N−1). Indeed, 
consider, for example, N = 2 and � = (1/2) (δP − δN ), where P , N ∈ R2 are distinct points. Then � = div F = −∂ F for 
some vector field F ∈ L1

c (R
2; R2). However, there exists no 1-rectifiable current S such that � = ∂ S . For otherwise, by 

Federer and Fleming’s boundary rectifiability theorem [14, Theorem 4.2.16 (2), p. 413], � would be a finite sum of Dirac 
masses with integer multiplicities.
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2. With more work (see [10, Chapter 4]), one may prove that

F =
{∑

j

∂ S j in D ′(RN); S j ⊂ RN is a compact oriented hypersurface with boundary

and
∑

j

|S j| < ∞
}

.

(103)

Remark 5. One may consider, more generally, for 0 ≤ k ≤ N − 2, the class

F k = {�; � is a k-current such that � = ∂ S for some (k + 1)-rectifiable current S in RN}, (104)

and define, for � ∈ F k , the quantities

Mk(�) = inf{|S|; S is a (k + 1)-rectifiable current in RN such that ∂ S = �}, (105)

K k(�) = inf{‖μ‖M ; μ ∈ M (RN ;�k+1) is a measure such that ∂μ = �} (106)

and

Dk(�) = sup{〈�,ζ 〉; ζ ∈ C∞
c (RN ;�k) and ‖dζ‖L∞ ≤ 1}. (107)

1. Theorem 4 asserts that Mk(�) = K k(�) = Dk(�) when k = N − 2 and � ∈ F k . An easy argument (based on Theorem 1) 
shows that the same holds when k = 0.
In this special case (k = 0), with � = ∑m

i=1 δPi −
∑m

i=1 δNi , the equalities M0(�) = K 0(�) = D0(�) take (in any dimension 
N ≥ 2) the form

min
σ∈Sm

m∑
i=1

|Pi − Nσ (i)| = inf

{
‖μ‖M ; μ ∈ M (RN ;RN) and divμ =

m∑
i=1

(δPi − δNi )

}

= sup

{
m∑

i=1

(ζ(Pi) − ζ(Ni)); ζ ∈ C∞
c (RN ;R) and ‖∇ζ‖L∞ ≤ 1

}
.

Such results are discussed with further details in [9, Section V], where the motivation came from liquid crystals. They 
also appear in Santambrogio [29, Chapter 4] under the name “Beckmann’s problem”. Beckmann’s motivation in 1952 
came from mathematical economics [4]; he was unaware of Kantorovich’s work.

2. In the remaining cases 1 ≤ k ≤ N − 3, we still have K k(�) = Dk(�). However, in general we have Mk(�) > K k(�); see, 
for N = 4 and k = 1, Young [35], White [34] and Morgan [27].

3. We may also introduce a smooth analogue of Mk(�). More precisely, assume that 0 ≤ k ≤ N − 2 and

� is the (geometric) boundary of some smooth compact oriented (k + 1)-manifold S0 ⊂ RN . (108)

Set

Mk
0(�) = inf{|S|; S ⊂RN is a smooth compact oriented (k + 1)-manifold with boundary �}.

Theorem 3 asserts that, when k = N −2 and � is connected, we have Mk
0(�) = Mk(�). The same holds without assuming 

� connected (see [10, Chapter 4]). This equality also holds when k = 0; see, e.g., [10, Chapter 4]. This led us to raise the 
question whether

Mk
0(�) = Mk(�), ∀1 ≤ k ≤ N − 3 (assuming (108))? (109)

Very recently, F.H. Lin [26] informed us that he gave a positive answer to (109).
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