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RESUME

Soit A(n) le nombre de partitions de Schur de n, c’est-a-dire le nombre de partitions de n
en parts distinctes congrues a 1,2 (mod 3). Nous montrons que :

— X «u{0<n<x:A@n+ 1) impair} < .
(logx) (logx)2

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The partition function p(n) is the number of representations of n as nonincreasing sequence of positive integers whose
sum is n. Although there has been much work on the congruence properties of p(n) since Ramanujan, little is known about
the parity of p(n). Parkin and Shanks [22] conjectured that the partition function is even and odd equally often, i.e.

1
{1 <n <x:p(n) is even (resp. odd)} ~ EX’ X — 00. (1)
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The best lower bound for the even case is 0.069 +/xloglogx [8], and that for the odd case is > log*l/jgx [7], where f(x) > g(x)
means | f(x)| > cg(x) for some constant c. We refer to [7], [20] and the references therein for more results on the parity of
p(n).

It seems difficult to prove Parkin and Shanks’ conjecture or even improve the lower bound of (1) as > x3+€_ But for the

Rogers-Ramanujan function g(n), i.e.

0 00 1 0 an
Zg(n)q” = l_[ Sntl Sntdy Z 2 '’
] 1A =g (A — g5 T (1 —q)(1—g7) - (1—g")
we have a better lower bound for the number of odd g(n). Indeed, it was shown in [12] that
, 72 X
gf{0<n<x:g(2n+1)isodd } ~ — ——, x — oo. (2)
5 logx
We expect to find a special partition function that satisfies the odd-even distribution like (1). In this note, we will study
the parity of Schur’s partition function and show that the odd values of this partition function up to x is > —%*—-. We see
(logx) 48

that this lower bound is slightly better than (2), but still far from the bound (1).

Before stating our result precisely, we recall the famous Schur’s partition theorem [23]. Let A(n) be the number of
partitions of n into distinct parts = 1,2 (mod 3), B(n) be the number of partitions of n into parts =+1 (mod 6), and D(n)
be the number of partitions of n of the form ny +n, + - - - +ny such that n; —n;1q > 3 with strict inequality if 3 | n;. Schur’s
partition theorem states that

A(n) = B(n) =D(n).

Schur’s theorem can be proved by a variety of approaches. For example, Andrews [2] gave a proof by generating functions
and Bressoud [10] provided a purely combinatorial proof. For more generalizations and extensions of Schur’s partition
theorem, see Gleissberg [15], Andrews [4-6], Alladi and Gordon [1], to name a few.

Our main result is the following theorem.

Theorem 1.1. We have

%<<1i{0§n5x:A(2n+1)isodd}<< T
(logx) (logx)?

Since {1 <n<x:A(Mm)isodd} >g{0<n< % : A(2n+ 1) is odd}, we have the following corollary.

Corollary 1.2.

fH{l<n<x:AMm)isodd}> %-
(logx) s

2. Proof of Theorem 1.1

First note that the generating function for A(n) is

o
D AMG" = (—6; )oo (=47 oo,
n=0
where (@; @)oo := [ [neo(1 —ag™). The odd-even dissection of this series [11, Theorem 2] is given by

@* a5 (@'%; 41900 (0% ¢*H% @ a®% @*%; %)

o0
Anq" = +q }
,;, (@ 0%)00(@%: 0%)00 (01000 (0% 4*)o0 7 (@71 4700 (4% 0" 0 (4% 4*)oo

Extracting odd exponents of g, we get

- " @* qH2.@**: ¢
,;, ent 1 (@ Do (@3 430 ("% ") oo
3. 43\4
- —((éqj Z))w (mod 2)
3. 4333
SR R 3)

q; Poo
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Expand (‘Zq g))‘” as
@)% <
- Za3<n>q
o0

Then asz(n) is known as the number of the 3-core partitions of n. The explicit formula for as(n) [17] is

as(n) = Z 1-— Z 1.

d|3n+1 d|3n+1
d=1 (mod 3) d=2 (mod 3)

It follows immediately that
as(n) = Z 1 (mod 2).
d|3n+1

Hence a3(n) is odd if and only if 3n + 1 is a square. Applying Euler’s pentagonal theorem [3, Corollary 1.7]

o
m(3m+l)
@Doo= Y (=D"q
m=—oo
we deduce from (3) that
o (q72. q72)3
ZA(ZH + 1)q24n+11 Eqsﬁ 'q3(q72; q72)oo (mod 2)
= (@ 4" o0
s 2 s 2
— Z qu Z q3(6n+1) (mod 2)
=1,3tm n=-00
2 2
— Z Z q8m +3y
m>1

3tm y=1, 5 (mod 6)

ZZqZX +3y2 ’ 4)

x>1y>1
3ty

where 24n 4+ 11 = 2x* 4+ 3y? implies that y is odd, 3{x, and that x is even by considering modulo 8, and y = 1,5 (mod 6)
since y is odd and 31t y. For an integral binary quadratic form ax? 4+ bxy + cy?, we denote by R(n, ax?> + bxy + cy?) the
number of the representations of n by ax + bxy + cy® with x, y € Z. Then (4) is equivalent to

1 1
ACn+1) = ZR(24n +11,2x* +3y%) — ZR(24n +11,2x* +27y%) (mod 2). (5)

Using BinaryQF_reduced_representatives (-24,primitive_only=True) in software SageMath 8.1 [24],
we find that the reduced primitive positive definite binary quadratic forms of discriminant —24 are 2x% + 3y? and x% + 6y2.
Hence Dirichlet’s theorem on binary quadratic forms [16, Theorem 1] shows that

—6
R(4n+11,2%° +3y*) + RQ24n+11,x° +6y*) =2 »_ (T) ,
d|24n+11

where (%) is the Jacobi-Kronecker symbol. Note that 24n+11 can not be represented by x* +6y? since 24n + 11 = x> 4 6y>
means 2 =x2 (mod 3), which is absurd. Therefore,

RQ4n+11,2° +3y%H) =2 > (;). (6)
d|24n+11
By SageMath 8.1, the reduced forms of discriminant —216 are given by
X + 54y
2x% +27y?
5x% 4+ 2xy + 11y?
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5x% — 2xy + 11y?
7x% — 6xy + 9y2
7%% + 6xy + 9y2.
It is easy to see that 24n + 11 can not be represented by x? + 54y% and 7x? & 6xy + 9y? by considering modulo 3. Since
R(24n 4 11,5x% + 2xy + 11y%) = R(24n + 11, 5x% — 2xy + 11y?),

Dirichlet’s theorem gives again

R(24n + 11, 2x* 4+ 27y?) 4+ 2R(24n + 11, 5x% + 2xy + 11y?)

2 Y (Z)2 ¥ (F) ™)

d|24n+11 d|24n+11

Note that deﬂ“l (‘TG> is even because 24n+ 11 =2 (mod 3) implies that there exists a prime p =2 (mod 3) such that
the exponent of p in the prime factorization of 24n + 11 is odd, hence

> (7)

d|24n+11

Z 1=0 (mod 2).

d|24n+11
Putting (5), (6) and (7) together, we obtain
A(2n+l)z%R(24n+11,5x2+2xy+11y2) (mod 2). (8)
Let S be a subset of primes defined as
S={p:p=11 (mod 24), p=5x>+2xy + 11y?}.
For convenience, we write
f=5x>+2xy +11y%.
We claim that for any 2t — 1 distinct primes p1, p2,---, P2r—1 €S,

R(p1p2---p2-1. f) =2 (mod 4). (9)

We prove the claim by induction on t. If t =1, then R(p, f) =2 for any p € S because the opposite form of f is f~! =
5x2 — 2xy + 11y? and is improperly equivalent to f [13, pp. 24-25], thereby the classes of forms equivalent to f and f~!
are not equal, and we have R(p, f) =2 by [21,Theorem 4]. Assume that (9) holds for t =k — 1, i.e.

R(p1---pak-3, f)=2 (mod 4). (10)

Let f, g be any primitive positive binary quadratic forms of the same negative discriminant d and p a prime not dividing d
and represented by g. Pall [21] showed that for every positive integer n,

R(Pn,f)JrR(%,f)=R(n,fog)+R(n,fog_]), (11)

where f o g is the Dirichlet composition of f and g, g~! is the opposite form of g (see [13, p. 49] for definitions). Taking

f=g=>5%+2xy +11y?
and applying (11) twice, we find for 2k — 1 distinct primes p1, p2, -+, Pak—1 € S

R(p1p2---pak—1, /) = R(p1---pak—2, f o /) + R(P1---Pak—2, fo f)
=R(p1---pak-3, fofof)+R(p1-- pa-3,f)
+ R(p1-+- pak-3. )+ R(p1-+ pax—3. f 1)
=R(p1---pak-3, fo fof)+3R(p1--pak-3, f), (12)

where R(p1p2--- Pak—3, f) = R(p1p2 -+~ Pak—3, f ) follows the fact that a solution (xg, yg) to pip2---Pak—3 = f = 5x% +
2xy +11y?2 corresponds to a solution (X, —yg) t0 p1p2 - Pax—z = f ! = 5x% —2xy + 11y2. We compute fo f o f explicitly
and find
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fofof=125x*4222xy + 99y

Moreover, its reduce form is 2x% + 27y?2. Since equivalent forms represent the same numbers ([13, Ex.2.2]), it follows that
R(p1---pak-3, fo fo f)=R(p1-- pau-3,2x* +27y°).

If n is coprime to the discriminant —216, then
R(n,2x* +27y*)=0 (mod 4)

because n = 2x? + 27y? means n = 2(£x)? + 27(£y)?. Therefore,

R(p1---pok—3. fofof)y=0 (mod 4). (13)

Inserting (10) and (13) into (12), we find (9) holds for t = k. This proves the claim.
Now we deduce from (8) and (9) that

Do 41
A(mpz p2—1+

= ) =1 (mod 2)

for any 2t — 1 distinct primes p1, p2,---, p2c—1 € S. Thus,

Yooz Yo, (14)

0<n<x m=<x
A(2n+1) odd pimy=-1
plm=peS

where o is the usual Mébius function. Since the number of classes of discriminant —216 is 6, the Chebotarev density
theorem [13, Theorem 9.12] shows that the Dirichlet density of the set of primes represented by 5x2 + 2xy + 11y? is %.
Applying the orthogonality of Dirichlet character modulo 24, we see that the Dirichlet density of S is § - 5tz = 75, Where
¢ is Euler’s totient function. By a classical result of Wirsing [25] on multiplicative functions (see also [14, Proposition 4]),

we find

X
Z IT~c 7
m<x (logx) s
plm=peS

where c is a constant. An elementary argument (see, for example, [19, Lemma 3.6]) shows that

X
Y oas 2t (15)
m<x (logx)3s
nim=-1
plm=peS

Hence, the lower bound of Theorem 1.1 follows from (14) and (15). On the other hand, Bernays’ theorem [9] (see also [18,
Theorem 2]) implies that the number of integers less than x represented integrally by 5x + 2xy + 11y2 is

o — <1+o<71 ))
! (logx)? (log x)©2

for some constants ¢ and c;. Therefore, from (8) we infer

Yook > 1« > 1<

T
0<n<x n<2x41 n<2x4+1 (logx)2
A(2n+1) odd R(n,5x242xy+11y%)=2 (mod 4) R(n,5x242xy+11y%)>0

This completes the proof of Theorem 1.1.

Remark 2.1. The relation (8) implies that A(2n + 1) is even if 24n 4+ 11 has a prime divisor £ satisfying (’76) = —1 and the
exponent of ¢ in the prime factorization of 24n + 11 is odd. To prove this statement, we observe that if R(24n+ 11, f) > 0,
then

24n+11=5x*>+2xy +11y>=0 (mod ¢)
for some x and y. It follows that

(5x+ y)> = —54y> (mod ¢),
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and so

(=20)- ()~ (2)()-(%)

This implies that ¢ | y, hence ¢ | x and €2 | 24n + 11. Replacing 24n + 11 by 24’}—;” and repeating the arguments above, we
find that the exponents of ¢ in the prime factorization of 24n 4+ 11 must be even, which contradicts our assumption on £.
Therefore, R(24n + 11, f) =0 and A(2n+ 1) is even by (8).

For any prime ¢ =13,17,19 and 23 (mod 24), any positive integers s and m with ¢tm, we see that (_TG) =—1 and
24¢%~1m +11¢2 has a prime divisor £ with exponent 2s — 1. Therefore, we have

1145 +1

A 2[2571
( m+ 2

) =0 (mod 2).
This gives infinitely many congruences for A(n) (mod 2).
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