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RESUME

Dans cet article, on s'intéresse a l'inégalité spectrale de type Lebeau-Robbiano sur la
somme de fonctions propres pour une famille d’opérateurs dégénérés. Les applications
sont données en théorie du contréle, comme le contréle impulsionnel et la stabilisation
en temps fini.
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1. Introduction and main results

The purpose of this article is to prove spectral properties for a family of degenerate operators acting over the interval
(0, 1). We shall consider linear operators P in L2 (0, 1), defined by

'p:_% (xa%) ,witha € (0,2),
D(P)={ € HY (0,1); P9 € L2(0, 1) and BCo (9) =0} ,

where

1
HL(0,1):= {9 € L?(0,1); » is absolutely continuous in (0, 1), /x“|f/|2 <00, 9(1)=0} ,
0
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and

Dy fora €[0,1),

BCy () = {(Xaﬁ/)lx_o , forae[l,2).

Such class of degenerate parabolic operators has been studied by Cannarsa, Martinez, and Vancostenoble in [8]. We recall
that P is a closed self-adjoint positive densely defined operator, with compact resolvent (see [1]). As a consequence, the
following spectral decomposition holds: there exists a countable family of eigenfunctions ®; associated with eigenvalues 2 ;
such that

o {®;},., forms a Hilbert basis of L*(0, 1)
. ,Pq>j:_)\,j®j
e D<A <Ay <.+ <Ap— Ho00.

An explicit expression of the eigenvalues is given in [20] for the weakly degenerate case o € (0, 1), and in [41] for the
strongly degenerate case « € [1,2), and depends on the Bessel functions of first kind (see [38]). Also, we have the following
asymptotic formula: Ax ~ C (o) k% as k — oo.

We are interested in the spectral inequality for the sum of eigenfunctions. Our main result is as follows.

Theorem 1.1. Let w be an open and nonempty subset of (0, 1). There exist constants C > 0 and o € (0, 1) such that
2

Z|aj|2§CeCAU/ Zajd>j ,

)\.jSA W )\jSA

forall {a;} e Rand A > 0. Further,

_3/4, ifae(0,2)\{1},
“|3/@y) foranyy € (0,2), ifa=1.

Two different kinds of approach have been developed to obtain the spectral inequality for the sum of eigenfunctions: a
first one is due to Lebeau and Robbiano [30] and is based on a Carleman estimate for an elliptic operator, whereas a second
one appears in a remark in [3] and is based on an observation estimate at one point in time for a parabolic equation. Note
that in the standard setting of uniformly elliptic operator, o = 1/2 (see [29], [22], [31], [36], [39], [26], [23]). In the present
paper we will establish a new Carleman estimate for an associated degenerate elliptic operator. Because of the degeneracy
of the coefficients of the operator P, we make use of a new weight function in the design of the Carleman estimate. The
subtle difference between the cases o € (0,2)\{1} and o =1 is related to the existence of a Hardy type inequality for the
H; norm. Indeed, for o« =1, the desired Hardy inequality fails to hold.

Many applications to such spectral inequality have been developed, in particular in control theory (see [29], [31], [7],
[28], [25], [6]). Let w be an open and nonempty subset of (0,1) and denote 1; the characteristic function of a given
subdomain @. We present the following two results.

Theorem 1.2. Let E C (0, T) be a measurable set of positive measure. For all y° € L2(0, 1), there exists f € L% (w x E) such that the
solution y = y (x, t) of

By — O (X*0xy) = lwxe f, in(0,1)x (0,T),

BCy(y)=0, on(0,T),
Vi1 =0, on (0, T),
Vieo = Y0, in (0,1),

satisfies y(-, T) = 0.

Theorem 1.3. Let (ty;)men be an increasing sequence of positive real numbers converging to T > 0 and (Fm)men @ Sequence of linear
bounded operators from L2(0, 1) into L2 (w) such that, for any zo € L2(0, 1), the solution z =z (x, t) to

0z — 0x (X*0x2) = X St=(tmer+tm)/2 ® loFm (2Zliy,) » N (0,1) x (0, T),
meN

BCy(2) =0, on (0,T),
Z,., =0, on (0,T),
2,0 =20, in(0,1),

satisfies lim ||z (-, )|l ;2q) =0.
t—>T_
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Here, 8¢—(t,,1+tn)/2 denotes the Dirac measure at t = (t;41 + tm) /2. Note that the above system equivalently reads

9z — 0x (x*0x2) =0, fort e R+\ | (tm+£m+1 ) '

m>0

z ( %) =z ( (%)_) +1uFm (z (-, tm)) , forany integerm >0,

BCy(2) =0, on(0,T),
z,, =0, on(0,T),
Zj_o =20, in (0, 1).

Theorem 1.3 is a new approach to steer the solution to zero at time T and can be seen as a finite-time stabilization
for the degenerate heat equation by impulse control. This can be compared with [14] (see [21] for ODE). The standard
null-controllability problem is given when E = (0, T) and has been studied in [8]. It is now well known that the null
controllability for higher degeneracies (o > 2) fails to hold (see [9] and the references therein). We also refer to [1], where
the null-controllability result has been extended to more general degeneracies at the boundary. When the control is located
at the boundary where the degeneracy occurs, we refer to [20,12,37]. We finally refer to the recent book [9] and the
references therein for a full description of the field. Note that an analysis of the control cost at a degeneracy point is
studied in [10], and an estimation of the cost of controllability for small T > 0, as well as for « — 2~ has been recently
obtained in [11].

The outline of the paper is as follows. In Section 2, we present the key inequalities needed to prove Theorem 1.1 such as
a Hardy inequality and a Carleman inequality. Section 3 is devoted to obtaining the applications of the spectral inequality in
control theory as observation estimates, impulse approximate controllability, null controllability on measurable set-in time
(see Theorem 3.4), and finite-time stabilization (see Theorem 3.5). Theorem 1.2 and Theorem 1.3 are direct consequence of
Theorem 3.4 and Theorem 3.5 respectively.

2. Key inequalities

This section is devoted to the statement of the key inequalities: Hardy inequality and Carleman inequality, that will
enable us to prove Theorem 1.1. The proof of the Carleman inequality is given at the end of this section.

2.1. Hardy inequality and boundary conditions
The following Hardy inequality shall play a central role in what follows. The proof can be found in [8], [42].

1
Lemma 2.1. Let & be a locally absolutely continuous function on (0, 1) such that / x%|9’|? < co. Then we have
0

1

1
/x“*zmﬁsi(z : )Z/X“w’ﬁ,
-

0 0

if one of the following assumption holds:

i) ae(0,1)andd,_,=0,
i) ae(,2)andd),_, =0.

We also have the following lemma, that shall be useful when estimating the boundary terms arising from integration by
parts in the strongly degenerate case « € [1, 2). The proof can be found in [8].

Lemma 2.2. Let & € [1,2) and © € H} (0, 1). Then (x|#|?),_, =0.
2.2. Global Carleman estimate near the degeneracy

In this section, we shall state the crucial tool, i.e. a global Carleman estimate near the degeneracy of an elliptic operator.
Introduce, for Sg > sg > 0,

Z=(—So0,S0) x(0,1), Y=1(—50,50) x(0,1).

First, we shall write
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Q:i=—32 +P =—0 — d (x*3y) (221)
here (s, x) € Z. The weight function we choose is of the form
x2—oz .L.y/3
-5 (2.2.2)
2—-« v
where 7, v > 0 are two large parameters, and

{y =2, forae(0,2)\{1},

P8, X)=T1

223
y <2, fora=1. ( )

Note that this weight function is completely decoupled in the two directions, in particular with respect to the dependence
on 7. In the case o =1, the Hardy inequality in Lemma 2.1 does not hold, and this is the reason of our subtle choice of
weight (2.2.2). Next, we shall set

Qy:=e¥Qe™?.

Finally, we state a global estimate for functions of C*°((—Sg, So), D(P)), with the proper weight function ¢ given by (2.2.2)
to handle the degeneracy at x =0.

Theorem 2.1. There exist 7o > 0, and vy > 0 such that for y > 0 defined in (2.2.3), there exists ¢ > 0 such that

NI + t/x"‘|8xv|2 + r3/x2—°‘|v|2 +BW) <cllQVllf 5,
z Z
forall Tt > 19 and v € C*°((—So, So), D(P)), where B is a quadratic form satisfying

1
v/3 =S -[V/?’
—B(v)> r/lax\qx 1|2+2v— s|8sv|2 ‘ —2—/[\/35\11s So
0

sf—S s==So
—So
Ll
T s=So
+8F/[S3|V| ] Zr/[xasvaxv]s So —r/[vasv]j_sj’so
00
vi3 | 23
T s=So T s=So
2t [x“slaxvlz] 42 /[xz_"‘s|v|2] .
Vo s=—So Vo s=—5o
0 0

Note that, in the above Theorem 2.1, boundary conditions are prescribed through the membership in the domain of P.
The proof will be given at the end of this section.

In [8], the authors established a parabolic Carleman estimate for a class of degenerate operators, in the spirit of [18],
with a weight linked to geodesic distance to the singularity {x = 0}, that is a weight of the form

X2 1

(T — )4

In the present article, the design of the weight function ¢ is similar to (2.2.4). However, as we have to deal with an
additional variable s (see the operator (2.2.1)), we also weaken the weight function in the s direction (see the weight
(2.2.2), which is anisotropic with respect to powers of the Carleman large parameter 7).

Px.t) = (2.2.4)

2.3. Inequality with weight for a specific sum of eigenfunctions

A classical trick on quantitative uniqueness consists in transferring properties for elliptic equation into an estimate for
parabolic operator (see [32]). Here, we naturally reproduce this idea for the sum of eigenfunctions (see [29], [22], [30], [31],
[13], [36], [24], [28]).

We define the following function space, depending on the frequency parameter A > 1, by:

sinh(,/4 (s + So))
Xp={us =y V2T I00

We then obtain an observability estimate from a term localized in the interior of Z for functions u € X,. Notice that

Qu=0.

aj®jx);a;eR
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Corollary 2.1. Let y > 0 defined in (2.2.3). Let 0 < € < 1/2, let s1 > 0 be such that so < s1 < Sp. Let

Z1:={(s,X) € Z, se(——(s1+So) 2(51—i—So)) xe(e,1—¢)}

There exists ¢ > 0 such that

€
2 A3/Cy) 2
| Za]q)]| SCCC ||u||H1(Z1)

0 }\jSA

forallue Xy and A > 1.

Proof. Let x (s, x) = x1(x)x2(s), with x1 € C*(0, 1), x2 € C®°(—So, So), such that

X :=:1 Hxelo.d 2(5) -:[1 ifs € [—s1.51]

0 ifxe[l—e¢,1], 0 ifse[—So.—1(s1+S0)IUI2 (s1+ So). Sol.

We shall apply the Carleman estimate in Theorem 2.1 to v =e¥ yu, with u € X5. Note that for such functions v, all the
boundary terms in Theorem 2.1 vanish. Recall that Qu = 0. Hence, we have Q,v = e?[Q, x]u. By Theorem 2.1, this yields

_ 2
124 ||v||f2(z)+r/x“|axv|2+r3/x2 “y)? gc/]e‘o[g,x]u] ) (2.31)
zZ zZ zZ

We first work with the left-hand side of (2.3.1) (from now on, the notation A < B means that there exists a constant ¢ > 0,
independent of the concerned parameters such that A < cB). We have

_2.v/3
T Wiy gy = T VIdy, 2 T e So/|e Y g0, (232)
0 rj=A

and then we obtain that there exists ¢ > 0 such that

e st SO/le e Y a0 <c/|e‘ﬂ[Q xul’. (2.33)

Aj<A 7
Second, we work with the right hand side of (2.3.3). Note that [Q, x] is supported where x varies, that is, in Z; U Z, with
Zy:={(s.X) € Z: |s| € (s1. 5 (51 + S0)). x€ (0, €)}.
Thus,
2 2 2
/ le?[Q, xTu|” < / |e¥[Q, x1u] +/ |e?[Q, x1u|”. (2.3.4)
VA Z1 2y

Using the particular form of x and the particular form of u, we have

/}ew[g xluf? /’ewu’ +f|e‘ﬂasu\ <e/f”351e650ff|e =Y a0, (23.5)

Aj<A

Using (2.3.3), (2.3.4), and (2.3.5), we have

3
_—IV/ 50/|e 2—a Z aJ ]|2<e——r7/ SleCSOf/|e 2—a Z a] }I +/|e‘p[Q X]u| .

Aj<A Aj<A

Taking T = 19 A3/@Y) yields

€

/3
le? Z{X Zal(b |2<r Y A—3/2¢ 124 f(so—s)ecsoffle . Za]¢|

0 A=A Aj<A

4o A fo/sfs0/|ew[g xu?

(2.3.6)
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and as sp < s1, we see that the first term in the right-hand side of (2.3.6) can be absorbed by the left-hand side by fixing
1o sufficiently large. As a result,

X27
Z a;®;? /lef o Y ad <6”—/ le?10, xu|*. (2.3.7)

A=A A=A
It remains to work with the right-hand side of (2.3.7). We have
2 2 2 3/@y)
[1er10. 0 < [levaP + [ ol e il g, e il
Z Z 7

Combining this last inequality with (2.3.7) yields the sought result. O

2.4. Proof of Theorems 1.1 and 2.1

2.4.1. Proof of the spectral inequality
This section is devoted to proving Theorem 1.1. Recall that, from Corollary 2.1, we have

€
2 A3/C2y) 2
| Za]q>]| SCEC ||u||H](Z1)'
0 )ijA

where Z; is an open set compactly embedded in Z. Where the operator Q is uniformly elliptic, it is classical that we can
propagate interpolation inequalities (see [30, p. 346] and [24, Theorem 5.3, p. 725]) through the domain

Z3:={(5,X) € Z; s€ (=1 (s1+ S0). 3 (s1 + S0)). x € (€/2, 1)}

to obtain that there exists u € (0, 1) such that

ullyn z;) < 05wy, ||L2(w)||u||H1(Zﬁ{(S %;xele/4,11)

At this point, it is enough to observe

A VA
Hall g1 zngsx;xele /411 = ceVA| Z aj®jlly1 1) S VAl Z a;j®jlli2(0,1y
)\jSA )\.jSA

1
2 2
0B, 2 [ 13 0y

€ )\.jSA

and, as dsu,__; = > a;P;,
A=

||asu|s:_so||§z<w)=/| > a0

w }\jﬁA

Summing up, using that Z; C Z3, we finally deduce

f|2a1 iI? /|Za] J17+ /]|Zaj<1>j|2

rj<A <A € A=A
A 2 (1—p)VA 2 21
S<l+ec eC( M)f | Za]q>]| || Za] ]||L2(01)
w A=A A=A

and Theorem 1.1 follows. O
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2.4.2. Proof of Theorem 2.1
Here, we give the proof of the global Carleman estimate near the degeneracy in Theorem 2.1.
Recall that Q, =e?Qe ¥ and, therefore,

Qp = —(3s — (3s9))? + (9 — (BxP)X* (I — (3xp))
= —32 — [3sp1? + 2359)ds + 029 + P — 2 |3xp|? + 2x* (3x0)dx + O (x* 0xp)
Now, we decompose Q,, into four parts:
Q(p =Sx+Ss+Ax+As.

where Sy + Ss is the symmetric part and Ay + A is the skew-symmetric part of the full conjugated operator. Using the
definition of the weight function (2.2.2), we have

2y/3 v/3 v/3
T T T
Sy=P -1, S=—0] —4—5—5", Ax=2Tx0+T, As=—-4—50—2—.
v % %
Let v € C*°((—So, So), D(P)). Introduce S = Sy + S and A = Ay + A;. We begin by noting that
2
1QuvITaiz) = 1SVIIZa 7y + 1IAVIIE 7 +2(SV, Av),
z ||SV||i2(z) + 2[(Sxv, AxV) 7 + (SsV, AsV) z + (Sxv, Asv) 7 + (Ssv, Axv)z]

The proof is divided into three steps. Each step corresponds to the computation of one of the above scalar products.
First step. We begin with the first scalar product (Sxv, AxV)z.

Lemma 2.3. We have

(Syv, AxV); =T(2 — a)/x“|axv|2 +732- oz)/xz’“lvlz + Bo(v), (24.1)
z z
with
So So So
Bo(v) = —1 / [x““ |8xv|2]:(1) _ / [ Vo] =y — o3 / [x3’°‘|v|2]:;.
—So —So —So

The proof of this lemma will be provided later. Using the Hardy inequality of Lemma 2.1 in (2.4.1), there exists ¢ > 0
such that, for all @ € (0, 2) \{1},

C(Sev, Axv)z > T2(2 —a)/ v +T2 —a)/x“|axv|2 +732 —a)/xz—“wﬁ + Bo(v).
VA VA VA

In the particular case o =1, using the Hardy inequality, for all &’ € (1, 2), there exists ¢’ > 0 such that

r/x|8xv|2 > r/x“’|axv|2 zc’z/x“'—2|v|2. (2.4.2)
z z Z
As a result, interpolating (2.4.2) with (2.4.1), for all y € (0, 2), there exists ¢’ > 0 such that

¢ (Sxv, Axv), > TV f V2 +1(2 —oc)/x"‘|3xv|2 + 732 —oe)/xz_“|v|2 + Bo(v). (2.4.3)
V4 V4 V4

Hence, (2.4.3) holds for all @ € (0, 2), with y defined in (2.2.3), with a constant ¢’ > 0 that depends on «. We now focus on
boundary terms By. We have, using the boundary conditions described in H}x (0,1) and Lemma 2.2,

So
Bo(v):—r/|axv|le|2.
—So

Second step. We then compute the second scalar product (Sgv, Asv) .
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Lemma 2.4. We have

/3 .
(Ssv, AsV)z——4— |95 v —165, /5 v+ Bi(v),
VA V4
with
1 1
/3 l- /3 TV s=So
2 s=So 3 2
Bi(v) _2— [s|33v| ] /[vasv]s__50+8$/[s v] ]S:_SO.
0 0

The proof of this lemma will be provided later. The two volume terms in Lemma 2.4 are non-positive, and need a
particular attention. We set

V/3 v 5 o
Ki(v):= —47 |3SV| Ky(v):= —IGF/S [v]©.
z VA

Since § = Sy + S, we have the following relation

2y 3 ] s=S,
—/|asv|2 /(8v>v /s |v|® +f<7>v>v—r /x2*“|v|2—/[vasvls;_°so ,
Z 0

and we then deduce

Kl(v)_—4—/($v)v—16—/s |v|

Tv/3 T2+v/3 y/3
+4—— [(Py)v—4— /x“‘m 4— [vasv]s 5o

s=—Sp
z V4 0

Tv/3 v/3
= —4— (Sv)v + Ka(v) +4— (Pv)v

z
24y /3 y/3
T _ T =S
—4— /xz “|v|2—4T/[vasv]§:_°50.
0

z

As a result, using integration by parts and Young’s inequality,

v/3
(Ssv, ASV)z——4— (8v)v+21<2(v)-|—4— (Pv)v
VA
1
2+y/3 y/3
T T —
—4 /xz“"IVI2+B1(v)—4—/[vasv]§;§050
v v
VA
2 5 CEI
2 =S ISVIL2z) = 2= IVII2 z) +2K2(v)

v/3 2ty /3 ~
val o [etap -4t /><2*°‘|v|2 LB,
zZ zZ
with

s=—Sp *

3 P Lv/3

~ 4

Bi(v) =By (v) — rv /[x VOV ] _4T [vasv]S So
~5 0

Note that, using the boundary conditions, we have
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1
~ -[V/3 _
Biv)=Bi(v) —4—— f [vasv =%,
2% s v/3 v s
=27 —° T s=So z 3,120
=25 [ [slowvP? ] —2—/[v8sv]s_750~|—8§/[s v ]S:_SO.
0

Summing up, fixing v := vy > 0 sufficiently large, and taking t > 1o, with 79 > 0 sufficiently large, there exists ¢ > 0 such
that

¢ (ISVI2 ) +2 (Sxv, Axv) +2(Ssv, Asv) )

=7 VL g, +r/x“|axv|2+r3fx2—“|v|2 +2Bo(v) +2B1(v).
V4 V4

Third step. It remains to estimate the crossed-terms (Sxv, Asv)z + (Ssv, AxV)z.

Lemma 2.5. We have, on the one hand,

So
(SsV, AgV); = Bo(v) =T / [x|85v| —21/[xasvaxv]§j°so
—So
1 So
1+2y/3 X1
s=So T 2,00,12
— T/[V83V15=—so _41}73 / [s X|v| ]x:O ,
0 —So
and, on the other hand,
s 1
o V3 ,75=50
(Sev, Asv), = Bs(v) i=4— [ [savav] =) — 21— [x“s|8xv| ]
Vo Vo s=—Sp
—So
i 24v/3 | s
T T 5=
+2— [ [x*vav] 0—i—2 /[2“3|v|] .
Vo Vo s=—Sp
~So 0

The proof of this lemma will be provided later. Note that using the boundary conditions given in H}x (0,1) as well as
Lemma 2.2, we have

1
By(v) > —2rf[x85v8x\f]§ii°so —t/[vasV]iifOSO ,
0

and

1 1
3 =So ‘[2+V/3 S So
B3(V)——2—/ X2s|9,v| ] / s|v|
Vo s=

_0
0 0

Now setting B =2 (By + Bi+ B+ B3) yields the sought result. O

2.4.3. Proof of Lemma 2.3
We recall that

Sx=P —12x*%, Ay=2Txd+T.

We shall denote by Z7;; the scalar product between the ith term of Sy with the j™ term of A,. Let us compute first
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T = —2r/8xxo‘8xvx8xv

7
So
x=1
zzz/x“|axv|2+rfx1+“ax(|axv|2) _21 / [x1+“|axv|2] .
X=
Z V4 =S50
So
Qa2 T+ q 520
—A-wrt [ P -1 [x loxv] ] .
X=
7 5
Second, we have
So
112:—r/vaxx“aXVZfo“mva—r f [x“vaxv]ij).
7 7 —So
Third, we see that
So
x=1
Ty = =2 13/x3_“v8xv=—r3/x3_"‘8x (|v|2> :(3—oz)t3/x2_o‘|v|2—r3 / [x3_“|v|2] .
X=
Z Z zZ =So

Finally, we can check that

I = —1’3/?<2705|V|2 ,

zZ

and we end the proof of Lemma 2.3 by summing the four quantities above. O

2.4.4. Proof of Lemma 2.4
We recall that

2r/3 v/3 v/3
T T T
52, As=—4——sd5—2—.
v v v

Sg=—d2 —

We shall denote by Z;; the scalar product between the i term of Sy with the j™ term of As. Let us compute the Lj, 1 <1,
j <2, by integrations by parts

1
47v/3 5 /3 5 s=S
T = /585 vsasv_ I3sV| /[5|35V| ] '
v s=—Sp
z z 0
277/ 27713 20v3 |
_ T 2 _ T 2 T SZSO
Tia = 5 /VBSV—— 5 /|35V| +T/[V35V]s=_so '
z z 0
1677 24tV 324 ; S
T T T 5=
I21 = /53\/85\/— / |V| ——/$2|V|2+—/[53|V|2] ’ ’
V3 V3 V3 s=—Sg
z 7 z 0

and

(24
T2 =8—3/52|V|2
v

Summing all the Z;; yields the sought result of Lemma 2.4. O
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2.4.5. Proof of Lemma 2.5
We recall that

-[2)’/3 -[7/3 -[V/3

Sy=P—1x*Y, S=-82— 2, Ay=2tx0+T, As=—4— s —2——.

T,
2

We first compute the scalar product (Ssv, . Axv)z. We shall denote by Z;; the scalar product between the ith term of Ss with
the j™ term of .Ay. We have

1

T =—2r/x832v8xv=r/xax <|85v|2> —ZT/[XagVBXV]ngOSO

b4 z 0
——r/|asv| +r/ [x|85v| —er[xasvaxV]i 5050 ,
—So
1
112=—r/v852v=t/|asv|2—T/[v35V]§zs_°50 ,
z z 0
8T2y/3+1 ) 41—2)//3+1 ) )
Ty :—72/5 xvaxv:—72/5 X3x(|V| )
v v
Z b4
2y /3+1 2341 P
4t 4t x=1
_ . /SzMz_iz / [52x|v|2] ,
v v x=0
VA —So

and

4T3 oo
I = 42f5 [v]“.
v

V4

Summing the above quantities yields the result, by remarking that all the volume terms cancel. We second compute the
scalar product (Sxv, Asv)z. We shall denote by J;; the scalar product between the it term of S, with the j™ term of As.
Integrations by parts then give

v/3 v/3 v/3 ¥
4t 2t 4t =
Jin=— /sax (x¥0xv) B5v = — . /Xasas <|8XV|2> +— / [x*soxvasv] 2,

VA z =50
27V/3 N S arvP [
T 0 T x=1
_ X912 — xsav x¥s0xvdsv ,
[ = 25 [ xesaor] 0 w5 [ pesavan]Sy
z 0 —So
v/3 y/3 v/3 v
271 27 27 =1
J12 = Vv /Vax (Xaaxv) =" Vv /X(X'axv'z + V / |:XOtva"vK:O ’
Z A =50

472+v/3 272tv/3
Jo1 = — /xz’“vsasv =— /xz""sas (lvlz)

z

z
1
272+v/3 _ 2 72tv/3 _ s=So
=—7/x2 “|v|2+7/[x2 0‘s|v|2] ,
v v
z 0

and

272+v/3 -
Jn=—"7— X vl

V4

It remains to sum the above [J;; to obtain the sought result of Lemma 2.5. O
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3. Applications of the spectral inequality

The second part of this article is devoted to show some applications of the spectral inequality.

Let H be a real Hilbert space, and P a linear self-adjoint operator from D(P) into H, where D(P), being the domain
of P, is a subspace of H. Denote by ||-|| and (-, -) the norm and the inner product of H, respectively. We assume that P is
an isomorphism from D(P) (equipped with the graph norm) onto H, that P~! is a compact linear operator in H and that
(P9,9) >0 V9 € D(P), ¥ #0. Introduce the set {)‘f}j>1 for the family of all eigenvalues of P such that

O<A =A< A <Ay1=<---and limAr; =00,
j—o0

and let {q)j} i1 be the family of the corresponding normalized orthogonal eigenfunctions.
It is well {<f10wn that for up € H given, the initial value problem

u' (t) + Pu(t)y=0, te(0,+o0),
u(0)=uop,

possesses a unique solution u € L? (0, T; D (P1/2)) N C ([0, T], H) for any T > 0, which satisfies

u(t)=Y (uo. ®j)e ™ ®;and |lu(®)| <e " |luo|l.
j=1

In particular, if up = Y a;®; with y° \aj|2 < +oo, then |ugl> = 3 |a; 2 (Pug, ug) = 3 A ]aj\z and (P~'ug, up) =
j=1 j=1 j=1 j=1

> ;—] |a,»|2. Further, & [u (O + 2 (Pu(®),u (®)) =0, and & (P71u (), u () +2 Ju ©®)|*=0.
j=1
Let © be a bounded domain of R?, d > 1, with boundary 32 of class C2. Four examples of operator P are the following:
o the 1d degenerate operator with d =1 and P = —d, (x*dx) with @ = (0, 1), H=1?(Q) and D(P) = {19 eHL(Q); PYe
12(Q) and BC, () = o},

e the Laplacian with P = —A with H = [? (Q) and D(P) = H(Q) N H} (),
o the bi-Laplacian with P = A? with H = L? (Q) and D(P) = H*(Q) N H(Q),

e the Stokes operator with P — —PA with H — {19 e 12(@)%: dive =0, 9 - njye =0} and D(P) = H2(Q)¢ N {19 c
H}J (Q)d ;dive = O}, where P is the orthogonal projector in L2 (Q)d onto H.

3.1. Equivalence between observation and spectral inequality

In this section, we present several equivalent inequalities. From now on, suppose that H = L? (). Denote by |-, and
() the norm and the inner product of L? (w), respectively, where e is a subdomain of .

Theorem 3.1. Let w be an open and nonempty subset of Q2. Let o € (0, 1). Then the following statements are equivalent:

(i) there is a positive constant Cq, depending only on P, Q, w and o, so that, for each A > 0 and each sequence of real numbers
{a;j} C R, it holds

2

> |aj|2§ec1(1‘“\”)/ > aje)

)\.jSA w )\J’SA
(ii) there is a positive constant C,, depending only on (P, 2, w, o), so that, forall 6 € (0, 1), t > 0 and u (0) € L? (Q),

1

ot

%
hu @] (@) lu©@1° lu @15 ;

(iii) there is a positive constant C3, depending only on (P, 2, w, o), so that forall & > 0, t > 0 and u (0) € L% (),

lu (1% < po (&, &) llu @O+ llu©))?,

where

po (t, &) = ec3<1+(%)m>e(i—3ln<e+%))u'
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(iv) There is a positive constant C4, depending only on (P, Q, w, o), so that, for all t > 0 and u (0) € L2 () \ {0},

@l < () (en(m) 1 @)l

In particular, if P =—A, then 0 = % (see [29], [31], [46], [4], [44]); if P = A2, then o :% (see [2], [16], [19], [27]); if P

is the Stokes operator, then o = 1 (see [13]).

Proof. We organize the proof in several steps.
Step 1: to show that (i) = (ii).

Arbitrarily fix A >0, t >0 and u (0) = Y a;®; with {aj}j>1 C €. Write
jz1

u@y= Y aje e+ Y ae Mo
AjﬁA )\j>A

Then by (i), we find that

wo1=) Y e e +| ¥ ot
)LJEA )Lj>A
172
a2 B
<| D laje ] +e M u )
Aj<A
1/2
< eCl(]JrA”)/ Zaje—)\jtqu L e M ).
w AjSA

This, along with the triangle inequality for the norm ||-||,, yields that

1/2
lu @] < | e0+A7) f > aje e,
w |i=1
1/2
+ | eCri+a > aje *qu>] +e M u ().
w |Mi>A

Hence, it follows that
C o C o
lu @ <ez A7) ju @), +e 2 FA)eA 1y 0)[| + At u (0)||
<2e7 (58%) (Jlu ()], + e~ Ju (0)])).

Since, by the Young inequality,

Cq

(et)?

Cq
C1A° =
! (e)®

one can deduce that, for all € € (0, 2),

1
T
(eAD)? <€At+< > foranye,t >0,

¢

1
;1 T-o € —€
lu @) <2033 (@) (ef“ u©)ll, + e~ 72 u (0)||) for each A > 0.

Notice that if ||u (t)||, =0 then, |lu ()|l = 0. Next, choose

1 (nu(O)u)
=-In{ ——
e\ U@l

(knowing that [|u (t)[l,, < llu (0)])) to get
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o <24 @) 2o wons)

1 o
which is the inequality in (i) with 6 =§ and In 4+ § + 1 <(£t)(, ) <G (1 + (%)m)
Step 2: to show that (ii) = (iii).
We write the inequality in (ii) in the following way

o 1-6
2C 1\1=
lu ©I < u ©% (exp (1 _29 (1 + (§> )) lu (t)lii)

and apply the fact that for any E, B, D >0 and 6 € (0, 1)

1
—D Ve>0.
e1-0

E<B'D'® & E<gB+(1—0)0T7

. . . 1-0
To prove the above equivalence, one uses the Young inequality and one chooses ¢ =6 (%) . Therefore,

2C2 1 15(7 1
t 2< 0 2 1 _
lu @1 <& u O] +exp<1_g< +(9t) ))8

By denoting 8 =

=127 9, it yields

262(1+ﬂ)(l+ ik ‘Z"> 1
lu@®l? <ellu©)]?®+e () g—ﬂnu(r)nfo.

Now, notice, with B =K (1 + (%) ) and D=K (%) =% for some constant K > 0, that

1 ZCZ(H’S)(H(ﬁ_ﬁ) ><eB+ﬁ(ln(e+%)+B)+(%)%D
eﬂ = :

1-0
Next, choose g = [ —2— to get
p (ln(e+%)+3) 8

B (e 1) +B)+(5) 77D _ cnte(in(ert)+8) 010 _ cmac(in(er2)) Dt

for some constants c, ¢’ > 0. Therefore, we obtain the desired inequality

lu @2 <é llu 400 (m(ert)) lu @12 .

Step 3: to show that (iii) = (iv).
Take

1 u@®l?
T2 u )2

in the inequality in (iii) and use the fact that ||u (t)|| < |lu (0)||. Therefore, we have

1 c3<1+ 1 &> (C—31n<(e +2) lu©l ))U
Ellu(t)llzfe ) e\’ WO )l )12,

Step 4: to show that (iv) = (i).
Apply the Young inequality

C u©OI\\’ _[Cs\T7 u(0
<_4m<|| ()||>> S<_4> +ln<” (>||>
t lu @l t lu @l
to deduce the inequality: there are two constants C > 0 and « € (0, 1), which depend only on (2, w, o), so that, for all
t>0and u(0) € L (),

1
t

lu @ sec(”( )™ lu @)1 lu O
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Arbitrarily fix A >0 and {a;} C R. By applying the above inequality, with u (0) = > ajekf‘d>j, we get that
Aj<A
1-«

Z |aj|2§ezc<] ( ) > Z |a; e“| / Z aj®; ,

Aj<A Aj<A o A=A

1
t

which implies that

2 1\
> |aj|2§e17‘”c<]+<:) >e12aa“/ Y aj®;| foreacht>0.

)\.jSA w )L}<A

Choose t = (%)17(7 to get the conclusion (i).
This ends the proof. O

3.2. Equivalence between observation and control

Let us recall the classical results of equivalence between observation estimate and controllability with cost. There are at
least three ways to establish the cost: one is based on the duality of the control operator in the spirit of the HUM method
(see [33]) with a spectral decomposition (see [48], [43]); another one has a geometric point of view using Hahn-Banach’s
Theorem (see [50], [52]); the last one is based on a minimization of a certain functional (see [17], [39]). The arguments we
present are similar to those appearing in [39, lemma 3.2, p. 1475] (see also [15, remark 6.6, p. 3670]).

Denote ||-|| and (-, -) the norm and the inner product of L2 (Q), respectively.

Theorem 3.2. Let 0 < Tg < T1 < Ty. Let £, € > 0. The following two statements are equivalent.

(C) Forany y. € L2 (), thereis f € L* (w) such that the solution y to

Yy (t)+ Py () =0, t € (To, T2\ {T1},
Y (To)=Ye,
yT)=yTi)+1sf,

satisfies
1 1
7 18+ < 1y (T2 < llyell?.
(O) The solution u to

u (@) +Pu(t)y=0, te(To,T2),
u(To) € L2 (Q) ,

satisfies
lu (T2)1? < €llu (To+ T2 = TN, + € llu (To) 1.
Proof of (C) = (O). We multiply the equations of (C) by u (To + Ty —t) to get
(y(T2),u(To)) — (y(To), u(T2)) = (f,u(To+ T2 —T1))y
that is,

(Ye,u(T2)) =—(f,u(To+ T2 —T1))y + (¥(T2),u(To)).
By Cauchy-Schwarz’s inequality and using the inequality in (C) one can deduce that
(Ye, u(T2)) < ”f”a) llu (To +T—Tole + ||y (TH)1 Iu (To)ll

£
< ﬂ IFI12, + 57 ||y(Tz)||2 = ||u (To+T2—TDIZ + 5 Il (To) |2

< S Iyell + 3 (z lu(To+ Tz =TI +& lu (To)l?)

which gives the desired estimate by choosing y. =u (Tz). O
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Proof of (O) = (C). Let y. € L% (). Consider the functional ] defined on L2 ($2) given by

¢ 2, € 2
](ﬁ)zillu(T0+T2—T1)|lw+§||19|| — (Ye, u(T2)) ,

where

u @)+ Pu(t)=0, te(To,Ta),
u(Tp) =19.
Notice that J is strictly convex, C! and coercive and therefore J has a unique minimizer wo € L% (Q), ie. J(wp) =
min J(¥). Set
vel?(Q)

[W’(t)+PW(t)=0, te(To, T2) , and{h’(t)+Ph(t):0, te(To, Ta) ,
w (Tg) = wop, h(To) = ho.

Since J'(wg)hg = 0 for any hg € L? (2), we have

E(w (To+T2 = T1) . h (To+ T2 = T1)), + & (Wo, ho) — (ye, h (T2)) =0 Vho € L* ().
On the other hand, the identity

(y (T2), u(To)) — (Ye.u(T2)) = (f u(To+ T2 — T1)), Yu(To) € L*(Q)
implies

—(f.h(To+ T2 —T1))g + (¥ (T2) . ho) — (Ve h (T2)) =0 Vho € L* ().
By choosing f = —¢w (To + T2 — T1), we deduce that the solution y satisfies:

ewg =y (T2).
Further,

2 21 2, 1 2

LIw(To+ T2 = T)llg + € llwol” = 7 Il + z ly (T)I°.
Moreover, taking hg = wgq into J'(wg)hg =0, we get

Cllw (To + T2 = TIZ, + & woll® = (ye, w (T2)) = 0.
By Cauchy-Schwarz’s inequality,

Cllw (To+ T2 — THIIZ, + & [woll® < 1yell 2 W (T2l 2

) 2\ 1/2
< yellz (1w (To+ T2 = THIZ + & [ wol)
where, in the last line, we used (). Therefore, we get
2 2 2
2w (To+ T2 — Ty, + € llwoll” < llyell”

that is,

1 1
7 IFI2 + - Iy (TDI% < lyell?

where
y ) +Pyt)=0, t € (To, T2)\{T1},
Y (To) =Ye,
Y(T)=y(T1-) +1p(—Ew (To+ T2 —1)),
w' (t)+ Pw(t) =0, te(To,To) ,

w (To) = 1y (T2).

This completes the proof. O

Theorem 3.3. Let 0 < Tg < T1 < Ty. Let £, € > 0. The following two statements are equivalent.
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(C) Forany yq € L () such that (Pyq, y4) < +00, thereis f € L% (w) such that the solution y to

y'(®)+Py)=0, t € (To, T2)\ {T1},
y(To)=0,
yT)=y(T-)+1f,

satisfies

1 1
7 IF12 + - ly (T2) = yall* < (Pyd. ya).
(O) The solution u to

u (@) +Pu(t)=0, te(To,T2),
u(To) € L2 (Q) ,

satisfies
(P~Mu(To), u(To)) < €llu(To+ T2 — T2 + & u(To) 1>
Proof of (C) = (O). We multiply the equations of (C) by u (To+ T, —t) to get

(y(T2),u(To)) — (y(To), u(T2)) =(f,u(To+ T2 —T1))y »
that is,

(Ya,u(To)) ={f,u(To+ T2 —T1))y — (¥(T2) — Ya, u (To)).
By Cauchy-Schwarz’s inequality and using the inequality in (C), one has
(Ya, u(To)) < 1 fll It (To + T2 = T1)ll + 1y (T2) — yall lu (To) |l

1 2 1 2, ¢ 2, € 2
< +— |y (T2) — + = lu(To+ T2 — TDI + = Jlu(T.
Y 1fll% % ly (T2) — yall 5 lu(To+ T2 Dy 3 lu (To)ll

1 1
=5 (Pya.ya) +5 (¢l To+T2 = TOIE +¢ [u(To)I?)

which gives the desired estimate by choosing yy = P~ 'u (Tp). O
Proof of (0) = (C). Let y4 € L? () such that (Pyy, y4) < +o0. Consider the functional | defined on L? () given by

¢ 2, € 2
J(L‘?)Zillu(To-i-Tz—T1)|Iw+5||19|| +{ya,9) ,

where

u' )+ Pu(t)y=0, te(To,T2),
u(To) =10.
Notice that J is strictly convex, C! and coercive, and therefore | has a unique minimizer wq € L2 (), i.e. J(wg) =
min J(&). Set
Yel2(Q)

w )+ Pw(t)=0, te(To,Tr), and W @#t)+Ph(t)=0, te (T, Tz),
w (To) =wo, h (To) = ho.

Since J'(wg)hg = 0 for any hg € L2 (2), we have

€(w (To+Ta —T1) . h(To+ T2 — T1))y, + € (Wo. ho) + (ya. ho) =0 ¥ho € L* ().
On the other hand, the identity

(y (T2) . u(To)) — (y (To), u(T2)) = (f.,u(To+ T2 — T1)), Vu(To)€L*(Q)
implies

—(f,h(To+T2 = T1))e + (¥ (T2) = ya, ho) + (ya, ho) =0 ¥ho € L* ().

By choosing f = —¢w (Tg + T, — T1), we deduce that the solution y satisfies:
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ewo=y(T2) — ya.
Further,

Cllw (To+ T2 = T + € llwoll* = % ILFIG + % Ly (T2) = yal*.
Moreover, taking hg = wg into J'(wg)hg = 0, we get

llw (To+ Tz — T3 + € | woll® + (ya, wo) =0.
By Cauchy-Schwarz’s inequality,

Cllw (To + T2 = THIZ, + £ woll2 < (Pya. ya) /% (P~ wo, wo)'/*

< (Pya v (E1w (To + T2 = T + £ Iwol?)

where in the last line, we used (O). Therefore, we get

tllw (To+ T2 = TDIIZ, + e woll® < (Pyd. ya) .

that is,

1 1
i IFI2 + Y (T2) - vall> < (Pya, ya)

where
y ) +Pyt)=0, t e (To, T2\ {T1},
y(To) =0,
yT)=y(T1-)+ 1 (—Lw(To+ T2 - 1)),
w' (t) + Pw () =0, te (To, T2) ,

w(To) =1 (¥ (T2) — ya).

This completes the proof. O

3.3. Approximate impulse control

Direct applications of Theorem 3.1 and Theorem 3.2, Theorem 3.3 are given now (see [49] for applications to inverse
source problem). Recall that € is a bounded domain of R?, d > 1, with boundary 8Q of class C2, and w is an open and
nonempty subset of Q.

Corollary 3.1. Let 0 < L < T and & > 0. If one of the statement of Theorem 3.1 holds then for any y. € L% (Q2), there is f € L% (w) such
that the solution y to

y'(®+Py®)=0, te (0, T)\{L},
y@0)=ye,
yh=yL)+1uf,

satisfies

fol

C3(1+( 1 m) G 1))’
ly (DII> < ellyel® and ||f||ise3( (70) e(rin(e+d)) lyell? .

2

- (1)) (o)
Proof. We apply Theorem 3.2 with £ = p, (T —L,&) =e e € given by Theorem 3.1 and Tg =0,
Ti{ =L, To =T (knowing that |[u(T)|| < |lu(T = L)|). O

Corollary 3.2.Let 0 < L < T and & > 0. If one of the statement of Theorem 3.1 holds, then, for any y4 € L () such that (Pyq, yq) <
+o0, thereis f € L? (w) such that the solution y to

y®+Py®)=0, te (0, T)\{L},
y(@©0)=0,
yh=y(L)+1nf,

satisfies ||y (T) — yqll* <& (Pyq. yq) and



R. Buffe, K.D. Phung / C. R. Acad. Sci. Paris, Ser. 1 356 (2018) 1131-1155 1149
-0 _ o
1 (1) ) 2 B (e ) |
IFI12 <—e e (Pyd, ya).
1

Proof. We aim to apply Theorem 3.3 and, to this end, we need to establish the inequality (O) in Theorem 3.3. Recall that

% (P=Yu (&), u(®)+2]lu(®]I* =0 and it can be written as

lu ()
(P=1u@),u®)

In the spirit of [5, p. 12] (see also [43, p. 535]), one can check that N’(t) <0 by using Cauchy-Schwarz’s inequality:
lull* < (P~'u,u)(Pu,u) and % llull?> + 2 (Pu, u) = 0. Therefore,

1d .
§&<P Y, u)+ N (©) (P~ u,u)=0with N () =

1
(P7'u(0),u (0) <e>NOT(P~1u(T),u(T)) < }L—eZN(O)T lu (D12
1
But by Theorem 3.1, it holds

lu (T < S (1)) (S (i) lu (Tl

Therefore,

( _1u(0) u(O)) _e2NOT 2C4(1+(%)m>ez(c In (Hs((g))‘l‘l))o ||u(T)|I3,
Al

. . . . 0 0 N
which implies, using \lllu((T))‘\‘l < f(PJZET))l,lu(T))'/Z < ( )@2NO)T the following estimate:

(P u(o) u (O)) ] ZN(O)T 2C4<1+(%)ﬁ)ez(%]n(\/@eﬂv(on—))a ||u(T)||Z)

One concludes by distinguishing the case N (0) < 1/¢ and the case N (0) > 1/¢, that is, for any ¢, T > 0,

(P1u(0),u(0)) < l]ezsrem;(w(])lfa)g(?‘ln(@ezer))a 1 (DI + & Ju O]

204 (14( £ “") 2(%4“1(/ L e?))
It remains to apply Theorem 3.3 with £ = —ezeTe 4( (T L) e\t o and To=0,T; =L, T,=T. O

3.4. Null controllability with measurable set-in time

Recall that € is a bounded domain of R?, d > 1, with boundary 9 of class C2, and w is an open and nonempty subset
of Q.

Theorem 34.Let T > 0 and E C (0, T) be a set of positive measure. If one of the statements of Theorem 3.1 holds, then for any
y0 € L2(Q), thereis f € L% (w x E) such that the solution y to

!y’(t)+Py(t)=1wxsf, te(0,7T),
y(0) =
satisfies y (T) =
Proof. The proof is divided into three steps.
Step 1: observability estimate with measurable set-in time. Based on a telescoping series method (see [39], [40] and al-

ready exploited in [45], [47], [3], [16], [54], [51], [35], [53], [44]), the statement (ii) in Theorem 3.1 implies the following
observability: the solution u to

v (@t)+Put)=0, te(,T),
u(0) el? (),

satisfies

lu (T2 < K/ lu (T — O dt.
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Here, K is a constant depending only on (P, 2, w, o, |E|). Further, if E = (0,T), then K = C exp (%) for some C =

TT-0
C(P,R2,w,0).
Step 2: approximate controllability. Let & > 0. Consider the functional J, defined on L? () given by

K
Je (wo) = = / Ju (T = O3 de + = uol> — (¥, u ().
E

where

u' (t)+ Pu(t)=0, te(0,T),
u (0) = up.
Notice that J, is strictly convex, C! and coercive, and therefore J, has a unique minimizer W € L% (), ie. Je(Wg o) =
min J,(up). Set
upel?(Q)

[w/g(t)—i—ng(t):O, te(,T), and{h’(t)—i—Ph(t):O, te(,T),
We (O) = WS,O ’ h (O) = h().

Since J,(wg 0)ho =0 for any hg € L% (), we have
1</ (We (T = ), h (T — ), dt + & (we 0, ho) — <y°, h (T)> =0 Vhoel?(Q).

E

But the solution y. to

[y;(t)+Pya(t)=1wfog. te(0,T),
ye (0) =y,

satisfies

(Ve (T>,u<0>>—<y°,u<T>)=/<fa (0, u(T —0)udt Yu(0)el?(Q)
E

which means

= [ 4 0BT = O+ (3 (1) o) = (4R (D)) =0 Vho € 12 .
E
By choosing f. (-,t) = —Kw, (T —t), we deduce that the solution y. satisfies:

EWeo=Ye(T).

Further,

2 1 1
K [ we (7 =01 de+ e el = [ 15 O det 2 e (D12,
E E
Moreover, taking hg = w o into J,(w¢ 0)ho =0, we get
2 2 0 _
K [ e (7 =01 do+ e Jweof* = . we (1) =0.
E

By Cauchy-Schwarz’s inequality,
2 2 0
1<f Iwe (T =02 de +& [weo* < | y°] 1we (1
E

172
<[y { & [ 1we T =012 a
E

where in the last line, we used the observability estimate with measurable set-in time. Therefore, we get
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2 2 of?
K | llwe (T —t)lly, dt +2¢ ”Ws,O” =y )
E

that is,

o J s coiaes 2y <[y
E

where

Ve @)+ Pye ) =1pxefe, te€(0,T),

J’s(o):yO,
fex,t)=—Kw.(x, T —t), (x,t)eQx(0,T),
Wl () + Pwe (1) =0, te(0,T),

we (T) =1y, (T).

Step 3: convergence of the control function. We refer to [55, p. 571]. Since w, (T — -) is bounded in L? (@ x E) and /ew, g is
bounded in L2 (€2), one can deduce that, for some function w (T —-) in L2 (@ x E), we (T — -) weakly converge to w (T — -)
in L% (w x E) and EWg o tends to zero in L% (). Therefore, the identity

1</(w€ (T—t),h(T—t))wdt—i—a(we,o,ho)—<y°,h(T)>=O Vhe € 12(Q) ,
E

becomes when & — 0, as

K/(w(T—t),h(T—t))wdt—<y0,h(T)>:O Vho € 2 (Q).
E

But the solution y to

{y’(t)+Py(t)=1wfo, te(0,T),
y(©0)=y°,

satisfies
—/<f(-,t>,h(T—t>>war+<y<T),ho>—(yo,h(T))zo Vho € 12 (%2).
E

By choosing f (-, t) = —Kw (T —t), it follows that the solution y satisfies y (T) =0.
This completes the proof. O

3.5. Finite-time stabilization

Recall that ||-|| and (-, -) are the norm and the inner product of L% () respectively.
Assume that there are two positive constants ¢ =c (2) and p = p (d) such that

Card{Ai <A} = Z 1<cAV/P.
Ai<A

Such estimate can be provided by the Weyl asymptotic formula A, ~ C (Q)kP as k — oo. In particular, if P = —A, then
p= %; and if P = A2, then p = % (see [34]). In the case of the one-dimensional degenerate operator P = P, we have p = 2.
Define an increasing sequence (tm)m>o converging to T > 0 by

1
tm=T<1—b—m) for some b > 1.

Introduce a linear bounded operator Fy, from L% () into L? (w) in the following manner:
Fm: [2(Q) — [*(w)
P Y (9,95 f;

Aj<Am

where
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o
T 1-0’

— n_b N grom .
Am._)q—i—(Tb 1)b withn>1, B:

and f; is the impulse control of the heat equation associated with the eigenfunction ®; (see Corollary 3.1):

Y;®+Py;©=0, € (tm, )\ | timet ]

yjtm) =®j,

() = (52 ) 10

satisfying
b 2 )’ 263 _jpfeqen™ v 4
2 e 7]b 2 C3<1+([m—_tm) ) (tm+1—tm ( 2 Ziom
”yj(tm+1)H STand Hfijie +1 e o .

Ai<Am

Here, C3 > 0 and o € (0, 1) are the constants given in Theorem 3.1. Notice that

2
||-7'—m||iz(9)_>l_2(w) = Z HfJHa)
Aj<Am

Theorem 3.5. Let w be an open and nonempty subset of 2. Suppose that one of the statements of Theorem 3.1 holds and

Card {}; < A} <cAY? forany A > 0.

Then, for any T > O there are b, p > 1 and C, K > 0 such that, for any zg € L? (Q2), the solution z to

tm+tm
Z )+ Pz(t)=0, teR™\ U (T“)
m>0
z (%) =z ((%) ) + 14 Fm (z(tm)) , foranyintegerm=>0,
z(0) =2,

_1(.1\T-o
satisfies ||z (t)|| < Ce X (H) llzo|l for any 0 <t < T_. Further, lim | Fn (z(tm))|l, =0.
m—o0

Proof. We start to focus on the solution z on interval (ty, tm1) with initial data z (t;) = >_ a;®; in L% (). Introduce the

j=1
initial datum ¢ (t) = Y. a;j®j and ¢ (tm) = ) a;®; associated with the solution of ¢’ (t) + P¢ (t) =0 and
Aj>Am Aj<Am
¥ O+Py 0 =0, te (tm, tmen) \ {25251
W (—tm+£m+1) =y <(—tm+§"‘“ )7> +1o Y ajfj.
Aj<Am

Therefore, ¢ (tmt1) = >, aje *ilms1=tm)@; and
Aj>Am

¢ (tm 1)l < @ AmEme1=tm) iz ()|

But we have chosen Ay, > A1 so that nb#™ < Ap, (tmi1 — ). This implies that

I (tmsD)ll < e ™™ |zt

On the other hand, the solution ¢ satisfies ¥ = > ajy; and
)LjSAm

e_nbﬂm 1. p8m
—Inb
5 7 =e 21 Nz (tm) I -

Ai<Am

¥ 0l < Y aj

Aj<Am

Consequently, we have
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_1pppm
12 DI < 1 Eme) | + 1Y EmeDl <727 iz Em)l
which implies by induction that, for any m > 1,
Iz (Em) 12 < ™™ 12 t0) 2.

Now, we treat the boundedness of the control associated with : notice that Y a;jfj:= Fm (z(tm)), and then, by the

AjSAm
Cauchy-Schwarz and Young inequalities,
2
iFneet= [ | X lallnl] = ¥ laf 2 15l
o \Mj<An Aj=Am Aj=Am

o

B 2C: pBm
<12 Z eC3<]+(m> )e<[m+13[mln<e+ki<2/\mlen >)

)\jSAm

B a3\ g nbBm
((a)) 3o o) e 3 e
f ||Z(tm)||2e (tm+1 tm) e Aj=<Am

Aj<Am

)

where in the last line AB < AP 4 B9 with A = tmffitm’ B=1In (Ag 1e"bﬁm), p=1.q=1 (recall that B = ;Z).
Next, -
3/2
B
(:3<1+ ) ) ()
15 12 < Nz e ) )it oo 21

Ai<Am
m B
. c(1+ 2pmit ) acy pmit\P oy 3/2
< e 7 gy HE BT ) (P8 (car)
1 ppm (Cs+(2C )ﬁ)(ZL)ﬂbﬂm n b %
<2 iz (tg) P e T AT <c<x1+<T—b 1)b<ﬂ+l>m)) ,

where in the last line we used the definition of A,,. Now, we choose 1 > 1, precisely

pm(2 b\

B
in order that —3nbf™ + (C3 + (2C3)F) (%%) bPm < — InbPm.

BH)G/2)
Since b > 1 and bW+DMG/D/P < (W) P esm™™  \ve obtain, for some constant Cs :=
3(2ﬁ+]) Zi
eCs (%) e (c(kﬁ—(?%))) ? >0, that, for any m > 1,

_ 1. ppm
[l Fm (z tm)) 12, < C5e2M=8™7 |12(0) 2.

Finally, let t > 0, then there is m > 0 such that t € [ty, tm+1]. We distinguish four cases: if t € [0, t1/2), then

lz®l? < Iz ;

if t € [t1/2,t1), then
1212 < 2(@1/2)-) + 1oFo o) [* =2 (1+ 170112) 1212 ;
ifte [tm, %) and m > 1, then

_nppm
lz@®N% < Iz tm)I? < ™™ 12 (0))% ;

ifte [“”5’”“ , tm+1> and m > 1, then
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z((%) >+1wfm @ (tm))

(=5=))

<22 12 (0) 1 + 2 C5e2™ ™ |12 (0) |12

<2(1+Cs)e2m= ™ 12(0))2.

2
lz@®? <

2
+2 1 Fm (2 tm))II?

Consequently, for any t € [ty, tm+1], it holds

8
bﬂm<(L) - ppmts
=\rt=¢) =

and

_ 1L pppm
1217 =2 (1+Cs + 1 Fol2) 8™ 2 (0) 2
Lgpim _ —don(1 L)ﬁ
by choosing b = €32/, One can conclude that e~ """ < ®"\b 71} 3pq

B
1 pe32/m( L
lz©O17 =2 (14Cs + 1 7)) e ™ (=) 2 2.

This completes the proof. O
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