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In terms of the number of generators, one of the simplest non-split rank-3 arithmetically 
Cohen–Macaulay bundles on a smooth hypersurface in P5 is 6-generated. We prove that a 
general hypersurface in P5 of degree d ≥ 3 does not support such a bundle. We also prove 
that a smooth positive dimensional hypersurface in projective space of even degree does 
not support an Ulrich bundle of odd rank and determinant of the form OX (c) for some 
integer c. This verifies some cases of conjectures we discuss here.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

En termes de nombre de générateurs, le fibré de rang 3 arithmétiquement Cohen–
Macaulay, non décomposé, le plus simple sur une hypersurface de P5, est engendré en 
rang 6. Nous montrons qu’une hypersurface générale dans P5, de degré d ≥ 3, n’admet pas 
un tel fibré. Nous montrons également qu’une hypersurface lisse de dimension positive 
dans un espace projectif, de degré pair, n’admet pas de faisceau d’Ulrich de rang impair. 
Ceci permet de vérifier quelques cas de conjectures, que nous discutons ici.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We work over a characteristic-zero, algebraically closed field that we denote by K . Let X be a smooth hypersurface in 
P

n+1. A vector bundle E on X is said to be arithmetically Cohen–Macaulay if it has no non-zero intermediate cohomology, 
i.e.

Hi∗(X, E) :=
⊕
m∈Z

Hi(X, E(m)) = 0 for 0 < i < n.
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On a projective space, by a result of Horrocks (see [6]), any ACM bundle is a sum of line bundles. It is easy to construct 
non-split ACM bundles on smooth hypersurfaces (see, for instance, Proposition 3, [11]). However, these are typically of large 
rank, and so this raises the question of the existence of low-rank non-split ACM bundles on smooth hypersurfaces. In [3], 
it has been conjectured that an ACM bundle of rank-r on an n-dimensional smooth hypersurface is split if r < 2e , where 
e := ⌊n−1

2

⌋
. Here, for any real number q, �q� is the largest integer ≤ q.

The motivation for the above conjecture comes from the classification of ACM bundles on quadric hypersurfaces (see [8]). 
In view of this result, the weakest conjecture one may pose is that if there are no non-split ACM bundles of rank-r ≤ 2m

for some m on a smooth hypersurface, then there are none of rank-r < 2m+1. Thus, taking into account the splitting results 
in [9,10,12], it seems likely that for a general hypersurface of dimension n and sufficiently high degree, an ACM bundle of 
rank-r on an n-dimensional smooth hypersurface is split if r < 2s , where s := ⌊n+1

2

⌋
. This was alluded to in [12] and made 

precise in [13]. A more optimistic conjecture can be found in [5]. This note presents some evidence in this direction.
The first higher-rank instance of the above statements, namely that of rank-2 ACM bundles on hypersurfaces in P4 is 

well understood (see, for instance, [1,2,7,9,10,12]). The most general splitting results known so far are:

• in [7,9], it is shown that there are no non-split ACM rank-2 bundles on any smooth hypersurface in P6;
• in [9,12], it is shown that there are no non-split rank-2 ACM bundles on a general hypersurface of degree d ≥ 3 in P5. 

Results for low-degree hypersurfaces obtained in [4] were used to complete the proof in [12];
• in [10,12], it is shown that there are no non-split rank-2 ACM bundles on a general hypersurface of degree d ≥ 6 in P4;
• in [17], it is shown that there are no rank-3 non-split ACM bundles on any smooth hypersurface in P6;
• partial results for rank-4 ACM bundles have been obtained in [16].

For a smooth hypersurface X ⊂ P
n+1 of degree d, an ACM bundle E of rank-r on X comes with a minimal resolution

0 → F1
�−→ F0 → E → 0, (1)

where F0 and F1 are sums of line bundles on Pn+1, and � is a matrix whose every non-zero entry is a homogeneous 
polynomial of positive degree. It follows that det � = f r , where f is the defining polynomial of X .

We say that E is s-generated if the matrix � is an s × s matrix or equivalently, rank(F0) = rank(F1) = s. When E is 
indecomposable, we necessarily have rank(F0) > rank(E) (since rank(F0) = rank(E) implies that E = F0 ⊗ OX and hence 
E is split). E is maximally generated when all the non-zero entries of � are linear forms. In this case, it follows from 
det� = f r , that s = rd. Thus, we see that s satisfies the inequality r + 1 ≤ s ≤ rd. When s = rd, the matrix � defines a rank-r
ACM bundle E ′:

0 →OPn+1(−1)rd �−→Ord
Pn+1 → E ′ → 0.

Such an ACM bundle is an example of an Ulrich bundle.
On restricting the minimal resolution (1) to X , we get short exact sequences:

0 → G → F 0 → E → 0, and 0 → E(−d) → F 1 → G → 0.

Here F i := Fi ⊗ OX for i = 1, 2. It follows that the syzygy bundle G is also ACM, and thus ACM bundles always occur in 
pairs.

The first result of this note is the following, which proves the base case (with regard to the number of generators) of the 
conjecture stated above for ACM bundles of rank 3.

Theorem 1. Let X ⊂ P
5 be a general hypersurface of degree d ≥ 3. With notation as above, assume that E is of rank 3 and that ∧3 G is 

ACM. Then E splits into a sum of line bundles.

If G is a line bundle, then G = OX (a) for some a ∈ Z, by the Lefschetz theorem. In this case, the sequence 0 → G →
F 0 → E → 0 splits (such a sequence corresponds to a class in Ext1

X (E, OX (a)) ∼= H1(X, E∨(a)) = 0). Since there are no 
non-split rank-2 bundles on a general hypersurface X ⊂ P

5 of degree at least 3 ([9,12]), it follows that the minimal number 
of generators for a rank-3 ACM bundle E on such an X is 6, i.e. the minimal rank of G is 3. When the rank of G is 3, 
then ∧3G is a line bundle, and hence ACM. Furthermore, G has rank 4 when E is 7-generated, in which case we also have 
∧3G ∼= G∨(c′) where c′ := c1(G). Thus Theorem 1 has the following corollary.

Corollary 1. There are no indecomposable rank-3 ACM bundles on a general hypersurface in P5 of degree d ≥ 3 with fewer than 8
generators.

Our next result is about Ulrich bundles, which are at the other extreme, with regard to the number of generators.

Theorem 2. A smooth positive dimensional hypersurface of even degree does not support an Ulrich bundle of odd rank and determinant 
equal to OX (c) for some c ∈ Z.
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Corollary 2. An even degree hypersurface of dimension at least 3 or a very general hypersurface of even degree in P3 does not support 
an Ulrich bundle of odd rank.

1.1. Outline of the proofs

Theorem 2 follows from a Riemann–Roch computation, whereas for Theorem 1, we extend the method in [11], which we 
describe now. Let X ⊂ P

5 be a smooth degree-d hypersurface with defining polynomial f , and E be an ACM bundle on X . 
Let Xk denote the k-th-order thickening of X given by the vanishing of f k+1. It is a standard fact that the obstruction for 
E to lift to the first-order thickening X1 is an element ηE ∈ H2(X, EndE(−d)). To see this, we first note that if E lifts to a 
bundle E on X1, then such an E sits in an OX1 -sequence

0 → E(−d) → E → E → 0,

and hence defines an element of the group Ext1
X1

(E, E(−d)). A standard Leray spectral sequence argument (see [14], Propo-
sition 2) yields a 4-term sequence

0 → H1(X,EndE(−d)) → Ext1
X1

(E, E(−d)) → H0(X,EndE) → H2(X,EndE(−d)).

Let ηE denote the image of 1 under the last map. It is then clear that ηE = 0 if and only if the element 1 lifts to an element 
in Ext1

X1
(E, E(−d)). This, in turn, as explained in [14], is equivalent to the existence of a bundle E on X1 as above.

To prove that an ACM bundle E splits, it is enough to show that ηE = 0. To do so, our first step is to show that there is 
a map (see (5), §2)

H0∗(X,det(E)) → H2∗(X,EndE).

Next, we identify the image of this map as the submodule generated by ηE . Finally, we show that this submodule, denoted 
by M , is preserved under Serre duality for H2∗(X, EndE), and hence is also self-dual. The fact that E is supported on a 
general hypersurface implies that g·ηE = 0 ∀g ∈ H0(X, OX (d)) (see Proposition 1) and so M = ⊕−d≤k<0Mk . The proof is 
finished by observing that Serre duality gives an isomorphism M−d

∼= M2d−6, and so ηE = 0 when d ≥ 3.

1.2. Acknowledgements
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2. Preliminaries

We refer the interested reader to [14] for more details. Let n ≥ 4, and X ⊂ P
n+1 be a smooth hypersurface of degree d, 

with I its ideal sheaf, and f its defining polynomial. Let E be a rank-r ACM bundle on X . Since dim X ≥ 4, we have 
Pic(X) ∼= Z, and using this isomorphism, we let c := c1(E) ∈ Z so that ∧r E ∼= OX (c). Let

0 → F1
�−→ F0 → E → 0 (2)

be a minimal resolution of E on Pn+1 as in §1. Restricting to X , we get a 4-term exact sequence

0 → E(−d) → F 1
�−→ F 0 → E → 0.

Let G := Image(�). Breaking this up into short exact sequences, we get

0 → G → F 0 → E → 0 and, (3)

0 → E(−d) → F 1 → G → 0. (4)

Tensoring (3) and (4) with E∨ , we get cohomology long exact sequences:

H0∗(X,EndE)
∂1−→ H1∗(X, E∨ ⊗ G) → H1∗(X, E∨ ⊗ F 0), and

H1∗(X, E∨ ⊗ F 1) → H1∗(X, E∨ ⊗ G)
∂2−→ H2∗(X,EndE(−d)) → H2∗(X, E∨ ⊗ F 1).

Since F0 and F1 are sums of line bundles, and n ≥ 4, it follows that ∂1 is a surjection, and ∂2 is an isomorphism. Composing 
the coboundary maps, we get

H0∗(X,EndE)
∂1� H1∗(X, E∨ ⊗ G)

∂2∼= H2∗(X,EndE(−d))

1 �→ ζ �→ η .
(5)
E E



1218 G.V. Ravindra, A. Tripathi / C. R. Acad. Sci. Paris, Ser. I 356 (2018) 1215–1221
Here ζE ∈ Ext1
X (E, G) ∼= H1(X, E∨ ⊗ G) is the class of the short exact sequence (3), and ηE is the (obstruction) class which 

vanishes if and only if E extends to a vector bundle on X1 (see §3.3 in [14] for details).
Equivalently, one may start with the dual bundle E∨ , and the sequences

0 → G∨(−d) → F
∨
1 (−d) → E∨ → 0, and 0 → E∨ → F

∨
0 → G∨ → 0

to get

H0∗(X,EndE)
∂ ′

1� H1∗(X, E ⊗ G∨(−d))
∂ ′

2∼= H2∗(X,EndE(−d))

1 �→ ζE∨ �→ ηE∨ = ηE .
(6)

Now assume that rank(E) = 3; then we have an isomorphism ∧2 E ∼= E∨ ⊗∧3 E . Tensoring (3) with ∧2 E , we have a sequence,

0 → ∧2 E ⊗ G → ∧2 E ⊗ F 0 → ∧2 E ⊗ E → 0,

which via the inclusion OX ↪→ EndE , yields a pull-back diagram as follows:

0 → ∧2 E ⊗ G → P3 → ∧3 E → 0
|| ↓ ↓

0 → ∧2 E ⊗ G → ∧2 E ⊗ F 0 → ∧2 E ⊗ E → 0.

(7)

On tensoring this diagram with (∧3 E)−1, we see that, under the composite map

H0(X,OX ) → H0(X,EndE) → H1(X, E∨ ⊗ G),

the generator 1 ∈ H0(X, OX ) is mapped to the element ζE ∈ H1(X, E∨ ⊗ G). Hence the Yoneda class of the top-row exact 
sequence is the element

ζE ∈ Ext1
X (∧3 E, G ⊗ ∧2 E) ∼= H1(X, E∨ ⊗ G).

We recall a standard result, which we use quite extensively.

Lemma 1. For any short exact sequence of bundles 0 → A → B → C → 0 on a variety, we get, on taking exterior powers, sequences 
0 →A → ∧k B → ∧kC → 0, where A is a filtered vector bundle with filtration

A = F 0 ⊃ F 1 ⊃ · · · .. ⊃ F k = {0},
and associated graded pieces gr j

FA = ∧ j+1 A ⊗ ∧k− j−1C for 0 ≤ j < k.

The surjection F 0 � E yields a commutative square

∧3 F 0 � ∧3 E
↓ ↓

∧2 F 0 ⊗ F 0 � ∧2 E ⊗ E

where the bottom row factors via ∧2 E ⊗ F 0, and so we obtain a commutative diagram:

0 → K3 → ∧3 F 0 → ∧3 E → 0
↓ ↓ ↓

0 → ∧2 E ⊗ G → ∧2 E ⊗ F 0 → ∧2 E ⊗ E → 0.

(8)

The vertical maps in (8) factor via the top row in (7) by the universal property of pull-backs and so we get the following 
commutative diagram:

0 0
↓ ↓

K3,1 = K3,1
↓ ↓

0 → K3 → ∧3 F 0 → ∧3 E → 0
↓ ↓ ||

0 → ∧2 E ⊗ G → P3 → ∧3 E → 0.

↓ ↓
0 0

(9)
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Here K3 comes equipped with a filtration F 2 = ∧3G ⊂ F 1 = K3,1 ⊂ F 0 = K3 as described in Lemma 1 applied to the exact 
sequence (3). In particular, we have F 1/F 2 = ∧2G ⊗ E , and so an exact sequence

0 → ∧3G →K3,1 → E ⊗ ∧2G → 0. (10)

Let κ denote the Yoneda class of the middle row. Then diagram (9) yields a map

Ext1(∧3 E,K3) → Ext1(∧3 E,∧2 E ⊗ G),

under which κ is mapped to ζE . This map may be identified with the map of cohomology groups in the left vertical 
sequence

H1(X,K3(−c)) → H1(X,∧2 E ⊗ G(−c)).

Furthermore, doing the same with the dual bundle E∨ , we get a commutative diagram analogous to (9):

0 0
↓ ↓

K′
3,1 = K′

3,1
↓ ↓

0 → K′
3 → ∧3 F

∨
1 → ∧3 E∨(3d) → 0

↓ ↓ ||
0 → ∧2 E∨(2d) ⊗ G∨ → P′

3 → ∧3 E∨(3d) → 0,

↓ ↓
0 0

(11)

and an exact sequence

0 → ∧3G∨ →K′
3,1 → E∨(d) ⊗ ∧2G∨ → 0. (12)

3. Proof of Theorem 1

The following result explains what it means for E to be a vector bundle on a general hypersurface.

Proposition 1. Let X ⊂ P
n+1 be a general hypersurface. For any g ∈ H0(X, OX (d)), the image of ηE under the multiplication map

× g : H2(X,EndE(−d)) → H2(X,EndE),

is zero.

Proof. See §3 in [9], or [14], Proposition 2 (i), and Proof of Theorem 2 for details. �
Tensoring (4) with ∧2 E , we get

0 → ∧2 E ⊗ E(−d) → ∧2 E ⊗ F 1 → ∧2 E ⊗ G → 0.

Using the surjection K3 � ∧2 E ⊗ G , and the isomorphism ∧2 E ∼= E∨(c), we get a pull-back diagram

0 0
↓ ↓

K3,1(−c) = K3,1(−c)
↓ ↓

0 → EndE(−d) → K̃3 → K3(−c) → 0
|| ↓ ↓

0 → EndE(−d) → E∨ ⊗ F 1 → E∨ ⊗ G → 0.

↓ ↓
0 0

(13)

Here K̃3 is defined by the diagram.
In the middle column, we have an isomorphism of graded modules

H2∗(X,K3,1(−c)) ∼= H2∗(X, K̃3).

Furthermore, we observe from (8) that
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(i) we have a surjection H0∗(X, OX ) � H1∗(X, K3(−c)), under which 1 is mapped to κ , and
(ii) H2∗(X, K3) = 0.

Hence the cohomology sequence of the middle row yields a (right) exact sequence of graded modules

H1∗(X,K3(−c)) → H2∗(X,EndE(−d)) → H2∗(X,K3,1(−c)) → 0. (14)

A similar analysis will also yield a (right) exact sequence

H1∗(X,K′
3(c − 3d)) → H2∗(X,EndE(−d)) → H2∗(X,K′

3,1(c − 3d)) → 0. (15)

Since the leftmost maps above factor via H1∗(X, E∨ ⊗ G) and H1∗(X, E ⊗ G∨(−d)) respectively, we have the following result:

Lemma 2. Let X ⊂ P
n+1 be as above.

(i) Under the map H1∗(X, K3(−c)) � H2∗(X, EndE(−d)), the generator κ is mapped to ηE .
(ii) Under the map H1∗(X, K′

3(c − 3d)) � H2∗(X, EndE(−d)), the generator κ ′ is mapped to ηE .

Let M denote the submodule of H2∗(X, EndE(−d)) generated by ηE . We rewrite sequences (14) and (15) as

0 → M → H2∗(X,EndE(−d)) → H2∗(X,K3,1(−c)) → 0, and (16)

0 → M → H2∗(X,EndE(−d)) → H2∗(X,K′
3,1(c − 3d)) → 0. (17)

An immediate consequence of Proposition 1 is the following:

Corollary 3. The module M is supported in degrees k where −d ≤ k < 0, i.e.

M =
⊕

−d≤k<0

Mk.

Now we are ready to prove our first result.

Proof of Theorem 1. We shall prove that the obstruction class ηE vanishes in H2(X, EndE(−d)). From (5), it then follows 
that ζE = 0, which means that the sequence (3) splits. This implies that E splits.

We begin by noting that since ∧3G is ACM, we have, from (10) and (12),

• H2∗(X, K3,1(−c)) ∼= H2∗(X, E ⊗ ∧2G(−c)), and
• H2∗(X, K′

3,1(c − 3d)) ∼= H2∗(X, E∨ ⊗ ∧2G∨(c − 2d)).

Using these isomorphisms, sequences (16) and (17) can be rewritten as

0 → M → H2∗(X,EndE(−d)) → H2∗(X, E ⊗ ∧2G(−c)) → 0, and (18)

0 → M → H2∗(X,EndE(−d)) → H2∗(X, E∨ ⊗ ∧2G∨(c − 2d)) → 0. (19)

Since the left and the middle terms in (18) and (19) are isomorphic to each other, we have

H2∗(X, E ⊗ ∧2G(−c)) ∼= H2∗(X, E∨ ⊗ ∧2G∨(c − 2d)).

By Serre duality, we also have

H2(X, E ⊗ ∧2G(−c)) ∼= H2(X, E∨ ⊗ ∧2G∨(c + d − 6)),

and hence an isomorphism

H2(X, E∨ ⊗ ∧2G∨(c − 2d)) ∼= H2(X, E∨ ⊗ ∧2G∨(c + d − 6)). (20)

Thus we have the following exact sequences (corresponding to the degree ‘−d’ and ‘2d − 6’ components in (19)):

0 → M−d → H2(X,EndE(−d)) → H2(X, E∨ ⊗ ∧2G∨(c − 2d)) → 0, (21)

0 → M2d−6 → H2(X,EndE(2d − 6)) → H2(X, E∨ ⊗ ∧2G∨(c + d − 6)) → 0. (22)

Since H2(X, EndE(−d)) ∼= H2(X, EndE(2d −6)) by Serre duality, it follows from the above sequences and (20) that M−d
∼=

M2d−6. Since Mk = 0 for k ≥ 0 by Corollary 3, it follows that M−d = 0 if 2d − 6 ≥ 0, or equivalently if d ≥ 3. This means that 
ηE = 0, and so this finishes the proof. �



G.V. Ravindra, A. Tripathi / C. R. Acad. Sci. Paris, Ser. I 356 (2018) 1215–1221 1221
4. Ulrich bundles

As mentioned in the introduction, the proof of the non-existence of Ulrich bundles of odd rank on smooth even-degree 
hypersurfaces of dimension ≥ 1 follows from a Riemann–Roch computation. The following result gives an upper bound for 
the first Chern class for any ACM bundle.

Lemma 3. Let E be a rank-r ACM bundle on a smooth, degree-d hypersurface X ⊂ P
n+1 , n ≥ 1, with first Chern class OX (c). Assume 

that E is normalized, i.e. H0(X, E(−1)) = 0, and H0(X, E) �= 0. Then c ≤ r(d − 1)/2.

Proof. Let E H denote the restriction of E to a smooth hyperplane section H ⊂ X , so that we have a sequence

0 → E(−1) → E → E H → 0.

Then E H is a normalized rank-r ACM bundle on H . Since P ic(X) → P ic(H) is injective, we have c1(E H ) = OX (c). Thus, by 
induction, we may assume that E is a normalized vector bundle of rank-r on a smooth, planar curve C ⊂ P

2 of degree d. 
Since E is normalized, χ(E(−1)) ≤ 0. Applying the Riemann–Roch theorem to the bundle E(−1) gives us

χ(E(−1)) = deg(E(−1)) + r(1 − g) ≤ 0,

where g is the genus of C . Since C is planar, we have g = (d −1)(d −2)/2. Using this and the fact that deg(E(−1)) = d(c −r), 
we get c ≤ r(d − 1)/2. �
Proof of Theorem 2. Since E is Ulrich, it has a resolution of the form

0 →OPn+1(−1)rd →Ord
Pn+1 → E → 0.

Therefore χ(E(−1)) = 0. It follows now that c = r(d − 1)/2. Since c ∈ Z, this is impossible if r is odd and d is even. �
Remark 1. The assumption on the degree of the hypersurface or the rank of the bundle in Theorem 2 cannot be weakened. 
A smooth plane cubic is an elliptic curve; its torsion points of odd order r, give rise to Ulrich bundles of rank-r, (cf. [15]). 
Similarly, lines in quadric surfaces in P3 correspond to ACM line bundles not isomorphic to OX (c) for any c ∈ Z.
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