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RESUME

Dans cette Note, nous montrons l'inégalité de type Brézis—-Gallouet-Wainger faisant
intervenir la norme BMO, la norme fractionnaire de Sobolev et la norme logarithmique

de C", pour n € (0,1).

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main results

The main purpose of this paper is to establish the L*°-bound by means of the BMO norm, or the critical fractional
Sobolev norm with the logarithm of C” norm. Such a L*°-estimate of this type is known as the Brézis-Gallouet-Wainger
(BGW)-type inequality. Let us remind that Brézis-Gallouet [2], and Brézis-Wainger [3] considered the relation between L*°,

WkT and WSP, and proved that there holds

r—1
Iflie <€ (1+10gT (1 +1flwer)), sp>n

(11)

provided that || f|lyy«r <1, for kr =n. Its application is to prove the existence of solutions to the nonlinear Schrodinger
equations, see details in [2]. We also note that an alternative proof of (1.1) was given by H. Engler [4] for any bounded set in
R" with the cone condition. Similar embedding for vector functions u with divu = 0 was investigated by Beale-Kato-Majda:
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IVullzee < € (1+ fIrotul e (1 +log(1 + ullys+1.p)) + [Irotull;2) , (1.2)

for sp > n, see [1] (see also [9] for an improvement of (1.2) in a bounded domain). An application of (1.2) is to prove the
breakdown of smooth solutions to the 3-D Euler equations. After that, estimate (1.2) was enhanced by Kozono and Taniuchi
[5] in that |[rotu||;~ can be relaxed to |[rotu|gmo:

[Vullpee < C (14 [Irotulpmo (14 log(1 + |ullys+1.p)))- (1.3)
To obtain (1.3), Kozono-Taniuchi [5] proved a logarithmic Sobolev inequality in terms of BMO norm and Sobolev norm, in
which, for any 1 < p < o0, and for s > n/p, there is a constant C = C(n, p, s) such that the estimate

Ifllee < C (141 flipmo (1 +log™ (Il fllws»))) (1.4)

holds for all f € W5P, Obviously, (1.4) is a generalization of (1.1).

Besides, it is interesting to note that a Gagliardo-Nirenberg-type inequality with critical Sobolev space directly yields a
BGW-type inequality. For example, H. Kozono and H. Wadade [6] proved the Gagliardo-Nirenberg-type inequalities for the
critical case and the limiting case of a Sobolev space as follows:

, l p n ‘1_2
lulla < Car'q7 llullfp I (=2) 2 ull (1.5)
holds for all u € LP NH*" with 1 < p<oo,1<r<o0o,and for all g with p <q < oo (see also Ozawa [10]).
Also,
4 1-2
lullie < Cagllullfp gy (16)
holds for all u € LP N BMO with 1 < p < oo, and for all g with p <q < co.
As a result, (1.5) implies
1
lulli <€ (1 + (luller + 1 (=) F ullr) (log(1 + (=2 Fullso))” ) (17)
forevery 1<p<oo, 1<r<oo, 1<qg<ooandn/q<s<oo.
Furthermore, (1.6) yields
lulles =€ (14 (lullr + lullawo) log(1 + (=) ullin) ) (18)

forevery 1<p<oo, 1<qg<oo,and n/q <s < oo.

Thus, (1.7) and (1.8) may be regarded as generalizations of the BGW inequality. Note that, in (1.7) and (1.8), the logarithm
term only contains the semi-norm |[u|[yys,p-

Furthermore, Kozono, Ogawa, Taniuchi [7] proved the logarithmic Sobolev inequalities in Besov space, generalizing the
BGW inequality and the Beale-Kato-Majda inequality.

Motivated by the above results, we study in this paper the BGW-type inequality by means of the BMO norm, the frac-
tional Sobolev norm, and the C” norm, for 1 € (0, 1). Then, our first result is as follows.

Theorem 1.1. Let ny € (0, 1), and « € (0, n). Then, there exists a constant C = C(n, n) > 0 such that the estimate

[f I
0w <C+C 1+log™ | su / — =7 dy+ ; (1.9
Iflle Il fllsmo g zeﬂg Z—yl+1° y+1flen )

holds for all f € C" N BMO. We accept the notation log* s =logs if s > 1, and logt s = 0 if s € (0, 1).

Remark 1.2. It is clear that | sup |f(—y)ldy is finite if f € L!. On the other hand, if f € L", r > 1, then for any

zek"J (z—yl+ 1

a € (%,n), we have

)
su — =7 dy<C(C r
o) (2= yl+ 17 = I/

where the constant C is independent of f.
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Remark 1.3. If supp f C Bg, then (1.9) implies
Iflle < C+Cll fllpmo (1 +log™ [R™™ "+ fllgn]) - (1.10)
Remark 1.4. Note that if f € WP with sp > n, then (1.9) is stronger than (1.4) since WP c C%" c C", with n = %.
Concerning the BGW-type inequality involving the fractional Sobolev space, we have the following result.

Theorem 1.5. Let s > 0, p > 1 be such that sp =n. Let « > 0, n € (0, 1). Then, there exists a constant C = C(n, s, p, n, @) > 0 such
that the estimate

p—1

DLy £ (111)

Iflli < C+Cllflipso | 1+ | logt /
wep e ] Gz—yl+ 1)@

holds for all f € C" N W5P, where WS:P is the homogeneous fractional Sobolev space, see its definition below.

Remark 1.6. As Remark 1.4, we can see that (1.11) is stronger than (1.1). Furthermore, if supp f C Bg, then (1.9) implies

[ fllizee = C+Clifllyyse <1 + (log™ [R"%F" + IIfIIC'n])pT?l) : (112)

Remark 1.7. We consider f5(x) = —log(|x| + 8)v (|x]), where v € Ccl([O, o0)), 0<v¢ <1, ¥(x|) =1 if |x| < }l. and § >0 is
small enough. It is not hard to see that, for any § > 0 small enough,

1
||f8||Loc(]Rd) ~ |log(8)l, ||f5||BMO(Rd) ~1, ||f5||w%.p ~ |log(8)|7,

and

£ )] -
sup [ = dy ~ 1 [ fsllgngany SO
zezn ) (12 =yl + 1) crEn ~

Therefore, the powers 1 and ijl of the term logy [ sup / 0 lf(i/_)l_ll)a dy + ||f|cjn) in (1.9) and (1.11), respectively, are
zeR"

sharp, so there are no such estimates of the form:

Y
[f1)|
I filloo < C+ Cl filo [ 1+ [ tog? fé‘u{i/uz 1Oyl | |-
and
-
)]
x<C+C NI I log* d ;
Ifallis = C+ClRall g, | 1+ [ 02 fﬁu{%/uz 2 Ayl ,

hold for all f; € BMONC, fre C" N W*P, for some y €(0,1).
Before closing this section, let us introduce some functional spaces that we use throughout this paper. First of all, we
recall C"7, n € (0, 1), as the homogeneous Hélder continuous of order 7, endowed with the semi-norm:

I fllgn =sup M

x£y  |Xx—=y"

Next, if s € (0, 1), then we recall W*? the homogeneous fractional Sobolev space, endowed with the semi-norm:

1

£~ FIP ’
||f||Wsp—(R/ M0 =T axay |
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When s > 1, and s is not an integer, we denote WP as the homogeneous fractional Sobolev space endowed with the

semi-norm:
Iflise =Y 1D fllyis-tsip-
lo|=l[s]
If s is an integer, then
£ lpso = > 11D fliee.
lo|=l[s]
We refer to [8] for details on the fractional Sobolev space

After that, we accept the notation (f)gq := ][f = |Q|

Q
constant that can change from line to line. And C(k, n, 1) means that this constant merely depends on k,n, I.
2. Proof of the theorems

We first prove Theorem 1.1.

Proof of Theorem 1.1. It is enough to prove that

FO) < C+Cllfllawo | 1-+1og (m/ (|'f(+”l')ady+||f||c~n

Let mg € N, set B, := B, (0), we have

1

|fO)]=]f(0) - ][f+m0 ][f—][ +][f

=—mp
By—mqg J Byj+1 Bymg

mo—1

< ][ If=fOI+ )

][|f (f)B,j, | + €270
j=—mop

B,—mg B,mg

e [ D)
< M| fllgndy +2m e [ e
< f WIISlerdy + 2mol oo T

|f I
(yl+1D*

Bz—mo Bsz

Lf I
<C2- mo min{n—ao,n} (m/ (|yj|r_3/1)a dy + I flign | + Cmoll fllBmo-

Choosing

L o ,
" (m/ Iyl e+ e

min{n — «, n}

we get (2.1). The proof is complete. O
Next, we prove Theorem 1.5.

Proof of Theorem 1.5. To prove it, we need the following lemmas.

Lemma 2.1. Let ap = 1, and let (ap, ay, ..., ak4+1) € RK*2, for any k > 1, be a unique solution to the following system:

k+1 ]
Y a2lt=0. VI=0,..k

/f(x)dx for any Borel set Q. Finally, C is always denoted as a

(2.1)

(2.2)
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Then we have:
k

a:=Y (k—j+1a;#0. (2.3)

j=0

Moreover, forany m > 1, and for b, b; € R, | = —m, ..., m, we have

m—1 [ k+1 k+m k+1 k—m | I+m
Z Zajij = Z Z aj | b+ Z Za] (by — b) +ab. (2.4)
I=—m | j=0 I=m | j=l-m+1 I=—m | j=0

As a result, we obtain

k+1 1 m—1 |k+1 k+1 k+m
Iblsﬁ Daﬂ Z Ibi = bl + DD ajhjy + Z|a]| Zlbll- (2.5)
l* m|j=0

Proof. First of all, we note that a; # 0, for j=0, ...,k + 1. Set

k+1

Q(x)=Zajxj.

j=0
Then,
k+1

QM=) jaj.
j=1
On the other hand, by (2.2), we have Q (2) =0, for [=0, ..., k. Thus,

k k
Q@) =ager [ Jx=2H. and Q') =[]c1 -2).
=0 =1
This implies
k+1

Z]a, ]‘[(1—2);&0 (2.6)

Next, we observe that
k+1 k+1

0=(k+1)) aj=a+)_jaj=0.
j=0 j=1

k
The last equation and (2.6) yield a = — 1_[(1 —2h #0.
j=1
Now, we prove (2.4). We denote by LHS (resp. RHS) the left-hand side (resp. the right-hand side) of (2.4). It is not difficult
to verify that

k—m | I+m
Z Zaj b=ab.
I=—m | j=0

Then, a direct computation shows

RHS = agb_p, + (ag +a1)b1—m + ... + (a@p + ... + ag)br—m
k—m
+(ay + ... + agp)bm + (@2 + ... + Ay 1)bmy1 + .. + Aep1beym = ao Z by

I=—m

k—m m+k— m-+k
+a | Y b1+Zb1 +o Z b—m + Z b | + ak41 (Zh)
1-m

1= I=m I=k—m
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k-+1 m—1
Note that Zaj Z by = 0. Thus,
j=0 I=k+1-m
k+1 m—1
RHS=RHS+ | > aj| > b
j=0 I=k+1—m
k+1 j+m—1
=2_ai| 2 b
j=0 I=j—m
k+m k+1 m—1 k+1 k—m [l4+m
a3 EDDEC LD DN DI LED BN DI I
I=m \j=l-m+1 I=k+1-m \ j=0 I=—m \ j=0
k+m k+1 k—m [l+m
3 IDATTS L
I=m \ j=l-m+1 I=—m \ j=0
= LHS.
We get (2.4).

Finally, (2.5) follows from (2.4) by using the triangle inequality. In other words, we get Lemma 2.1. O

Next, we have the following lemma.
Lemma 2.2. Assume do, a1, ..., Gg41 as in Lemma 2.1. Let Q = B,j+1\B,;, where B, := B, (0) for any p > 0. Then, there holds:
k+1

Zaj][f <C

0
J Qj

dy. (2.7)

][ ‘Dkf - (Dkf) Bes\B,

Bok+3\By—1

For any | € R, we set Ej = Bok+11+3\Byi-1. As a consequence of (2.7), we obtain:

k+1
Sy f £l =c2'f £]okr)- 0| dyay. (28)
=0 gy El E

Moreover, by the triangle inequality, we get from (2.8):
k+1
2.9 ][ f sczk’][]n"ﬂy)\ dy. (2.9)
=0 q;, E

Proof. Assume that (2.7) is not true, which is a contradiction. There exists then a sequence (fin)m>1 C Wk’](leH&\Bz—l)
such that

1
D" fn(y) = (D" fn) dy =, (210)
Bok+3\By—1 m
Bok+3\By-1
and
k+1
|Za,-][fm|=1, vm=>1.
j:O Q:
Let us put

k

fn () = fn(0) = Pem(), With P =Y >

=0 aq+...+an=l

1,02

(67
Crim (0015 .oy )Xy X% X"
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and ¢ g (a1, ..., an) is a constant such that
D'f ) =0, VI=0,...k (211
( In) g svm, :

By a sake of brief, we denote ¢, = ¢k m(ct1, ..., ay). Since Py is a polynomial of at most degree k, then D"Pk,m = const.
This, (2.10), and (2.11) imply

[0 hmidy = [ 105 - (D) dy <

1
Bok+3\By—1 m

Bok+3\By-1 Bok+3\By-1
It folloyvs from the compact embeddings that there exists a subsequence of (}m)mzl (still denoted as (}m)mz]) such that
fm — f strongly in L (Bys3\B,-1), and

D¥f=0, in Bys\By-1.

This implies that f is a polynomial of at most degree (k — 1), i.e.:

k-1
f(x):Z Z (@, o )XY X2 X" VX € B\ By
=0 aq+...+an=l

On the other hand, we observe that, for any [ =0, ..., k,

k+1
Zaj Z (a1, ..., o)X X2 Xy " dxy dxs ... dXp
=0 G arttan=l

=>"q D . ) RIX)™ (2x9)*2 . (20%0)* dxy Xy .. dxn
j=0 &, ar+.top=l

k+1
= Z cloq, ..., otn) Zajzfl X{1x5% . xp" dxpdx;...dx, =0,
& o1 +...+op=l j=0

by (2.2). This implies

k+1
Zaj][f=o, (212)

i=0
I Szj
and

k+1 k+1

Sy f = |2 f = 1.

Jj=0 Q; j=0 Q;

Remind that f’m — f strongly in Ll(BZM\qu); then we have
k+1

Saf =1

0
) of

Now we complete the proof of (2.7).
The proof of (2.8) (resp. (2.9)) is trivial; we leave it to the reader. This puts an end to the proof of Lemma 2.2. O

Now, we are ready to prove Theorem 1.5.
It is enough to show that

p—1

D 4y i | (213)

1F0)] < C+Cllfllyss | 1+10gF /
" 2\J i+
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Set s1 =s —k, s1 €[0, 1). Then, we divide our study into the two cases.

i) Case 1: 51 € (0, 1). We apply Lemma 2.1 with b= f(0), b; = 7[f. Then, for any mg > 1, there is a constant C = C(k) > 0

Qj
such that
k—mg . mo—1 | k+1 k-+mgo .
soizc| ¥ |\ fr-sol+ X [ Xa {1+ X | £1]]. (214)
I=—mg & I=—mg | j=0 Qi I=mg o

Concerning the first term on the right-hand side of (2.14), we have

k—mg k—m k—m
> ff—f(m <> ][If—f(O)ls > ][|X|n||f||(jndx-
l=—m0 QI l=—mQ’ l=—mQ’
Thus,
k—m k—m
> ][ F=FOf= > 200 fl5y < CO 27 flign- (215)
I=—m Q I=—m
Next, we use (2.8) in Lemma 2.2 to obtain
m—1 | k+1 . m—1 .
o2 f fl=c >’ 2"’ff ‘D"f(y)—D"f(Z) dydz, (2.16)
I[=—m | j=0 Qi I=—m E E

where Ej = Byki1+3\Byi-1. It follows from Hélder’s inequality:

mo—1
> zk’][fw"f(y) —D*f(2)|dydz <
l=-mo E

1 p—1
" ID¥f(y) — DX f (2)|P ' '
Z 2ME |2 // [y —Z P dydz //ly—z|ﬁdydz
l==mo E E E Ef

Since y,z € E;, we have |y — z| < |y| + |z| < 2kH*+4, Thus, the right-hand side of the indicated inequality is less than

1

mo—1 k k p
s 2 ID*f(y) — D* f(2)]
Cn.p.2™ 7 BT ) Yy _zpee V9
I==mo \ E, E

- .
Note that n =Sp = (k+s])p_ and |E1|T <C(n, p7k)2f215.
Then, there is a constant C = C(k, s,n) > 0 such that

o=

mo—1 mo—1 k k
ID*f(y) — D" f()IP
Z zkI][][|Dkf(y)_Dkf(z)|dydz§C Z // y =z dydz| . (217)
I=-moE E I==mo \ k| E
Thanks to the inequality

mo—1 1 p—1 mo—1 %

Yocg=emy T [ Y o . (218)
j=—mg j=—mg

we have
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1

mo—1

|D¥f(y) — D¥f(2)|P
Z // |y — z|vts1p dydz

l==mo \ £, E

==

mo—1

— k _ k
<emp7 [ 1 //'D O (G

ly — z|nt51p

I=-mof, E

+o0
Moreover, we observe that Z XExE (Y1, ¥2) <k +4, for all (y1, y2) e R" x R". Thus,

I=—00

mop—1

|y_z|n+51p |y_z|n+51p

I==moE,

Combining (2.17), (2.19) and (2.20) yields

mo—1 p—1
> 2"1][][|D"f(y) — D*f(@)|dydz < C(k,s,mymg” || fllys.p-
=-mo E

It remains to treat the last term. Then, it is not difficult to see that, for any « > 0,

k+mg

> ][f < C(k, ny2~mon / if]
I=mg Q sz+mo
< C(k,n, o)2 " Mo(1=) M'
(Ix| + 1)

B ok+mg

Inserting (2.15), (2.21), and (2.22) into (2.14) yields

| f(0)] < €270 minin—c.n} QELAC2LE +1Ifllg +Cmp’+]||f||'
< Uyl + ¥ y én 0 Ws.p-

By choosing
Lf I

log+
2\ ) e
Rn

dy + 11 flign

min{n — «, n}

we obtain (2.13).

k Yy k _ nk
3 //|D f(y)-D f(z)|pdyd25(k+4)//ID f)=D@P 4 4,
RN RN

755

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

ii) Case 2: s; = 0 (s = k). The proof is similar to the one of the case s; € (0, 1). There is just a difference of estimating the

second term on the right-hand side of (2.14) as follows.
Using (2.9), we get:

mo—1 | k+1 mp—1
> Zaj][f <c > 2"’f|D’<f|.
E

I=—m0 j:O Qj+l l=—mo

Applying Holder’s inequality, we have

(2.24)
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1/p
mo—

mo 1 1
2"’][|Dkf|< > 2ME TP /ID"fl"
l——ﬂ‘lo

1/p
mo—1

<Cmb ) /ID"fI"
I=—m0 El

1/p
p—1 mo—]

<Cm,? Z/mkﬂp ) (2.25)

l=—m0 El

[o¢]
We utilize the fact Z Xxg (¥) <k+4, Yy e R" again in order to get
I=—00

1/p 1/p

mo 1
/ID"flp < (k+4) /ID"flp . (2.26)

l——mo El
From (2.26), (2.25), and (2.24), we get

mo—1 | k+1

> |Xas f 1| =Clemiie, (2.27)

I=—mg | j=0 Qju

Thus, we obtain another version of (2.23) as follows:

By the same argument as above (after (2.23)), we get the proof of the case s; = 0. This completes the proof of Theo-
rem 1.5. O
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