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We construct a vector bundle E on a smooth complex projective surface X with the 
property that the restriction of E to any smooth closed curve in X admits an algebraic 
connection while E does not admit any algebraic connection.
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r é s u m é

Nous construisons un fibré vectoriel E sur une surface complexe lisse X tel que la 
restriction de E à toute courbe lisse fermée contenue dans X admet une connexion 
algébrique, sans que E lui-même admette une telle connexion algébrique.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let X be an irreducible smooth complex projective variety with cotangent bundle �1
X and E a vector bundle on X . The 

coherent sheaf of local sections of E will also be denoted by E . A connection on E is a k-linear homomorphism of sheaves 
D : E −→ E ⊗ �1

X satisfying the Leibniz identity, which says that D( f s) = f D(s) + s ⊗ d f , where s is a local section of E
and f is a locally defined regular function.

Consider the sheaf of differential operators Diffi
X (E, E), of order i on E , and the associated symbol homomorphism 

σ : Diff1
X (E, E) −→ End(E) ⊗ T X . The inverse image

At(E) := σ−1(IdE ⊗ T X)

is the Atiyah bundle for E . The resulting short exact sequence

0 −→ Diff0
X (E, E) = End(E) −→ At(E)

σ−→ T X −→ 0 (1.1)
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is called the Atiyah exact sequence for E . A connection on E is a splitting of (1.1). We refer the reader to [1] for the details; 
in particular, see [1, p. 187, Theorem 1] and [1, p. 194, Proposition 9].

When X is a complex curve, Weil and Atiyah proved the following [13], [1]:
A vector bundle V on an irreducible smooth projective curve defined over C admits a connection if and only if the 

degree of each indecomposable component of V is zero.
This was first proved in [13]; see also [6, p. 69, TH́EORÈME DE WEIL] for an exposition of it. The above criterion also 

follows from [1, p. 188, Theorem 2], [1, p. 201, Theorem 8] and [1, Theorem 10].
A semistable vector bundle V on a smooth complex projective variety X admits a connection if all the rational Chern 

classes of E vanish [12, p. 40, Corollary 3.10]. On the other hand, a vector bundle W on X is semistable if and only if 
the restriction of W to a general complete intersection curve, which is an intersection of hyperplanes of sufficiently large 
degrees, is semistable [5, p. 637, Theorem 1.2], [11, p. 221, Theorem 6.1]. On the other hand, any vector bundle E whose 
restriction to every curve is semistable actually satisfies very strong conditions [3]; for example, if X is simply connected, 
then E must be of the form L⊕r for some line bundle L.

The following is a natural question to ask.

Question 1.1. Let E be a vector bundle on X such that, for every smooth closed curve C ⊂ X , the restriction E|C admits a 
connection. Does E admit a connection?

Our aim is to show that, in general, the above vector bundle E does not admit a connection.
To produce an example of such a vector bundle, we construct a smooth complex projective surface X with Pic(X) = Z

such that X admits an ample line bundle L0 with H1(X, L0) �= 0. Since Pic(X) = Z, the ample line bundles on X are 
naturally parametrized by positive integers. Let L be the smallest ample line bundle (with respect to this parametrization) 
with the property that H1(X, L) �= 0. Let E be a nontrivial extension

0 −→ L −→ E −→ OX −→ 0 .

We prove that the vector bundle End(E) has the property that the restriction of it to every smooth closed curve in X admits 
a connection, while End(E) does not admit a connection; see Theorem 3.1.

A surface X of the above type is constructed by taking a hyper-Kähler 4-fold X ′ with Pic(X ′) = Z. Let Y ⊂ X ′ be a 
smooth ample hypersurface such that H j(X ′, OX ′(Y )) = 0 for j = 1, 2, and let Z be a very general ample hypersurface of 
X ′ such that H j(X ′, OX ′(Z)) = 0 for j = 1, 2 and H2(X ′, OX ′(Z − Y )) = 0. Now take the surface X to be the intersection 
Y ∩ Z .

2. Construction of a surface

We will construct a smooth complex projective surface S with Picard group Z that has an ample line bundle L with 
H1(S, L) �= 0.

Let X be a hyper-Kähler 4-fold with Picard group Z. For example, a sufficiently general deformation of Hilb2(M), where 
M is a polarized K 3 surface, will have this property. Let Y ⊂ X be a smooth ample hypersurface. Note that the vanishing 
theorem of Kodaira says that

H j(X, OX (Y )) = 0 (2.1)

for all j > 0, because K X is trivial [10]. Let Z be a very general ample hypersurface of X such that both the line bundles 
OX (Z) and OX (Z − Y ) are ample. In view of the vanishing theorem of Kodaira, the ampleness of OX (Z) implies that

H j(X, OX (Z)) = 0 (2.2)

for all j > 0, while that of OX (Z − Y ) implies that

H j(X, OX (Z − Y )) = 0 (2.3)

for all j > 0. Let

ι : S := Y ∩ Z ↪→ X

be the intersection and

L := OX (Y )|S

the restriction of it. Note that L is ample.
Let I := OX (−S) ⊂ OX be the ideal sheaf for S . Tensoring the exact sequence

0 −→ I −→ OX −→ ι∗OS −→ 0
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by OX (Y ), we get an exact sequence

0 −→ I(Y ) −→ OX (Y ) −→ ι∗L −→ 0 . (2.4)

The natural inclusion of OX (−Z) in OX and OX (Y − Z) together produce an inclusion of OX (−Z) in OX ⊕ OX (Y − Z). 
Consequently, we have an exact sequence

0 −→ OX (−Z) −→ OX ⊕OX (Y − Z) −→ I(Y ) −→ 0 . (2.5)

In view of (2.1), the connecting homomorphism

H1(S, L)−→ H2(X, I(Y )) (2.6)

in the long exact sequence of cohomologies associated with (2.4) is an isomorphism.
Since the canonical line bundle of X is trivial, Serre’s duality gives:

H2+ j(X, OX (−Z))∗ = H2− j(X, OX (Z)) .

So using (2.2), we conclude that the left-hand side vanishes for j = 0, 1. Again, by Serre’s duality,

H2(X, OX (Y − Z))∗ = H2(X, OX (Z − Y )) = 0

(see (2.3)).
Thus, in the long exact sequence of cohomologies associated with (2.5), we have

H2(X, OX (−Z)) = 0 = H2+ j(X, OX (−Z)) , and H2(X, OX (Y − Z)) = 0 .

Hence this long exact sequence of cohomologies associated with (2.5) gives an isomorphism

H2(X, OX )
∼−→ H2(X, I(Y )) ;

so combining this with the isomorphism in (2.6), it now follows that H1(S, L) is isomorphic to H2(X, OX ). We have 
dim H2(X, OX ) = 1, so

dim H1(S, L) = 1 . (2.7)

By the Grothendieck–Lefschetz hyperplane theorem for Picard’s group, the restriction map Pic(X) −→ Pic(Y ) is an iso-
morphism [7, Exposeé XII]; in fact, a weaker version given in [8, Chapter IV, p. 179, Corollary 3.2] suffices for our purpose. 
By the generalized Noether–Lefschetz theorem (see [9, p. 121, Theorem 5.1]), the restriction map Pic(Y ) −→ Pic(S) is also 
an isomorphism. Thus Pic(S) is isomorphic to Z. Combining this with (2.7), it follows that the surface S has the desired 
properties.

3. Question 1.1 in special cases

In this section, we will first use the construction in Section 2 to show that Question 1.1 in the introduction has a negative 
answer in general. Then we will show that, in some particular cases, the answer is affirmative.

3.1. Example with a negative answer

We will construct a smooth projective surface X and a vector bundle E on it that does not admit any connection, while 
the restriction of E to every smooth curve in X admits a connection.

Let X be a smooth complex projective surface with Pic(X) = Z that admits an ample line bundle L with H1(X, L) �= 0; 
we saw in Section 2 that such a surface exists. Let OX (1) denote the ample generator of Pic(X). Then L = OX (r) =
OX (1)⊗r with r positive. We choose L with the smallest possible r. Since Pic(X) = Z, we have H1(X, OX ) = 0 because 
H1(X, OX ) = 0 is the (abelian) Lie algebra of the Lie group Pic(X). On the other hand, the Kodaira vanishing theorem says 
that H1(X, OX (−k)) = 0 for all k > 0. Therefore, it follows that

H1(X, L ⊗OX (−d)) = 0 ,∀ d > 0 . (3.1)

Let

0 −→ L −→ E −→ OX −→ 0 (3.2)

be the non-split extension corresponding to a non-zero element in H1(X, L).
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Theorem 3.1. The vector bundle End(E) = E ⊗ E∗ in (3.2) has the property that the restriction of it to every smooth closed curve in 
X admits a connection. The vector bundle End(E) does not admit a connection.

Proof. Take any smooth closed curve C ⊂ X . So C ∈ |OX (d)| with d positive. Consider the restriction homomorphism 
H1(X, L) −→ H1(C, L|C ). Using the long exact sequence of cohomologies associated with

0 −→ L ⊗OX (−d) −→ L −→ L|C −→ 0

we conclude that its kernel is H1(X, L ⊗ OX (−d)), which is zero by (3.1). In particular, the extension class for (3.2) has a 
nonzero image in H1(C, L|C ). Therefore, the restriction of the exact sequence (3.2) to C does not split.

We will show that E|C is indecomposable.
Assume that E|C = L1 ⊕ L2 with degree(L1) ≥ degree(L2). Since degree(E|C ) = degree(L|C ) > 0 = degree(OC ), the 

composition

L1 ↪→ E|C −→ OC

is the zero homomorphism. Hence L1 coincides with the subbundle L|C ⊂ E|C . This contradicts the earlier observation that 
the restriction of the exact sequence (3.2) to C does not split. Hence, we conclude that E|C is indecomposable.

Consider the projective bundle P(E|C ) −→ C . Let EPGL(2) −→ C be the principal PGL(2, C)-bundle corresponding to 
it. Since E is indecomposable, it follows that EPGL(2) admits an algebraic connection [2, p. 342, Theorem 4.1]. The vector 
bundle End(E|C ) −→ C is associated with EPGL(2) for the adjoint action of PGL(2, C) on EndC(C2) = M(2, C). Therefore, a 
connection on EPGL(2) induces a connection on the vector bundle End(E|C ). Hence, we conclude that End(E|C ) = End(E)|C

admits an algebraic connection.
On the other hand, c2(End(E)) = −c1(L)2 �= 0. This implies that the vector bundle E on X does not admit a connection 

[1, Theorem 4]. �
3.2. Special cases with positive answer

Let S be a smooth complex projective curve, X a smooth complex projective variety and p : X −→ S a smooth surjective 
morphism such that every fiber of p is rationally connected. Assume that there is a smooth closed curve ˜S ⊂ X such that 
the restriction

p|̃S : ˜S −→ S

is an étale morphism.

Lemma 3.2. Let E be a vector bundle on X whose restriction to every smooth curve on X admits a connection. Then E admits a 
connection.

Proof. Let Y be a smooth complex projective rationally connected variety and V a vector bundle on Y , such that for every 
smooth rational curve CP1 ι

↪→ Y the restriction ι∗V has a connection. Any connection on a curve is flat, and CP1 is simply 
connected, so the above vector bundle ι∗V is trivial. This implies that the vector bundle V is trivial [4, Proposition 1.2].

From the above observation, it follows that E = p∗ p∗E . Therefore, it suffices to show that p∗E admits a connection. 
Now, by the given condition, the vector bundle (p|̃S)

∗ p∗E = E |̃S admits a connection. Fix a connection D on E |̃S . Averaging 
D over the fibers of p, we get a connection on p∗ E . This completes the proof. �
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