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For semisimple Lie groups, moduli spaces of Higgs bundles on a Riemann surface 
correspond to representation varieties for the surface fundamental group. In many 
cases, natural topological invariants label connected components of the moduli spaces. 
Hitchin representations into split real forms, and maximal representations into Hermitian 
Lie groups, are the only previously know cases where natural invariants do not fully 
distinguish connected components. In this note we announce the existence of new such 
exotic components in the moduli spaces for the groups SO(p, q) with 2 < p < q. These 
groups lie outside formerly know classes of groups associated with exotic components.
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r é s u m é

Pour les groupes de Lie semisimples, les espaces de modules de fibrés de Higgs sur une 
surface de Riemann sont en correspondance avec les variétés de représentations du groupe 
fondamental de la surface. Pour de nombreux groupes, les invariants topologiques naturels 
distinguent les composantes connexes de l’espace des modules. Les représentations de 
Hitchin dans un groupe réel déployé et des représentations maximales dans un groupe 
hermitien fournissaient les seuls exemples connus jusqu’ici dans lesquels les invariants 
primitifs étaient insuffisants. Cette note a pour objet d’annoncer l’existence de nouvelles 
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composantes exotiques pour les espaces de modules pour les groupes SO(p, q), pour 
2 < p < q.

Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

Representation varieties for closed oriented surfaces generally have more than one connected component. Some of the 
components are mundane in the sense that they are distinguished by obvious topological invariants and have no known 
special characteristics. Others are more alluring and unusual either because they are not detected by the primary invariants 
or because they have special geometric significance, or both.

Instances of such ‘exotic’ components are well understood in two situations. The first is for representations into a split 
real form of a complex semisimple group (see [14]), in which case the exotic components are known as Hitchin components. 
The second occurs for representations into the isometry group for a non-compact Hermitian symmetric space (see [5]), in 
which case the components with so-called maximal Toledo invariant have exotic components. Both of these classes of exotic 
components have been called higher Teichmüller components in [7] since they enjoy many of the geometric features of 
Teichmüller space.

The purpose of this note is to announce2 the existence of exotic components in the representation varieties for represen-
tations into SO(p, q), the special orthogonal groups with signature (p, q). These groups are non-compact with two connected 
components, the component of the identity will be denoted by SO0(p, q). The groups SO(p, q) are neither split nor of Her-
mitian type except in the special cases p = 2 (in which case the groups are Hermitian) or the cases q = p and q = p + 1
(the split cases). The new SO(p, q) exotic components are thus not accounted for by previously known mechanisms.

For a closed surface S and a Lie group G, the representation variety R(S, G) parameterizes the space of conjugacy 
classes of group homomorphisms ρ : π1(S) → G. By the Non-Abelian Hodge (NAH) correspondence, the space R(S, G) is 
homeomorphic to M(�, G), the moduli space of polystable G-Higgs bundles on a closed Riemann surface � of the same 
genus as S . Our methods lie on the Higgs bundle side of the NAH correspondence; what we actually prove is the existence 
of exotic components for M(�, SO(p, q)).

Though not accounted for by previously known mechanisms, evidence for these new exotic components has nevertheless 
steadily accumulated in recent years. The earliest indication came from Morse theoretic considerations based on the norm-
squared of the Higgs field. This real-valued function defines a proper map and hence attains a local minimum on every 
connected component. The absolute minimum, i.e. the zero level, is attained on the components labeled by the primary 
topological invariants for SO(p, q)-Higgs bundles. In her 2009 Ph.D. thesis [1] the first author described additional local 
minima at non-zero values. Since the moduli spaces are not smooth, Morse theoretic tools could not be employed directly 
to infer the existence of exotic components, but these exotic local minima revealed that possibility (now confirmed by the 
results in this note).

Further evidence came from the results in [8] in the special case of SO(p, p + 1). Since these groups are split real forms, 
the moduli spaces have Hitchin components, but the results in [8] show that these are not the only exotic components. For 
p = 2, the fact that SO0(2, 3) is double covered by Sp(4, R) leads to extra exotic components related to exotic components 
first detected in [12] in the moduli spaces of Sp(4, R)-Higgs bundles. The results in [8] show that these exotic components 
have counterparts for all SO(p, p + 1).

Working on the other side of the Non-Abelian Hodge Correspondence, Guichard and Wienhard found reason to con-
jecture (see [13]) that the representation varieties R(S, SO(p, q)) should have special connected components not detected 
by the primary topological invariants. The conjectured components would parameterize representations characterized by a 
positivity condition which is a refinement of the Anosov condition introduced by Labourie [15]. The conjecture is based on 
the fact that apart from the split real forms and the real forms of Hermitian type, the only other non-exceptional groups 
which allow positive representations are the groups SO(p, q).

The NAH correspondence is notoriously non-explicit, providing little guidance for matching individual Higgs bundles with 
specific surface group representations. In particular, except in special cases, it is difficult to identify Higgs bundles which 
correspond to representations satisfying the Guichard–Wienhard positivity condition. Nonetheless, with evidence coming 
from special cases, we conjecture that the Higgs bundles in our exotic components all correspond to positive representations 
in the sense of Guichard–Wienhard, and hence that the exotic components we detect in M(�, SO(p, q)) correspond to the 
expected components in R(S, SO(p, q)). In particular, the exotic components of R(S, SO(p, q)) would consist entirely of 
Anosov representations.

We note finally that very recently another facet of our exotic components has been revealed by Baraglia and Schaposnik 
in [3]. In this work, the space M(�, SO(p, q)) is regarded as a subvariety of M(�, SO(p + q, C)) and the intersection of 
M(�, SO(p, q)) with generic fibers of the Hitchin fibration is examined. Since their methods apply only to an open subset 

2 Full details of the proof can be found in the preprint [2].
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of M(�, SO(p, q)), they are not able to establish the existence of exotic components. They can however characterize the 
intersections of these components with generic fibers in terms of spectral data. The description has features in common 
with our description of the entire component but is not the same. It would be interesting to reconcile the two descriptions.

2. The main result

Let S be a closed oriented surface of genus g � 2. Fix a complex structure on S and denote the resulting Riemann surface 
by �. Without loss of generality we assume that p � q. While the concept of a G-Higgs bundle for non-compact real forms 
goes back to the pioneering work of Hitchin [14], the basic definitions and constructions have been elaborated on in several 
places including [11,16]. We give here only the essentials necessary to describe our results, and refer the reader to the cited 
references for more details.

Definition 2.1. An SO(p, q)-Higgs bundle on � is defined by a triple (V , W , η) where V and W are respectively rank p
and rank q vector bundles with orthogonal structures such that3 det(W ) � det(V ), and η is a holomorphic bundle map 
η : W → V ⊗ K .

There are notions of stability, semistability, and polystability which apply to SO(p, q)-Higgs bundles and which fa-
cilitate the construction of moduli spaces. We use the notation M(SO(p, q)) to denote the moduli space of polystable 
SO(p, q)-Higgs bundles on �.

The cases with p � 2 or q � p +1 are somewhat special, so for clarity we state the main result without them, and discuss 
them in Section 3. For p > 2, principal O(p, C)-bundles on � are classified topologically by first and second Stiefel–Whitney 
classes, sw1 ∈ H1(S, Z2) and sw2 ∈ H2(S, Z2), coming from a reduction to the maximal compact subgroup O(p). These 
primary topological invariants are constant on connected components of the moduli space M(SO(p, q)). Since det(W ) �
det(V ), it follows that sw1(V ) = sw1(W ). The components of the moduli space M(SO(p, q)) are thus partially labeled by 
triples (a, b, c) ∈ Z

2g
2 ×Z2 ×Z2, where

a = sw1(V ) ∈ H1(�,Z2), b = sw2(V ) ∈ H2(�,Z2) and c = sw2(W ) ∈ H2(�,Z2).

Using the notation Ma,b,c(SO(p, q)) to denote the union of components labeled by (a, b, c), we can thus write

M(SO(p,q)) =
∐

(a,b,c)∈Z2g
2 ×Z2×Z2

Ma,b,c(SO(p,q)) . (2.1)

The stability notion for SO(p, q)-Higgs bundles implies that a Higgs bundle (V , W , η) with η = 0 is polystable if and only 
if V and W are both polystable orthogonal bundles. This leads to the immediate identification of one connected component 
in each space Ma,b,c(SO(p, q)). We use the subscript ‘top’ to designate these components, which contain SO(p, q)-Higgs 
bundles with vanishing Higgs field.

Proposition 2.2. Assume that 2 < p � q. For every (a, b, c) ∈ Z
2g
2 × Z2 × Z2 the space Ma,b,c(SO(p, q)) has a non-empty con-

nected component,4 denoted by Ma,b,c
top (SO(p, q)), in which every point can be continuously deformed to the isomorphism class of an 

SO(p, q)-Higgs bundle of the form (V , W , η = 0) where V and W are polystable orthogonal bundles.

We define

Mtop(SO(p,q)) =
∐
a,b,c

Ma,b,c
top (SO(p,q)) (2.2)

Our main result shows that the moduli space M(SO(p, q)) has additional ‘exotic’ components disjoint from the components 
of Mtop(SO(p, q)). We identify these exotic components as products of moduli spaces of so-called L-twisted Higgs bundles, 
where each factor L is a positive power of the canonical bundle K .

Definition 2.3. Let L be a fixed holomorphic line bundle on �. An L-twisted SO(1, n)-Higgs bundle on � is a triple 
(I, W0, η), where W0 is a O(n, C)-bundle, I is the rank one orthogonal bundle det(W0) and η : W0 → I ⊗ L is a holo-
morphic bundle map.

3 This condition is equivalent to det(W ) � det(V )−1 since det(W )2 is trivial.
4 In the case p = 2 it is no longer true that Ma,b,c

top (SO(p, q)) is non-empty for all (a, b, c). In particular, if a = 0, then V = L ⊕ L−1 which (a) is polystable 
only if deg L = 0 and (b) has sw2(V ) = deg L mod 2. Thus M0,b,c

top (SO(2, q)) is empty if b �= 0.
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Remark 2.4. The bundle I is a square root of the trivial bundle. If I is trivial then the objects (I, W0, η) define L-twisted 
SO0(1, n)-Higgs bundles, where SO0(1, n) denotes the connected component of the identity.

Remark 2.5. The notions of stability for Higgs bundles readily extend to L-twisted Higgs bundles and similarly allow the 
construction of moduli spaces. We use the notation ML(G) for the moduli space of polystable L-twisted G-Higgs bundles. 
In particular, taking L = K p , MK p (SO(1, n)) denotes the moduli space of polystable K p -twisted SO(1, n)-Higgs bundles.

We get a decomposition similar to (2.1), namely

MK p (SO(1,n)) =
∐

(a,c)∈Z2g
2 ×Z2

Ma,c
K p (SO(1,n)) , (2.3)

where Ma,c
K p (SO(1, n)) denotes the component in which the SO(1, n)-Higgs bundles are of the form (I, W0, η) with a =

sw1(W0) and c = sw2(W0).
We can now state our main result.

Theorem 2.6 (Main Theorem). Fix integers (p, q) such that 2 < p < q − 1. For each choice of a ∈ Z
2g
2 and c ∈ Z2 , the moduli space 

M(SO(p, q)) has a connected component disjoint from Mtop(SO(p, q)). This component is isomorphic to

Ma,c
K p (SO(1,q − p + 1)) ×MK 2(SO0(1,1)) × · · · ×MK 2p−2(SO0(1,1)) , (2.4)

and lies in the sector Mα,0,c(SO(p, q)) where α = a if p is odd and α = 0 if p is even. Moreover, M(SO(p, q)) has no other connected 
components.

Remark 2.7. The group SO0(1, 1) is the connected component of the identity in SO(1, 1), and MK 2 j (SO0(1, 1)) can be 
identified with H0(K 2 j). Thus, we can replace (2.4) with

Ma,c
K p (SO(1,q − p + 1)) ×

p−1⊕
j=1

H0(K 2 j) . (2.5)

Remark 2.8. The existence of the exotic components described by (2.4) was proven for p = 2 in [5]. They are the exotic 
components with maximal Toledo invariant arising from Cayley correspondence (see Section 3.3). In particular, Theorem 2.6
can be viewed as a generalized Cayley correspondence. Contrary to the cases p > 2, there are components of M(SO(2, q))

which are not in the family described by the theorem and also not in Mtop(SO(2, q)). These are the components with 
non-maximal and non-zero Toledo invariant.

For 2 < p < q −1 and each (a, c), we show that the space Ma,c
K p (SO(1, q − p +1)) is connected. As an immediate corollary, 

this gives a count of the connected components of M(SO(p, q)).

Corollary 2.9. For 2 < p < q − 1, the moduli space M(SO(p, q)) has 3 × 22g+1 connected components, 22g+1 of which are exotic 
components disjoint from Mtop(SO(p, q)).

Remark 2.10. As a further consequence of Theorem 2.6 we have the following dichotomy for a Higgs bundle in M(SO(p, q)): 
either the Higgs field can be deformed to zero, or the Higgs bundle is determined by a polystable O(q − p + 1, C)-bundle 
and a Higgs bundle in a Hitchin component for SO(p, p − 1).

3. Special cases

We now describe the special cases not covered by Theorem 2.6. Even though they are mainly accounted for by previously 
known phenomena, we will see in the next section that all cases fit within a unified framework.

3.1. The case q = p + 1

If q = p + 1, then Ma,c
K p (SO(1, q − p + 1)) = Ma,c

K p (SO(1, 2)), which is not always connected. Indeed, if a = 0, then the 
Higgs bundles represented in M0,c

K p (SO(1, 2)) can be taken to be of the form (O, L ⊕ L−1, η), where L is a non-negative 
degree d line bundle. Stability considerations impose a bound on d so that

M0,c
K p (SO(1,2)) =

∐
0�d�p(2g−2)

Md
K p (SO(1,2)). (3.1)
d=c (mod 2)
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Moreover, (see [8, Theorem 1]) for each integer d ∈ (0, 2g − 2], the moduli space Md
K p (SO(1, 2)) is diffeomorphic to a 

vector bundle of rank d + g − 1 over the (2g − 2 − d)th-symmetric product Sym2g−2+d(�). In particular, the components 
Md

K p (SO(1, 2)) are smooth and connected.
The moduli spaces M(SO(p, p + 1)) have been analyzed in [8]. It was shown there that the topological invariants for 

SO(p, p + 1)-Higgs bundles, i.e. the triples (a, b, c), do not distinguish all connected components. Two families of exotic 
components were identified. The components in the first family are labeled by an integer, d, in the range 0 � d � p(2g − 2), 
while those in the second family are labeled by a pair (a, c) ∈ (Z2g − {0}) × Z2. Though not described in this way in [8], 
these families can be identified as follows:

• In the family labeled by d, each member is isomorphic to

Md
K p (SO(1,2)) ×MK 2(SO0(1,1)) × · · · ×MK 2p−2(SO0(1,1)), (3.2)

where Md
K p (SO(1, 2)) is one of the components of M0,c

K p (SO(1, 2)) as in (3.1).
• In the family labeled by (a, c), each member is isomorphic to

Ma,c
K p (SO(1,2)) ×MK 2(SO0(1,1)) × · · · ×MK 2p−2(SO0(1,1)). (3.3)

The components are thus precisely those identified by Theorem 2.6 in the case q = p + 1. The component count in this case 
is, however, different from the case q > p + 1.

Corollary 3.1. For p > 2, the moduli space M(SO(p, p + 1)) has 3 × 22g+1 + 2p(g − 1) − 1 connected components. Among those, 
there are 22g+1 + 2p(g − 1) − 1 ‘exotic’ components which are disjoint from Mtop(SO(p, p + 1)).

3.2. The case q = p

In this case MK p (SO(1, q − p + 1)) = MK p (SO(1, 1)). A K p-twisted SO(1, 1)-Higgs bundle consists of a triple (I, I, η)

where I is a square root of the trivial bundle O and η ∈ H0(K p). Such Higgs bundles are labeled by a single Stiefel–Whitney 
class, namely a = sw1(I), so that

MK p (SO(1,1)) =
∐

a∈H1(�,Z2)

Ma
K p (SO(1,1)). (3.4)

With q = p, Theorem 2.6 thus gives 22g exotic components of M(SO(p, p)) isomorphic to the moduli spaces

Ma
K p (SO(1,1)) ×MK 2(SO0(1,1)) × · · · ×MK 2p−2(SO0(1,1)). (3.5)

For each a, we can identify Ma
K p (SO(1, 1)) with H0(K p). Thus, each exotic component is isomorphic to H0(K p) ⊕

p−1⊕
j=1

(H0(K 2 j). This recovers the Hitchin component in M(SO0(p, p)) when a = 0.

3.3. The case p = 2 < q

An SO(2, q)-Higgs bundle is defined by a triple (V , W , η) in which V is an O(2, C)-bundle. If sw1(V ) = 0, i.e. if the 
structure group of V reduces to SO(2, C), then V can be assumed to be a direct sum of line bundles of the form V = L ⊕ L−1, 
with orthogonal structure given qV =

(
0 1
1 0

)
in this splitting. Note that the second Stiefel–Whitney class of the orthogonal 

bundle L ⊕ L−1 is given by sw2 = d (mod 2) where d = deg(L) � 0.
For the groups SO(2, q), the connected components of the identity are isometry groups of Hermitian symmetric spaces 

of non-compact type. As such, the Higgs bundles have an associated Toledo invariant which, up to a normalization constant, 
is integer-valued but subject to a Milnor–Wood bound (see [4,5]). For an SO0(2, q)-Higgs bundle (L ⊕ L−1, W , η), the Toledo 
invariant can be identified as the degree d of L and the Milnor–Wood bound5 is 0 � d � 2g − 2. We thus get

M0,b,c(SO(2,q)) =
∐

0�d�2g−2
d=b (mod 2)

Md,c(SO0(2,q)), (3.6)

where Md,c(SO(2, q)) denotes the component in which deg(L) = d and sw2(W ) = c.
The components where d = 2g − 2 specializes further because in these components:

5 For the group SO0(2, q) the Milnor–Wood inequality is 2 − 2g � d � 2g − 2. However, the automorphism switching the sign of the Toledo invariant 
(which is an outer automorphism for SO0(2, q)) can be realized as an SO(2, q) inner automorphism.
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(1) L has to be isomorphic to K I , where I2 =O, and
(2) W decomposes as W = I ⊕ W0, where W0 is a rank q − 1 orthogonal bundle with sw1(W0) = I .

As shown in [9], an SO(2, q)-Higgs bundle with L = K I , W = I ⊕ W0 and η = [q2, β] : I ⊕ W0 → K I is defined by a 
K 2-twisted SO(1, q − 1)-Higgs bundle (I, W0, β) together with a quadratic differential q2. Denoting M2g−2,c(SO(2, q)) by 
Mmax,c(SO(2, q)) it follows that

Mmax,c(SO(2,q)) =
∐

a∈H1(�,Z2)

Ma,c
K 2 (SO(1,q − 1)) × H0(K 2) =

∐
a

Ma,c
K 2 (SO(1,q − 1) × SO0(1,1)) (3.7)

where a = sw1(I). We thus get

M0,0,c(SO(2,q)) =
∐

0�d<2g−2
d=0 (mod 2)

Md,c(SO(2,q)) �
∐

a

Ma,c
K 2 (SO(1,q − 1) × SO0(1,1)). (3.8)

The group SO(1, q − 1) × SO0(1, 1) is known as the Cayley partner to SO(2, q) and the objects in Ma,c
K 2 (SO(1, q − 1) ×

SO0(1, 1)) are called Cayley partners to the Higgs bundles in Mmax,c(SO(2, q)). Such Cayley partners are known to emerge 
in maximal components of M(G) whenever G is the isometry group of a Hermitian symmetric space of tube type (see 
[4,5]). Comparing to Theorem 2.6, we see that the exotic components in M(SO(p, q)) are direct generalizations of these 
Cayley partners to the maximal components Mmax,c(SO(2, q)).

4. What we actually prove – the main ideas

Theorem 2.6 shows not only that additional exotic components exist, but also gives a model which describes them. 
Indeed, given the model, the result is proved directly by constructing a suitable map from the model to the moduli space 
M(SO(p, q)). The model is itself built from moduli spaces (of K j-twisted Higgs bundles), so that in both the domain and 
target of our map the points represent equivalence classes of objects. We first describe a map between the objects, and then 
show that it descends to the appropriate moduli spaces where it defines a homeomorphism onto a connected component.

The map relies in part on a parameterization of the Hitchin components of the moduli spaces M(SO(p − 1, p)). Viewing 
theses moduli spaces as subspaces of M(SO(2p − 1, C)), the parameterization is given by a section of the Hitchin fibration 
for M(SO(2p − 1, C)). The fibration is defined by SO(2p − 1, C)-invariant polynomials evaluated on the Higgs field, giving a 

map to 
p−1⊕
j=1

H0(K 2 j). Hitchin showed in [14] that the fibration admits sections which parameterizes connected components 

of M(SO(p − 1, p)) ⊂M(SO(2p − 1), C).
The SO(p, p − 1)-Higgs bundles in the image of the section can be taken to be of the form (Kp , Kp−1, σ(q2, q4, . . . ,

q2p−2)) where

Kp = K p−1 ⊕ K p−3 ⊕ · · · ⊕ K 1−p, (4.1)

and σ is given by a map

σ :
n⊕

j=1

H0(K 2 j) → Hom(Kp,Kp−1) ⊗ K . (4.2)

Our Main Theorem is a consequence of the following:

Theorem 4.1. Let (I, W0, ηp) be a K p -twisted SO(1, q − p +1)-Higgs bundle and take differentials q2 j ∈ H0(K 2 j) for j = 1, . . . p −1. 
Using the notation from (4.1), consider the SO(p, q)-Higgs bundle (V , W , η) defined by

V = I ⊗Kp, W = W0 ⊕ I ⊗Kp−1 and η = (
μ σ( 
q )

) : W → V ⊗ K , (4.3)

where μ =
⎛
⎜⎝

ηp

0
.
.
.
0

⎞
⎟⎠ : W0 →Kp ⊗ I ⊗ K , 
q = (q2, . . . , q2p−2) and σ is the map from (4.2).

(1) (V , W , η) is polystable if and only if (I, W0, μ) is polystable. The map

((I, W0,μ);q2,q4, . . . ,q2p−2) �−→ (V , W , η)

thus descends to define a map
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� : MK p (SO(1,q − p + 1)) ×
p−1∏
i=1

MK 2i (SO0(1,1)) M(SO(p,q)) .

(2) The map � is injective.
(3) The map � is open and closed.
(4) The image of � is disjoint from the components Mtop(SO(p, q)).

After showing that the SO(p, q)-Higgs bundle (4.3) is polystable if and only if (I, W0, ηp) is a polystable K p -twisted 
SO(1, q − p + 1)-Higgs bundle, it is shown that two Higgs bundles of the form (4.3) lie in the same gauge orbit if and only 
(I, W0, ηp) lie in the same gauge orbit. This proves the map � on moduli spaces is injective.

To prove that the map � is open, we analyze the local structures of both the domain and target of the map �. In 
particular, we show that the second hyper-cohomology groups in the deformation complexes vanish at all points of both 
the domain and image of the map. This technical result together with an appropriately equivariant isomorphism of the first 
hyper-cohomologies of the deformation complexes leads to openness of the map �.

For the closedness of the map �, we prove the contrapositive, i.e. we show that if � fails to be a closed mapping, then 
we can find a divergent sequence of points {xi} in the domain such that {�(xi)} converges in M(SO(p, q)). We use the 
properness of the Hitchin fibrations for MK p (SO(1, q − p + 1)) and M(SO(p, q)) to show that no such sequence exists. In 
particular, since the fibers of the Hitchin fibration are compact, if the sequence {xi} diverges, then the projection of the 
sequence onto the base of the fibration, say {yi}, must diverge. Using the map induced on the Hitchin bases by �, say �̂, if 
{yi} diverges, then so does the sequence {�̂(yi)}, and hence so does the sequence {�(xi)}.

Parts (1)–(3) prove that the image of � forms a union of connected components. We show further that any Higgs bundle 
not in the image of � can be deformed to one in which the Higgs field is zero. Since, by construction, the Higgs field never 
vanishes in the image of �, this proves (4).

5. Conjecture

Representations in the so-called higher Teichmüller components of R(S, G) are examples of the important class of 
Anosov representations introduced by Labourie in [15]. As a result, they have many interesting geometric and dynami-
cal properties, one important property of the set of Anosov representations is that they are open in the representation 
variety. They are however not closed in general.

Recently, Guichard and Wienhard [13] introduced the notion of a positive Anosov representation which refines the notion 
of an Anosov representation. Here positivity depends on a choice of parabolic subgroup of G, and like Anosov representa-
tions, positive representations are open in the representation variety. Guichard and Wienhard conjecture that the set of 
positive representations is also closed in the representation variety. As a result, positive representations define connected 
components of the representation variety which consist entirely of Anosov representations.

For the two known families of higher Teichmüller components, this has been established. Namely, Hitchin representations 
are positive with respect to the Borel subgroup [15,10] and, for a Hermitian group G of tube type, maximal representations 
are positive with respect to the parabolic subgroup which gives rise to the Shilov boundary of the Riemannian symmetric 
space of G [6]. Interestingly, for p < q, SO(p, q) also admits a notion of positivity with respect to the generalized flag variety 
consisting of flags V 1 ⊂ · · · ⊂ V p−1 ⊂ R

p+q where V j is an isotropic (with respect to a signature (p, q) inner product) 
j-plane.

It is natural to conjecture that the exotic connected components of Theorem 2.6 correspond to connected components of 
positive representations in SO(p, q).

Conjecture 5.1. Under the NAH correspondence, the exotic components identified in Theorem 2.6 correspond to the positive compo-
nents conjectured to exist by Guichard–Wienhard.

It is shown in [8] that many of the exotic components of M(SO(p, p +1)) contain points corresponding to positive repre-
sentations. Generalizing these techniques, we can show that for q > p + 1 every exotic components of M(SO(p, q)) contains 
Higgs bundles which correspond to positive representations. Thus, if Guichard and Wienhard’s conjecture on closedness of 
positive representations is true, it would imply the above conjecture and Theorem 2.6 would give a count of the connected 
components of positive representations.
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