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Consider the standard Gaussian measure μ on R2. Consider independent r.v.s (Xi)i≤N

distributed according to μ, and an independent copy (Yi)i≤N of these r.v.s. We prove that, 
for some number C and N large, we have

(log N)2

C
≤ E inf

π

∑

i≤N

d(Xi, Yπ(i))
2 ≤ C(log N)2 , (1)

where the infimum is over all permutations π of {1, . . . , N}. The striking point of this result 
is the factor (log N)2. Indeed, if instead of μ we consider the uniform distribution on the 
unit square, it is well known that the proper factor is log N . The upper bound was proved 
by Michel Ledoux (2017) [3].

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
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r é s u m é

Considérons une suite indépendente (Xi)i≤N de variables aléatoires distribuées comme la 
mesure gaussienne canonique μ sur R2 et une copie independente (Yi)i≤N de cette même 
suite. Pour une certaine constante universelle C et N ≥ 2, nous avons les inégalités

(log N)2

C
≤ E inf

π

∑

i≤N

d(Xi, Yπ(i))
2 ≤ C(log N)2 (1)

où l’infimum est pris sur toutes les permutations π de {1, . . . , N}. La borne supérieure a été 
prouvée par Michel Ledoux (2017) [3], qui conjecturait que l’inégalité (1) était correcte avec 
un facteur log N et non pas (log N)2. C’est précisement l’apparence de ce facteur (log N)2

qui est non standard.
© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 

article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Consider independent r.v.s (Xi)i≤N uniformly distributed on the unit square of R2 and an independent copy (Yi)i≤N of 
these variables. It is well known that, for each p > 1, one has

N1−p/2(log N)p/2

C p
≤ E inf

π

∑

i≤N

d(Xi, Yπ(i))
p ≤ C p N1−p/2(log N)p/2 (2)

for some number C p depending on p only. An important idea here is that the lower bound follows from Hölder’s inequality 
and the case p = 1, and that this lower bound also holds if the distribution of the Xi is not too different from uniform, say 
its density is constant within a multiplicative factor 2.

One may like, of course, to investigate what happens when the uniform distribution is replaced by an unbounded distri-
bution μ. In the case p = 1, this was done, in particular, by J. Yukich [5].

In this note, we bring forward a completely elementary scaling property that does not seem to have been previously 
noticed. Since this property is not specific to dimension 2, we will explain it in its proper setting where it is much clearer. 
Consider k ≥ 3 and assume now that the r.v.s Xi and Yi are uniform over [0, 1]k . Then one should replace (1) by the (much 
easier) inequality

N1−p/k

Ck,p
≤ E inf

π

∑

i≤N

d(Xi, Yπ(i))
p ≤ Ck,p N1−p/k , (3)

where Ck,p is independent of N . It is the case p = k, which gives rise to interesting scaling effects. To explain the heuristic, 
we assume now that the Xi have a common distribution μ. Let us assume that in a certain box A of side a, the probability 
μ is nearly uniform, in a sense that its density ρ with respect to Lebesgue’s measure varies on that square by at most a 
factor 2, say b ≤ ρ ≤ 2b. Assuming n = Nbak ≥ N1/100, there are about n points Xi that belong to A. The typical distance 
between a point Xi and the closest point Y j is about a/n1/k . We then expect that, for any permutation π, we have

∑

Xi∈A

d(Xi, Yπ(i))
k ≥ 1

Ck
n × ak/n = ak

Ck
. (4)

The fundamental fact here is that this quantity is independent of b, so that in a sense the points in A do not overall 
contribute like μ(A), but rather like λk(A), the k-dimensional volume of A. For this reason, we should heuristically have

∑

i≤N

d(Xi, Yπ(i))
k ≥ U

Ck
(5)

where U is the area of the union of the squares A as described above. In the case where μ is the standard Gaussian measure 
on Rk , it turns out that the union of such squares contains a sphere of radius 

√
log N/C , which is volume (log N)k/2/C , and 

we have completed the heuristic proof of the following.

Proposition 1.1. Assume k ≥ 3. If the sequence (Xi)i≤N is independently distributed according to the standard Gaussian measure μ
and (Yi)i≤N is an independent copy of this sequence, then

E inf
π

∑

i≤N

d(Xi, Yπ(i))
k ≥ (log N)k/2

Ck
. (6)

It is extremely easy to turn the heuristic argument into a rigorous proof. There is every reason to believe that the bound 
(6) can be reversed, and we outline below a variation of the standard “transportation method” that should prove that, but 
we have not performed the computations to check that it works.

The situation is more subtle when k = 2. There is another type of more global fluctuations in a random sample. These 
fluctuations create the extra factor log N in (2). These fluctuations are also present inside each box A, and created an extra 
factor log n � log N . The lower bound in (5) has to be replaced by (U log N)/C , and this is how one reaches the lower bound 
in (1).

In the next section, we make the previous ideas precise in order to prove the lower bound in (1). The upper bound in (1)
was proved by Michel Ledoux [3] (by adapting the methods of [2]), who introduced the problem. We will give a completely 
elementary proof of this upper bound, using only (2).

It should be noted that our proofs depend heavily on the fact that the tails of the Gaussian distribution decrease fast. 
More precisely, calling ρ(x) the density of this distribution with respect to Lebesgue’s measure, the regions where ρ(x) ≥
1/N and ρ(x) ≥ N−1/100 have areas of the same order. It seems certain that our result can be extended to the case of a 
distribution μ with density proportional to exp(−d(0, x)α) with respect to Lebesgue’s measure (where α > 0) (replacing 
of course the factor (log N)2 by (log N)1+2/α ). But what happens is the case where μ has a density proportional to (1 +
d(0, x))−α is far less clear.
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2. Lower bounds

From now on, μ denotes the standard Gaussian measure on R2 and Xi and Yi are as in the introduction. The first lemma 
goes back to the paper [1]. The reader may also find the argument in Section 3.6 of [4].

Lemma 2.1. Consider a square A of side a in R2 . Assume that Nμ(A) ≥ N1/100 and that the density ρ(x) = (2π)−1 exp(−d(0, x)2/2)

of μ with respect to Lebesgue’s measure varies by at most a factor 2 over A. Then with probability close to 1, there exists a Lipschitz 
function f on R2 which is zero outside A and is such

∣∣∣∣∣∣

∑

i≤N

f (Xi) −
∑

j≤N

f (Y j)

∣∣∣∣∣∣
≥ 1

C
a
√

Nμ(A)(log N)1/2 . (7)

Here a is just a scaling factor, and A contains about Nμ(A) points Xi and Y j . The condition Nμ(A) ≥ N1/100 ensures 
that log(Nμ(A)) is of order log N .

Let us then explain how to prove the lower bound in (1). We say that a square B in R2 is k-dyadic if its side has length 
2−k and its vertices have coordinates that are integers multiple of 2−k . Considering constants C1, . . . large enough, we cover 
the disc centered at the origin of diameter 

√
log N/C1 by disjoint k-dyadic squares where k is such that 2−k � 1/(C2

√
log N). 

Then ρ varies by a factor at most 2 on each such square. Let B be this family of squares. Given such a square B , we denote 
by AB the square with the same center but one-forth of the area. For N large (which we assume in the rest of the proof) for 
each square B ∈ B, the square AB satisfies μ(AB)N ≥ N1/100. What happens in different squares are basically independent 
events, so with probability close to 1 the subset B′ of B consisting of the squares B for which the square AB satisfies the 
conclusion of Lemma 2.1 (the existence of a Lipschitz function f as in (7)) has a cardinality at least 1/2 of the cardinality 
of B.

Assuming that this is the case, given a permutation π of {1, . . . , N} we bound from below the quantity

D =
∑

i≤N

d(Xi, Yπ(i))
2 . (8)

Consider B ∈ B′ , and I B = {i ≤ N ; Xi ∈ A}. Consider then the Lipschitz function f = f B as in Lemma 2.1 applied to the 
square AB . Then using the Cauchy–Schwarz inequality,

∣∣∣∣∣∣

∑

i∈I B

( f (Xi) − f (Yπ(i)))

∣∣∣∣∣∣

2

≤ card I B

∑

i∈I B

d(Xi, Yπ(i))
2 . (9)

The plan is now to find a lower bound on the left-hand side. First, 
∑

i∈I B
f (Xi) = ∑

i≤N f (Xi) since f is zero outside AB . 
Next,

∑

i∈I B

f (Yπ(i)) =
∑

j≤N

f (Y j) −
∑

i /∈I B

f (Yπ(i)) .

Consequently,

∣∣∣∣∣∣

∑

i∈I B

( f (Xi) − f (Yπ(i)))

∣∣∣∣∣∣
≥

∣∣∣∣∣∣

∑

i≤N

f (Xi) −
∑

j≤N

f (Y j)

∣∣∣∣∣∣
−

∑

i /∈I B

| f (Yπ(i))|

The first term on the right is ≥ 2−k(Nμ(AB))1/2
√

log N/C . Assuming D ≤ (log N)3 (for otherwise there is nothing to prove), 
the second term is of much lower order because, when f (Yπ(i)) �= 0, then Yπ(i) ∈ AB , so that if, moreover, i /∈ I B , then 
Xi /∈ B , and then d(Xi, Yπ(i)) ≥ 2−k−2. The number of terms in the sum is then polylogarithmic in N , and each term is 
≤ 2−k . Consequently,

∣∣∣∣∣∣

∑

i∈I B

( f (Xi) − f (Yπ(i)))

∣∣∣∣∣∣

2

≥ 1

C
2−2k Nμ(AB) log N .

Since card I B if of order Nμ(B), going back to (9) gives 
∑

i∈I B
d(Xi, Yπ(i))

2 ≥ 2−2k(log N)/C , exactly as in the heuristic. 
Summation over B ∈ B ′ concludes the proof since 2−2k is just the area of B .
B
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3. Upper bounds

Even though the upper bound is proved by Michel Ledoux [3], it is of interest to provide a much more direct argument. 
Let us first explain one of the basic idea of our approach. It (Zi)i≤N are uniformly distributed on [0, 1]2, a typical realization 
of this sequence is such that one can find a permutation π of {1, . . . , N} such that |Zπ(i) − i/N| ≤ C

√
N . Consequently, 

considering independent r.v.s Xi = (X1
i , X2

i ) that are uniformly distributed over [0, 1], for the type of problem we can replace 
this sequence by the sequence (i/N, X2

i ). Assuming now N = 2k for simplicity, we can also replace the sequence Xi by the 
sequence Ti = (Ui, X2

i ), where (Ui)i≤k is independent uniformly distributed over [0, 1/2] and (Ui)k<i≤N is independent 
uniformly distributed over [1/2, 1]. In fact, there is no reason to split the interval [0, 1] in just two, we may split it in 
q pieces for q ≤ N . The transportation cost incurred by this transformation is bounded. Each vertical strip of the type 
[a, b] × [0, 1] can then be split in many pieces, by the same procedure, but the cost of the procedure is of order 1 for each
such strip. The method will be used with a logarithmic number of strips.

We define r0 = 0 and for k ≥ 1 we set rk = √
k. For k ≥ 1, consider the set Dk of points whose distance to the origin 

is between rk−1 and rk , so that for k ≥ 2, Dk is an annulus of width about 1/
√

k. The sequence rk is chosen so that the 
density ρ is “constant” on each Dk . We fix N . For each k, we consider an integer Nk with |Nk − Nμ(Dk)| ≤ 2, insuring 
that Nk = 0 for k ≥ 10 log N . The first step of the proof is to show that, instead of the sequence (Xi)i≤N , we can consider a 
sequence made as follows. For each k we have an independent sequence (Xk)i≤Nk that is distributed in Dk according to the 
probability μk given by μk(C) = μk(C ∩ Dk)/μ(Dk). The points (Xi)i≤N are then replaced by the points (Xk

i )k≥1,i≤Nk . This 
is done by working in polar coordinates, in which case Xi = (ri, θi) where (ri) and (θi) are independent of each other, and 
using the procedure described above, together with the following tedious one-dimensional result.

Lemma 3.1. Consider on R+ the probability measure ν of density x exp(−x2/2). Consider an integer N and for 1 ≤ k ≤ N define ak
by ν([ak, ∞)) = k/N. Consider independent r.v.s (Zi)i≤n distributed according to ν . Then E infπ

∑
i≤N(ai − Zπ(i))

2 ≤ C log N where 
as usual the infimum is over all permutations.

We then consider independent copies (Y k
i )i≤Nk of the Xk

i . The matching will be constructed by matching the points 
Xk

i with the points Y k
i . The procedure differs according to whether Nk ≥ √

krk (which occurs for the small values of k) 
or whether Nk ≤ √

krk (which occurs for the larger values of k since the sequence Nk decreases). Let us first examine the 
second case. Then the width of the annulus Dk is smaller than the typical distance between a point Xk

i and the closest 
point Y k

i (which is about rk/Nk). We are then facing a trivial one-dimensional problem. The cost of the matching in this 
annulus will be of order r2

k ≤ C log N because Nk = 0 for the larger values of k.

Let us then examine the case of the smaller values of k, where Nk ≥ √
krk . Then we decompose the annulus into nk �√

krk equal sectors, each of which looks roughly like a square, and on which ρ is nearly constant. Playing now with the 
coordinate θ , we can then replace the the family Xk

i by nk different families Xk,�
i , each of which is independent and 

distributed according to the conditional probability that it belongs to the sector. The cost of doing this is again at most 
Cr2

k ≤ C log N for each annulus. The points Xk,�
i are then matched to the points Y k,�

i . Using that the probability we consider 
in each sector is a Lipschitz image of a probability on a square of a comparable area, according to (2) the cost of the 
matching in one given sector is bounded by C log N times the area of the sector, and the sum of the areas of these sectors 
is about log N .
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