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We are interested in the problem of retrieving information on the refractive index n of a 
penetrable inclusion embedded in a reference medium from farfield data associated with 
incident plane waves. Our approach relies on the use of transmission eigenvalues (TEs) 
that carry information on n and that can be determined from the knowledge of the farfield 
operator F . In this note, we explain how to modify F into a farfield operator F art = F − F̃ , 
where F̃ is computed numerically, corresponding to well-chosen artificial background and 
for which the associated TEs provide more accessible information on n.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Nous souhaitons retrouver l’indice n d’une inclusion pénétrable dans un milieu de référence 
connu à partir de la donnée de champs lointains associés à des ondes planes incidentes. 
Pour ce faire, nous utilisons les valeurs propres de transmission (VPT) qui dépendent de 
n et qui peuvent être déterminées à partir de l’opérateur de champ lointain F . Dans cette 
note, nous expliquons comment modifier F en un opérateur de champ lointain F art = F − F̃ , 
où F̃ est calculé numériquement, correspondant à un milieu de référence artificiel et pour 
lequel les VPT associées fournissent une information plus directe sur n.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In recent years, sampling methods offered different perspectives in solving time harmonic inverse scattering problems [6]. 
In addition to allow for a non-iterative scheme to retrieve the support of inhomogeneities from multistatic data, these 
methods revealed the possibility to construct from the data a spectrum related to the material properties. This spectrum 
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corresponds to the set of Transmission Eigenvalues (TEs) of the so-called Interior Transmission Problem (ITP) (see (4)). In the 
justification of sampling methods, substantial efforts have been made to prove discreteness of the set of TEs [7], because 
most of these methods fail at frequencies corresponding to these values. However, since the work in [5], exploiting the 
failure of the reconstruction methods at TEs, it was proved that they can be determined from measured data and therefore 
can be exploited to infer information on the material properties. The determination of TEs from measured data has been 
improved using the framework of the Generalized Linear Sampling Method (GLSM) where exact knowledge of the support 
is no longer needed [2,6]. See also [14] for a different approach.

Under certain assumptions on n, the refractive index of the considered inhomogeneity appearing in Problem (1) below, it 
has been proved that there exist an infinite number of real positive TEs (k2 > 0) [8]. Note that in practice only real positive 
TEs are of interest because one can only play with real wavenumbers for measurements. This result of existence of real 
positive TEs is not obvious because the ITP (see equation after (4) below) is quadratic in k2 and it does not seem possible 
to see the spectrum of (4) as the spectrum of a self-adjoint operator. In particular, in 1D situations, it has been established 
that complex TEs do exist.

Although mathematically interesting, relying on transmission eigenvalues to determine quantitative features on n is diffi-
cult. The reason is twofold. First, information is lost in complex eigenvalues which cannot be measured in practice. Second it 
is difficult to establish sharp estimates for real TEs with respect to n due to the complexity of the problem. In this note, we 
explain how to work with another farfield operator F art corresponding to an artificial background (reference medium) for 
which the associated TEs have a more direct connection with n. Put differently, working with F art , our goal is to simplify the 
solution to the inverse spectral problem consisting in determining n from the knowledge of real positive TEs. Important in 
the analysis is the fact that F art is given by the formula F art = F − F̃ where F̃ can be obtained via a rather direct numerical 
computation. Therefore, in practice F art can also be considered as a data. Interestingly also, our approach does not require a 
priori knowledge of the exact support of the inhomogeneity. It is sufficient to know that the defect in the reference medium 
is located in a given bounded region.

Close to our study are the papers [11,9,3]. In the first one, the authors reformulate the ITP as an eigenvalue problem for 
the material coefficient. In the second and third ones, it is explained how to identify n from the knowledge of F (k) − F̃ (k, γ )

at a single wavenumber k and for a range of γ . Here F (k) − F̃ (k, γ ) can be seen as the farfield operator corresponding to 
a background depending on an artificial parameter γ . In comparison with our approach, this method is interesting because 
it requires to know F at a single wavenumber ( F̃ (k, γ ) can be computed numerically). However, the relation between 
associated TEs and n is a bit more complex than in our case.

2. Setting

We assume that the propagation of waves in time harmonic regime in the reference medium Rd , d = 2, 3, is governed 
by the Helmholtz equation �u + k2u = 0, with k > 0 being the wavenumber. The localized perturbation in the reference 
medium is modeled by some bounded open set � ⊂ R

d with Lipschitz boundary ∂� and a refractive index n ∈ L∞(Rd). We 
assume that n is real valued, that n = 1 in Rd \ � and that ess inf� n is positive. The scattering of the incident plane wave 
ui(·, θ i) := eikθ i ·x of direction of propagation θ i ∈ S

d−1 by � is described by the problem

find u = ui + us such that

�u + k2n u = 0 in R
d,

lim
r→+∞ r

d−1
2

(
∂us

∂r
− ikus

)
= 0,

(1)

with ui = ui(·, θ i). The last line of (1), where r = |x|, is the Sommerfeld radiation condition and is assumed to hold uniformly 
with respect to θ s = x/r. For all k > 0, Problem (1) has a unique solution u ∈ H2

loc(R
d). The scattered field us(·, θ i) has the 

expansion

us(x, θ i) = eikrr− d−1
2

(
u∞

s (θ s, θ i) + O (1/r)
)
, (2)

as r → +∞, uniformly in θ s ∈ S
d−1. The function u∞

s (·, θ i) : Sd−1 →C is called the farfield pattern associated with ui(·, θ i). 
From the farfield pattern, we can define the farfield operator F : L2(Sd−1) → L2(Sd−1) such that

(F g)(θ s) =
∫

Sd−1

g(θ i) u∞
s (θ s, θ i)ds(θ i). (3)

The function F g corresponds to the farfield pattern for the scattered field in (1) with ui = ui(g) := ∫
Sd−1 g(θ i)eikθ i ·x ds(θ i)

(Herglotz wave function). Define the operator H : L2(Sd−1) → L2(�) such that Hg = ui(g)|� and the space Hinc(�) := {v ∈
L2(�); �v + k2 v = 0 in �}. It is known that Hinc(�) is nothing but the closure of the range of the operator H in L2(�). 
Observing that �us + k2nus = k2(1 − n)ui(g) (in particular us depends only on the values of ui(g)|�), we can factorize F
as F = GH where the operator G : Hinc(�) → L2(Sd−1) is the extension by continuity of the mapping ui(g)|� �→ u∞

s . The 
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real transmission eigenvalues are defined as the values of k ∈ R for which G is not injective. In such a case, there is a 
(generalized) incident wave v ∈ Hinc(�) such that the associated farfield is zero and, therefore, by the Rellich Lemma, the 
scattered field us is zero outside �. This leads to the equivalent definition of TEs as the values of k ∈ R for which the 
problem

�us + k2nus = k2(1 − n)v in �

�v + k2 v = 0 in �
(4)

admits a non-trivial solution (us, v) ∈ H2
0(�) × L2(�). In particular, if (n − 1)−1 ∈ L∞(�), (4) can be equivalently written 

as (� + k2)((n − 1)−1(�us + k2nus)) = 0 in � with us ∈ H2
0(�). A method has been designed in [1,6] to identify TEs from 

the farfield operator F , which we shall generalize later for a modified background. One of the main troubles with TEs is 
that their link with the index of refraction n is neither explicit nor easily accessible. Some monotonicity results have been 
obtained in [8], but only for some of the TEs. We hereafter explain how a simple modification of the farfield operator leads 
to simpler transmission eigenvalue problems and more accessible information on the index of refraction. This idea was 
motivated by recent works on the so-called Steklov eigenvalues [9] and modified backgrounds with metamaterials [3].

3. Transmission eigenvalues with a zero-index material background

Assume that one has a priori knowledge of a Lipschitz domain �b such that � ⊂ �b . We emphasize that we do not 
require to know exactly the support � of the defect in the reference medium. Consider the scattering problem

Find ũ = ui + ũs such that

�ũ + k2ρ ũ = 0 in R
d,

lim
r→+∞ r

d−1
2

(
∂ ũs

∂r
− ikũs

)
= 0

(5)

where ρ is the function such that ρ = 0 in �b and ρ = 1 in Rd \�b . This artificial media is referred to as zero-index material 
(ZIM) because we choose ρ = 0 inside �b . This choice greatly simplifies the structure of the associated interior transmission 
problem as we shall see. For ui = ui(·, θ i) = eikθ i ·x with θ i ∈ S

d−1, as for (1), this problem admits a unique solution in 
H1

loc(R
d). We denote ũs(·, θ i) the associated scattered field and ũ∞

s (·, θ i) : Sd−1 →C the corresponding farfield pattern. From 
the farfield pattern, we define the farfield operator F̃ : L2(Sd−1) → L2(Sd−1) such that ( F̃ g)(θ s) =

∫
Sd−1 g(θ i) ̃u∞

s (θ s, θ i) ds(θ i). 
Finally, we define the artificial farfield operator F art : L2(Sd−1) → L2(Sd−1) as

F art := F − F̃ . (6)

From a practical point of view, notice that F is given by the measurements, while F̃ has to be computed, which is achievable 
because Problem (5) does not involve n (and �b is known). Therefore, we can consider F art as a data for the inverse problem 
of determining n. Let us denote

uart
i (g) :=

∫

Sd−1

g(θ i)ũ(·, θ i)ds(θ i) (7)

for given g ∈ L2(Sd−1) where ũ(·, θ i) is the solution to (5) for ui = ui(·, θ i) := eikθ i ·x . Define the operator Hart : L2(Sd−1) →
L2(�b) such that Hart g = uart

i (g)|�b . Set also H̃inc(�b) := {v ∈ L2(�b); �v = 0 in �b}. Observing that �(us − ũs) + k2n(us −
ũs) = k2(ρ − n)uart

i (g), we can factorize F art as F art = GartHart, where the operator Gart : H̃inc(�b) → L2(Sd−1) is the exten-
sion by continuity of the mapping uart

i (g)|�b �→ u∞
s − ũ∞

s . Similarly, as above, we now define the transmission eigenvalues 
as the values of k for which the operator Gart is not injective. Denoting w := us − ũs , this is now equivalent, due to the 
Rellich Lemma, to define the transmission eigenvalues as the values of k for which the problem

�w + k2nw = −k2nv in �b
�v = 0 in �b

(8)

admits a non-trivial solution (w, v) ∈ H2
0(�b) × L2(�b). We observe that k = 0 is an eigenvalue of infinite multiplicity of (8). 

Now we consider the case k �= 0. Then we find that (8) admits a non-trivial solution if and only if there is w �≡ 0 such that 
(� + k2n)(n−1�w) = 0 in �b , that is, if and only if (w, k) is a solution to the problem

Find (w,k) ∈ H2
0(�b) \ {0} ×R such that

�(n−1�w) = −k2�w in �b.
(9)

In opposition with problem (4) (more precisely, see equation after (4)), one ends up here with a well-known linear eigen-
value problem similar to the so-called plate buckling eigenvalue problem. Classical results concerning linear self-adjoint 
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compact operators guarantee that the spectrum of (9) is made of real positive isolated eigenvalues of finite multiplicity 
0 < λ0 ≤ λ1 ≤ · · · ≤ λp ≤ . . . (the numbering is chosen so that each eigenvalue is repeated according to its multiplicity). 
Moreover, there holds limp→+∞ λp = +∞ and we have the min–max formulas

λp = min
E p∈Ep

max
w∈E p\{0}

(n−1�w,�w)L2(�b)

‖∇w‖2
L2(�b)

. (10)

Here Ep denotes the sets of subspaces E p of H2
0(�b) of dimension p. Observe that the characterisation of the spectrum of 

Problem (8) is much simpler than the one of Problem (4). Moreover, it holds under very general assumptions for n: we just 
require that n|�b ∈ L∞(�b) with ess inf� n > 0. In particular, n can be equal to one inside �b (thus, as already mentioned, 
we do not need to know exactly the support � of the defect in the reference medium) and n − 1 can change sign on the 
boundary. In comparison, the analysis of the spectrum of (4) in such situations is much more complex and the functional 
framework must be adapted according to the values of n (see [10] in the case where n − 1 changes sign on ∂�). The second 
advantage of considering Problem (8) instead of Problem (4) is that the spectrum of (8) is entirely real. This feature is 
interesting together with the Theorem 3.1 below. To state this theorem, we need to introduce some notation. Let us set 
F̃� := | F̃ + F̃ ∗| + | F̃ − F̃ ∗|, where F̃ ∗ is the adjoint of F̃ , and define for α > 0, g , φ ∈ L2(Sd−1), the functional

Jα(g, φ) := α( F̃�g, g)L2(Sd−1) + ‖F art g − φ‖2
L2(Sd−1)

.

Notice that in the penalty term, we use the operator F̃� and not F art
� defined similarly as F̃� . The reason is that we do not 

know if g �→ (F art
� g, g)L2(Sd−1) is equivalent to ‖ui(g)‖2

L2(�b)
. We then consider for z ∈R

d a function gα
z ∈ L2(Sd−1) such that

Jα(gα
z , φ∞

z ) ≤ α + inf
g∈L2(Sd−1)

Jα(g, φ∞
z )

where φ∞
z (θ s) := eikθ s ·z is the farfield associated with a point source at the point z.

Theorem 3.1. Assume that the farfield operator F art has dense range. Then k2 is an eigenvalue of (9) if and only if the set of points z
for which ( F̃� gα

z , gα
z )L2(Sd−1) is bounded as α → 0 is nowhere dense in �b.

This theorem guarantees that peaks in the curve

k �→ I(k,n) :=
∫

�0⊂�b

( F̃�gα
z , gα

z )L2(Sd−1) dz (11)

for small values of α correspond to k2 which are eigenvalues of (8). Therefore, from the knowledge of F art for real 
k ∈ (0; +∞), we can identify all the spectrum of (8). In other words, there is no loss of information in complex eigen-
values that can occur for Problem (4). The proof of Theorem 3.1 is similar to the one of [3, Theorem 7] and uses the fact 
that ( F̃� g, g)L2(Sd−1) is equivalent to ‖ui(g)‖2

L2(�b)
. The latter can be deduced, for instance, from [6, Lemma 2.33 and Theo-

rem 2.31]. We remark that the farfield operator F art fails to be of dense range only if k2 is an eigenvalue of (9) such that 
the corresponding eigenfunction v in (8) is of the form v = ui(g) = Hart g for some g in L2(Sd−1). Since Hart is a compact 
operator, the cases where v = Hart g are in general exceptional. It has been shown in [4], in the case of the homogeneous 
background (ρ ≡ 1 in Rd), that this never happens for certain scattering objects with corners.

Formula (10) is interesting because it guarantees that the λp have monotonous dependence with respect to n. If we 
denote λ̂p(n̂) the p-th eigenvalue of Problem (9) with n replaced by n̂, then we have λp(n) ≤ λ̂p(n̂) if n ≥ n̂. This estimate 
can be useful to derive qualitative information from a reference situation: for a given setting where the λp(n) are known, if 
n is changed into n̂, one can have an idea of the nature of the perturbation. From (10), we can also write

ess inf
�b

n ≤ λp(1)/λp(n) and ess sup
�b

n ≥ λp(1)/λp(n).

Note that the λp(1) can be explicitly computed with a numerical code, because they do not depend on n and �b is known. 
In particular, when n is constant and �b = �, we have the formula

n = λp(1)/λp(n). (12)

Thus, in this case, from the knowledge of the farfield operator F art on an interval of wavenumbers k containing an eigenvalue 
of Problem (9), we can identify the value of n.
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4. A modified background with a non-penetrable obstacle

We discuss here other possibilities to determine simple spectral signatures associated with the index of refraction 
by modifying the background. More specifically, we consider a background with a non-penetrable obstacle �b such that 
� ⊂ �b . On ∂�b , we prescribe the boundary condition B(ũ) = 0, where B is a given boundary operator. The construction 
is similar to above, where (5) is replaced by

�ũ + k2ũ = 0 in R
d \ �b

B(ũ) = 0 on ∂�b.
(13)

We investigate here only the cases B(ũ) = ũ and B(ũ) = ∂ ũ/∂ν + γ ũ, which respectively correspond to Dirichlet and Robin 
scattering problems, with γ ∈R being a fixed impedance parameter. The normal unit vector ν to ∂�b is chosen directed to 
the exterior of �b . We redefine respectively F art, uart

i (g) as in (6), (7) from ũ introduced in (13). Then we consider the op-
erator Hart : L2(Sd−1) → H̃inc(∂�b) such that Hart g = B∗(uart

i (g))|∂�b , where B∗(ϕ) = ∂ϕ/∂ν for the Dirichlet problem and 
B∗(ϕ) = ϕ − γ ∂ϕ/∂ν for the Robin problem. Here we take H̃inc(∂�b) = H1/2(∂�b) for γ = 0 and H̃inc(∂�b) = H−1/2(∂�b)

for other cases. Introduce the function w ∈ H1
loc(R

d \ �b) × H1(�b) such that w = us − ũs in Rd \ �b and w = u in �b . Note 
that w satisfies the problem

�w + k2 w = 0 in R
d \ �b

�w + k2n w = 0 in �b

[B(w)] = 0 and [B∗(w)] = −ψ on ∂�b

lim
r→+∞ r

d−1
2

(
∂ w

∂r
− ikw

)
= 0,

(14)

with ψ = B∗(uart
i (g)) (here [·] denotes the jump across ∂�b with respect to the orientation of the normal ν). From this 

observation, we see that we can factorize F art as F art = GartHart, where the operator Gart : H̃inc(∂�b) → L2(Sd−1) is the 
mapping ψ �→ w∞ , w∞ being the farfield associated with the solution w to problem (14). Defining the transmission eigen-
values as the values of k for which the operator Gart is not injective, one ends up equivalently with k2 being the eigenvalues 
of the cavity problem, w ∈ H1(�b)

�w + k2nw = 0 in �b
B(w) = 0 on ∂�b.

(15)

One can prove the following identification theorem.

Theorem 4.1. Assume that the farfield operator F art has dense range and that k2 is not an eigenvalue of (15) for n = 1. Then k2 is an 
eigenvalue of (15) if and only if the set of points z for which ( F̃� gα

z , gα
z )L2(Sd−1) is bounded as α → 0 is nowhere dense in �b.

The assumption on k2 is required so that ( F̃� g, g)L2(Sd−1) is equivalent to ‖ui(g)‖2
H̃inc(∂�b)

(see for instance [13]). The proof 
is analogous to the one of Theorem 3.1. Then we obtain similar conclusions as in the previous section on the determination 
of n from TEs. One has also the possibility to use all these simple spectra at once to determine n.

5. Discussion of other choices of artificial backgrounds

Note that for the artificial background in (5), we are not obliged to choose ρ such that ρ = 0 in �b and ρ = 1 in 
R

d \ �b . Consider an arbitrary real valued ρ ∈ L∞(Rd) such that ρ − 1 is compactly supported. Let �b be a domain such 
that supp(n − ρ) ⊂ �b . For such a ρ , setting w := u − v , the corresponding transmission eigenvalues reads

�w + k2nw = k2(ρ − n)v in �b

�v + k2ρv = 0 in �b

with (w, v) ∈ H2
0(�b) × L2(�b). And if ρ is such that n − ρ �= 0 in �b , this leads to the problem

Find (w,k2) ∈ H2
0(�b) \ {0} ×C such that

(� + k2ρ)
( 1

n − ρ
(�w + k2nw)

)
= 0 in �b.

(16)

All the game with these artificial backgrounds consists in choosing ρ such that the TEs of (16) give interesting or simply 
usable information on n. One can also vary the boundary condition in the case discussed in Section 4 by varying the 
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Fig. 1. Curves k �→ I(k, n1) and k �→ I(k/
√

2, n2) for k ∈ (3.5; 7). The vertical dashed lines correspond to the eigenvalues of Problem (9) computed with 
n = n1 in � (the quantities we want to retrieve in practice). The kite shaped domain represents the inclusion �.

Robin parameter γ . The natural question then would be to ask whether these spectra provide unique determination of the 
refractive index. This will be discussed in a future work.

When n is complex valued, the spectra of Problems (9) and (13) are complex. In particular, when n is constant with a 
non-zero imaginary part, real eigenvalues do not exist. In that case, we cannot identify transmission eigenvalues from the 
knowledge of F art for real k and therefore we cannot retrieve information on n. The authors do not know if one can find 
a well-chosen artificial background such that the knowledge of the corresponding F art for k ∈ (0; +∞) would allow one to 
get information on complex valued n.

6. Numerical illustrations

We provide some preliminary numerical examples showing how the algorithm of determining constant n using the ZIM 
background would work. The inclusion � is a kite shape as depicted in Fig. 1. First, we generate the farfield matrices for 200 
incident directions θ i and 200 observation directions θ s by solving Problem (1). This is done for a range of wavenumbers k. 
Thus we obtain a discretization of the farfield operator F defined in (3), which in practice would be given by measurements. 
We consider two cases: n = n1 = 2.0 in � and n = n2 = 4.0 in �. Then we choose �b = � and we build a discretization of 
the artificial farfield operator F art introduced in (6). This allows us to compute the indicator function I(k, n) defined in (11)
with �0 = � (for more details concerning this step, we refer the reader to [1]). In Fig. 1, we display the curve k �→ I(k, n1)

for k ∈ (3.5; 7). On the other hand, using the FreeFem++ software [12], we solve the eigenvalue Problem (9) for n = n1
in �. We observe that the square roots of the eigenvalues of (9), marked by dashed lines in Fig. 1, correspond to the k value 
for which k �→ I(k, n1) has some peaks. This is coherent with the result of Theorem 3.1. Therefore, from the measurements, 
we can assess the λp(n) in (12). Computing λp(1) (solving (9) with n = 1), we can recover n when n is constant using 
Formula (12). In Fig. 1, we also display the curve k �→ I(k/

√
2, n2) for k ∈ (3.5; 7). We see that the peaks of this curve 

coincide with the ones of k �→ I(k, n1). This is in accordance with the theory, which guarantees that n2/n1 = λp(n1)/λp(n2)

for all p ≥ 0. Numerically, |n2/n1 − λp(n1)/λp(n2)| is of order 10−2.
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