
C. R. Acad. Sci. Paris, Ser. I 356 (2018) 637–643
Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Partial differential equations

An Lp-theory for almost sure local well-posedness of the 

nonlinear Schrödinger equations

Une théorie Lp pour le problème de Cauchy de l’équation de Schrödinger 

non linéaire à données initiales aléatoires

Oana Pocovnicu a, Yuzhao Wang b,c

a Department of Mathematics, Heriot-Watt University and The Maxwell Institute for the Mathematical Sciences, Edinburgh, EH14 4AS, 
United Kingdom
b School of Mathematics, University of Birmingham, Watson Building, Edgbaston, Birmingham B15 2TT, United Kingdom
c School of Mathematics, The University of Edinburgh and The Maxwell Institute for the Mathematical Sciences, James Clerk Maxwell Building, 
The King’s Buildings, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 January 2018
Accepted 12 April 2018
Available online 25 April 2018

Presented by Haïm Brézis

We consider the nonlinear Schrödinger equations (NLS) on Rd with random and rough ini-
tial data. By working in the framework of Lp(Rd) spaces, p > 2, we prove almost sure local 
well-posedness for rougher initial data than those considered in the existing literature. The 
main ingredient of the proof is the dispersive estimate.
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r é s u m é

Dans cet article, nous considérons l’équation de Schrödinger non linéaire (NLS) sur Rd à 
données initiales aléatoires et surcritiques. En travaillant dans des espaces de Lp(Rd), p >
2, nous améliorons les résultats précédents de la littérature, en ce sens que nous prouvons 
que l’équation NLS est localement bien posée presque sûrement pour des données initiales 
à régularité plus basse. L’ingrédient principal de la preuve est l’estimation dispersive.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We consider the nonlinear Schrödinger equation (NLS) with power-type nonlinearity on Rd , d ≥ 1:{
i∂t u + �u = ±|u|p−1u

u|t=0 = u0 ∈ Hs(Rd),
(t, x) ∈R×R

d, (1.1)
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where p > 1. The equation (1.1) appears as a standard model in various physical contexts and has been studied extensively 
over the past decades. In this note, we consider the Cauchy problem (1.1) with random and rough initial data. In particular, 
by working in the framework of Lp(Rd), p > 2, and using the dispersive estimate, we establish almost sure local well-
posedness of (1.1) with respect to random initial data of lower regularity than those considered in the existing results in 
the literature.

NLS (1.1) arises as a Hamiltonian evolution associated with energy

E(u) :=
∫
Rd

1

2
|∇u|2 ± 1

p + 1
|u|p+1dx. (1.2)

In particular, E(u) is conserved by the flow of NLS. The solution set to (1.1) possesses the following scaling symmetry:

uλ(t, x) := λ
2

p−1 u(λ2t, λx). (1.3)

Note that ‖uλ(0)‖Ḣ s(Rd) = λ
s−( d

2 − 2
p−1 )‖u0‖Ḣ s(Rd) . Associated with the scaling symmetry, one defines the so-called scaling-

critical Sobolev index scrit(d, p) := d
2 − 2

p−1 such that the homogeneous Sobolev norm ‖ · ‖Ḣ scrit (Rd) remains invariant under 
the scaling symmetry (1.3). We then say that the Cauchy problem (1.1) with an initial condition u0 ∈ Hs(Rd) is subcritical, 
critical, or supercritical, depending on whether s > scrit(d, p), s = scrit(d, p), or s < scrit(d, p), respectively. When d and p
are such that scrit(d, p) = 1, the scaling symmetry (1.3) also leaves the energy E(u) invariant, and in that case we say that 
(1.1) is energy-critical. We say that the Cauchy problem (1.1) is energy-subcritical or energy-supercritical, if scrit(d, p) < 1 or 
scrit(d, p) > 1, respectively.

In the deterministic setting, NLS (1.1) is known to be locally well-posed in the (sub)critical regime, see [17,7,9]. On 
the contrary, in the supercritical regime, it is known to be ill-posed, see for example [8,13]. In the last decade, a non-
deterministic view point has been used, aiming to improve our understanding of NLS. It consists in studying the Cauchy 
problem (1.1) with random initial data. In this probabilistic setting, NLS is almost surely locally well-posed, even in certain 
supercritical regimes. See [1,2,4,3,15,11].

As in [19,12,1], in this note, we consider a randomization associated with the Wiener decomposition Rd
ξ = ⋃

n∈Zd (n +
(− 1

2 , 12 ]d). Let ψ ∈ S(Rd) satisfying

suppψ ⊂ [−1,1]d and
∑

n∈Zd

ψ(ξ − n) = 1 for any ξ ∈R
d.

Given a function φ on Rd , we have φ = ∑
n∈Zd ψ(D − n)φ. We then define the Wiener randomization of φ by

φω :=
∑

n∈Zd

gn(ω)ψ(D − n)φ, (1.4)

where {gn}n∈Zd is a sequence of independent mean zero complex-valued random variables on a probability space (	, F , P ). 
In the following, we assume that the real and imaginary parts of gn are independent and endowed with probability distri-
butions μ(1)

n and μ(2)
n , satisfying the following exponential moment bound:∣∣∣∣∣∣

∫
R

eκxdμ
( j)
n (x)

∣∣∣∣∣∣ ≤ ecκ2
(1.5)

for all κ ∈ R, n ∈ Z
d , j = 1, 2. This condition is satisfied by the standard complex-valued Gaussian random variables and by 

the uniform distribution on the unit circle.
It is well known that the Wiener randomization (1.4) does not improve differentiability; see Lemma B.1 in [5]. However, 

its key advantage is improving integrability; see Lemma 2.3 in [1] and Lemma 2.2 below.
Given d ≥ 1 and p > 1, we define sd,p by

(i) sd,p = 0, if p > 1 + 4
d , d = 1, 2 or 1 + 4

d < p < 1 + 4
d−2 , d ≥ 3,

(ii) sd,p = scrit(d, p) − 1+, if p ≥ 1 + 4
d−2 , d ≥ 3.

Note that we have 0 ≤ sd,p < scrit(d, p). Also, remark that (i) corresponds to the energy-subcritical case, while (ii) corre-
sponds to the energy-(super)critical case.

In this note, given φ ∈ Hs(Rd), sd,p ≤ s < scrit(d, p), we study the Cauchy problem (1.1) with the random initial data φω . 
We state our main result below.

Theorem 1.1 (Almost sure local well-posedness). Given d ≥ 1 and p an odd integer such that p > 1 + 4
d , let sd,p be defined as 

above. Given φ ∈ Hs(Rd) with sd,p ≤ s < scrit(d, p), let φω be its Wiener randomization defined in (1.4), satisfying (1.5). Then, (1.1) is 
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almost surely locally well-posed with respect to the random initial data φω . More precisely, there exist C, c, γ > 0 such that for each 
0 < T � 1, there exists a set 	T ⊂ 	 with the following properties:

(a1) P (	c
T ) < C exp

( − c
T γ ‖φ‖2

Hs

)
,

(b1) for each ω ∈ 	T , there exists a unique solution uω to (1.1) with uω|t=0 = φω in the class1

S(t)φω + C([−T , T ]; W s,rd,p+1(Rd)),

where rd,p is defined by

rd,p :=
{

p, if p > 1 + 4
d , d = 1,2 or 1 + 4

d < p < 1 + 4
d−2 , d ≥ 3

1 + 4
d−2 −, if p ≥ 1 + 4

d−2 , d ≥ 3.

Furthermore, for p non-integer in the energy-subcritical case (i), we also have almost sure local well-posedness of (1.1) with initial 
condition φω , where φ ∈ Hs(Rd), s ∈ [0, scrit(d, p)), in the following sense. There exist C, c, γ > 0 such that for each 0 < T � 1, there 
exists a set 	′

T ⊂ 	 with the following properties:

(a2) P ((	′
T )c) < C exp

( − c
T γ ‖φ‖2

L2

)
,

(b2) for each ω ∈ 	′
T , there exists a unique solution u to (1.1) with u|t=0 = φω in the class

S(t)φω + C([−T , T ]; Lp+1(Rd)).

Here S(t) = eit� denotes the linear propagator of the Schrödinger group. Let z(t) = zω(t) := S(t)φω be the random linear 
solution with φω as initial data. We reduce our analysis on (1.1) to the following Cauchy problem satisfied by the nonlinear 
part v := u − z of a solution u:{

i∂t + �v = N (v + zω)

v|t=0 = 0,
(1.6)

where N (u) := ±|u|p−1u. In the Duhamel formulation, we have

v(t) = −i

t∫
0

S(t − t′)N (v + zω)(t′)dt′. (1.7)

The proof of Theorem 1.1 is based on a fixed-point argument for v . As a result, the uniqueness in Theorem 1.1 refers to 
uniqueness of the nonlinear part v of a solution u. The main idea of the proof is to exploit the improved integrability of 
the random linear solution z (see the probabilistic Strichartz estimates in Lemma 2.2) by working in the Lp -based Sobolev 
spaces, p > 2, (as opposed to L2-based Sobolev spaces Hs) and by using the dispersive estimates (Lemma 2.1).

In recent years, there have been several results in the literature on almost sure local well-posedness of NLS with random 
initial data. In [1,2], the first author with Bényi and Oh considered the cubic NLS on Rd , d ≥ 3, with random initial data 
φω defined as in (1.4). They proved almost sure local well-posedness of (1.1) with p = 3, for φ ∈ Hs(Rd), scrit − 1 + 3

d+1 <

s < scrit. In [4], Brereton considered the analogous problem for the quintic NLS on Rd , d ≥ 3, and proved almost sure 
local well-posedness for φ ∈ Hs(Rd), scrit − 1

2 < s < scrit. In [15], the first author, with Oh and Okamoto, considered the 
energy-critical NLS on Rd , d = 5, 6, and proved almost sure local well-posedness for φ ∈ H s(Rd), 1 − 1

d < s < 1. More 
recently, the first author with Bényi and Oh [3] proved almost sure local well-posedness of the cubic NLS on R3 based on a 
fixed point argument around a (modified) partial power series expansion, thus improving previous results in [2]. Theorem 1.1
is an improvement of all these results, in the sense that we are able to lower the regularity threshold for initial data that 
yield solutions to (1.1) almost surely.

Remark 1.2. All the above-mentioned results are based on the L2-theory. This is not the case of Theorem 1.1 (in partic-
ular, of Corollary 2.5 where we use the more precise ρd,p and σd,p , rather than rd,p and sd,p), where v is constructed 
in C([−T , T ]; W σ ,ρd,p+1(Rd)), ρd,p + 1 > 2. For σ ≥ σd,p , the space W σ ,ρd,p+1(Rd) is subcritical with respect to the scal-
ing (1.3). In the above-cited results, v was also constructed in critical or subcritical L2-based Sobolev spaces: v ∈ Hσ (Rd), 
σ ≥ scrit(d, p). We remark that this required a gain of σ − s derivatives for v , since the initial data is only in H s(Rd), 

1 Arguing as in [14], one can easily choose 	T such that for each ω ∈ 	T we have uω ∈ S(t)φω + C([−T , T ]; W s,rd,p+1(Rd)) ∩ C([−T , T ]; Hs(Rd)). In 
particular, the solution uω constructed in Theorem 1.1 belongs to the L2-based Sobolev space C([−T , T ]; Hs(Rd)).
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s < scrit(d, p). Such a gain of derivatives was exhibited by using a case-by-case analysis and a bilinear refinement of the 
Strichartz estimates. In Theorem 1.1, v has at most the same differentiability as the initial data. In particular, a gain of 
derivatives is not needed and the analysis is much simpler. This is an advantage of working within the L p -framework, 
p > 2, as opposed to the L2-theory: it gives a more direct access to the gain of integrability given by the randomization.

Remark 1.3. In the deterministic setting, one cannot expect to obtain the local well-posedness of NLS in C([−T , T ];
W s,p(Rd)), p �= 2, because the linear propagator S(t) is not bounded on Lp(Rd) for p �= 2. We point out, however, the 
work of Zhou [20] in which he proposes an alternative notion of a solution (based on the interaction representation) and, in 
this new formulation, obtains the local well-posedness of the cubic NLS in C([−T , T ]; W s,p(Rd)) for p < 2 (under additional 
restrictions on s and p).

Remark 1.4. For simplicity, we only stated the first part of Theorem 1.1 for p being an odd integer. In this case, the non-
linearity is algebraic, and we apply the fractional Leibnitz rule in estimating 〈∇〉sN (v + z), s > 0. When p is not an odd 
integer, the analysis becomes more cumbersome and we prefer not to go into details. In particular, there are further restric-
tions on the pairs (d, p) for which one can obtain a result similar to that in Theorem 1.1. For instance, if we assume that d is 
arbitrarily large, while p is fixed, then scrit(d, p) is also arbitrarily large. As seen in Theorem 1.1, with the technique in this 
note, we can only hope to go down to s > scrit(d, p) − 1, which is still very large. Then, in order to estimate 〈∇〉sN (v + z), 
the nonlinearity N (u) = |u|p−1u needs to be very smooth, which is not the case unless p is sufficiently large. We refer the 
readers to [18,15] for the study of NLS with non-algebraic nonlinearities.

In view of the time reversibility of NLS, we only consider positive times in the following.

2. Proof of Theorem 1.1

In this section, we prove the main result of the paper, Theorem 1.1. The main two tools are the dispersive estimate (that 
we recall for readers’ convenience below, in Lemma 2.1) and the probabilistic Strichartz estimates (Lemma 2.2).

Lemma 2.1. Let p ∈ [2, ∞] and p′ such that 1
p + 1

p′ = 1. Then, there exists C > 0 such that the following estimate holds

‖S(t)φ‖L p
x (Rd) ≤ C

|t| d
2 − d

p

‖φ‖
L p′

x (Rd)
. (2.1)

Next, we recall some probabilistic Strichartz estimates. See [1,2] for the proofs.

Lemma 2.2 ([1,2]). Given φ ∈ L2(Rd), let φω be its Wiener randomization defined in (1.4), satisfying (1.5). Then, given finite q, r ≥ 2, 
there exist C, c > 0 such that

P
(
‖S(t)φω‖Lq

t ([0,T ];Lr
x(R

d)) > λ
)

≤ C exp

(
− c

λ2

T
2
q ‖φ‖2

L2

)

for all T > 0 and λ > 0.

In the following, we use the dispersive estimates and the probabilistic Strichartz inequalities in Lemmas 2.1 and 2.2 to 
prove the key nonlinear estimates needed to establish Theorem 1.1. Given z(t) = S(t)φω , we define � by

�v(t) := −i

t∫
0

S(t − t′)N (v + z)(t′)dt′. (2.2)

Proposition 2.3. Given d ≥ 1 and p ≥ 3 an odd integer, let ρ ∈ (1, p] for d = 1, 2, while ρ ∈ (
1, 1 + 4

d−2

)
for d ≥ 3. Let σ ≥

σ(d, p, ρ) := d(p−ρ)
(ρ+1)(p−1)

and 0 < T ≤ 1. Given φ ∈ Hσ (Rd), let φω be its Wiener randomization defined in (1.4), satisfying (1.5). 
Then θ := d

2 − d
ρ+1 ∈ (0, 1), and for any 0 < ε < 1 − θ , there exists C1, C2 > 0 such that the following estimates hold

‖�v‖L∞([0,T ];W σ ,ρ+1(Rd)) ≤ C1T 1−θ−ε
(‖v‖p

L∞([0,T ];W σ ,ρ+1(Rd))
+ R p)

, (2.3)

‖�v1 − �v2‖L∞([0,T ];W σ ,ρ+1(Rd))

≤ C2T 1−θ−ε
( 2∑

j=1

‖v j‖p−1
L∞([0,T ];W σ ,ρ+1(Rd))

+ R p−1
)
‖v1 − v2‖L∞([0,T ];W σ ,ρ+1(Rd)), (2.4)

for all v, v1, v2 ∈ L∞([0, T ]; W σ ,ρ+1(Rd)) and all R > 0, outside a set of probability ≤ C exp
( − c R2

T
2ε
p ‖φ‖2

)
.

Hσ
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Proof. Note that the hypothesis on ρ yields θ ∈ (0, 1). For ε ∈ (0, 1 − θ), we use the dispersive estimate (2.1) and Hölder’s 
inequality to obtain

‖�v‖L∞([0,T ];W σ ,ρ+1(Rd)) ≤ sup
t∈[0,T ]

t∫
0

1

|t − t′|θ ‖〈∇〉σN (v + z)(t′)‖
L

1+ 1
ρ

x (Rd)

dt′

≤ sup
t∈[0,T ]

⎛
⎝ t∫

0

1

|t − t′| θ
1−ε

dt′
⎞
⎠

1−ε

‖〈∇〉σN (v + z)‖
L

1
ε
T L

1+ 1
ρ

x (Rd)

≤ C T 1−θ−ε‖〈∇〉σN (v + z)‖
L

1
ε
T L

1+ 1
ρ

x (Rd)

. (2.5)

Here and in the following, we use the short-hand notation Lq
T Lr

x(R
d) := Lq([0, T ]; Lr(Rd)). Recalling that p = 2k + 1 with 

k ∈ N, we write N (v + z) = |v + z|p−1(v + z) as the product (v + z)k+1(v + z)k . Then, by the fractional Leibnitz rule (see, 
for example, [10]), the Sobolev embedding W σ ,ρ+1(Rd) ⊂ L

(p−1)(ρ+1)
ρ−1 (Rd) (which holds provided that σ ≥ d(p−ρ)

(ρ+1)(p−1)
), and 

Lemma 2.2, we have

‖〈∇〉σN (v + z)‖
L

1
ε
T L

1+ 1
ρ

x (Rd)

=
∥∥∥〈∇〉σ [(v + z)k+1(v + z)k]

∥∥∥
L

1
ε
T L

1+ 1
ρ

x (Rd)

� ‖〈∇〉σ (v + z)‖
L

p
ε
T Lρ+1

x (Rd)
‖v + z‖2k

L
p
ε
T L

(p−1)(ρ+1)
ρ−1

x (Rd)

� ‖〈∇〉σ (v + z)‖p

L
p
ε
T Lρ+1

x (Rd)

�
(

‖〈∇〉σ v‖p

L
p
ε
T Lρ+1

x (Rd)

+ ‖〈∇〉σ z‖p

L
p
ε
T Lρ+1

x (Rd)

)

�
(

T ε‖v‖p
L∞([0,T ];W σ ,ρ+1(Rd))

+ R p
)

, (2.6)

outside a set of probability

≤ C exp

(
− c

R2

T
2ε
p ‖φ‖2

Hσ

)
.

Estimate (2.3) then follows from (2.5) and (2.6). The proof of (2.4) is analogous. �
Remark 2.4. We remark that the proof of the nonlinear estimates in Proposition 2.3 is similar in spirit to the following 
works on almost sure local well-posedness for the nonlinear wave equation [5,6,16], in the sense that no case-by-case 
analysis is needed.

In Proposition 2.3, we have a degree of freedom in choosing ρ . It turns out that, to lower as much as possible the 
regularity σ of φ, one needs to take ρ = p in the energy-subcritical case, while ρ needs to be arbitrarily close to 1 + 4

d−2
in the energy-(super)critical case. More precisely, the following corollary holds.

Corollary 2.5. Given d ≥ 1, p ≥ 3 an odd integer, and 0 < ε � 1, we define

σd,p :=
{

0, if d = 1,2 or 3 ≤ p < 1 + 4
d−2 , d ≥ 3

d−2
2−ε · p−1− 4

d−2 + εd
d−2

p−1 , if p ≥ 1 + 4
d−2 , d ≥ 3,

and

ρd,p :=
{

p, if d = 1,2 or 3 ≤ p < 1 + 4
d−2 , d ≥ 3

1 + 4−εd
d−2 , if p ≥ 1 + 4

d−2 , d ≥ 3.

Given φ ∈ Hσ (Rd) with σ ≥ σd,p , let φω be its Wiener randomization defined in (1.4), satisfying (1.5). Then there exist C1, C2, α > 0
such that the following estimates hold

‖�v‖
L∞([0,T ];W σ ,ρd,p+1

(Rd))
≤ C1T α

(‖v‖p

L∞([0,T ];W σ ,ρd,p+1
(Rd))

+ R p)
, (2.7)



642 O. Pocovnicu, Y. Wang / C. R. Acad. Sci. Paris, Ser. I 356 (2018) 637–643
‖�v1 − �v2‖L∞([0,T ];W σ ,ρd,p+1
(Rd))

≤ C2T α
( 2∑

j=1

‖v j‖p−1

L∞([0,T ];W σ ,ρd,p+1
(Rd))

+ R p−1
)
‖v1 − v2‖L∞([0,T ];W σ ,ρd,p+1

(Rd))
, (2.8)

for all v, v1, v2 ∈ L∞([0, T ]; W σ ,ρd,p+1(Rd)) and all R > 0, outside a set of probability ≤ C exp
( − c R2

T
2ε
p ‖φ‖2

Hσ

)
.

Proof. In the case when d = 1, 2 or p < 1 + 4
d−2 , d ≥ 3, this follows by taking ρ = p in Proposition 2.3 and by noticing that 

σ(d, p, p) = 0. For p ≥ 1 + 4
d−2 , d ≥ 3, one takes ρ = ρd,p in Proposition 2.3 and a straightforward calculation shows that 

σ(d, p, ρd,p) = σd,p . �
In Proposition 2.3 and Corollary 2.5, we restricted our attention to the case when p is an odd integer. In the following, 

we remark that when φ ∈ L2(Rd), i.e. σ = 0, this assumption on p is redundant.

Remark 2.6. Let d = 1, 2 or 1 < p < 1 + 4
d−2 with d ≥ 3. Given φ ∈ L2(Rd), let φω be its Wiener randomization defined in 

(1.4), satisfying (1.5). Then there exist C1, C2, α > 0 such that the following estimates hold

‖�v‖L∞([0,T ];L p+1(Rd)) ≤ C1T α
(‖v‖p

L∞([0,T ];Lp+1(Rd))
+ R p)

, (2.9)

‖�v1 − �v2‖L∞([0,T ];L p+1(Rd))

≤ C2T α
( 2∑

j=1

‖v j‖p−1
L∞([0,T ];Lp+1(Rd))

+ R p−1
)
‖v1 − v2‖L∞([0,T ];Lp+1(Rd)), (2.10)

for all v, v1, v2 ∈ L∞([0, T ]; Lp+1(Rd)) and all R > 0, outside a set of probability ≤ C exp
( − c R2

T
2ε
p ‖φ‖2

L2

)
.

Proof. By Corollary 2.5, when d = 1, 2 or 1 < p < 1 + 4
d−2 with d ≥ 3, estimates (2.9) and (2.10) hold when p is an odd 

integer. In this case, (2.9) and (2.10) are simply (2.7) and (2.8) with σ = σd,p = 0 and ρd,p = p. We then notice that the 
proof of Proposition 2.3 (and thus that of Corollary 2.5) when σ = 0 does not require the use of the fractional Leibnitz rule 
and, in particular, the assumption that p is an odd integer is redundant. �

We conclude this note with the proof of Theorem 1.1, which follows easily from Corollary 2.5 and Remark 2.6 via a 
fixed-point argument.

Proof of Theorem 1.1. Let s ≥ σd,p . Fix 0 < T ≤ 1 and define M := M(T ) = min

{(
1

2C1

) 1
p−1

,
(

1
4C2

) 1
p−1

}
T − α

p−1 , with C1, C2

as in (2.7) and (2.8). We also define R ∼ T − α
p−1 such that

C1T α R p ≤ M

2
and C2T α R p−1 <

1

2
.

With these choices, it follows from Corollary 2.5 that � is a contraction on the ball of radius M centered at the origin in 
L∞([0, T ]; W s,ρd,p (Rd)) outside a set of probability

≤ C exp
( − c

R2

T
2ε
p ‖φ‖2

Hσ

) ∼ exp
( − c

1

T γ ‖φ‖2
Hs

)

for some γ > 0. In view of (1.7) and (2.2), an application of the contraction mapping principle then concludes the proof of 
the first part of Theorem 1.1.

For the second part of Theorem 1.1, one argues similarly, using (2.9) and (2.10) to show that � is a contraction on a ball 
centered at the origin in L∞([0, T ], Lp+1(Rd)). �
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