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We give a simple proof of T. Stehling’s result [4], whereby in any normal tiling of the 
plane with convex polygons with number of sides not less than six, all tiles except a finite 
number are hexagons.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous donnons une démonstration simple d’un résultat de T. Stehling [4], assurant que dans 
tout pavage normal du plan par des polygones convexes d’au moins six côtés, les pavés qui 
ne sont pas des hexagones sont en nombre fini.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

A tiling of the plane with convex polygons is normal if these polygons are not very thin (each contains a disk of radius r) 
and not very long (each is contained in a disc of radius R). It is well known that, in a normal tiling of the plane into convex 
polygons, the (upper) average side number of the polygons is at most 6, cf. [1, p. 61, inequality p ≤ 6] and [3]. The proof 
is based on double counting the angle sums. T. Stehling in his thesis [4] studied the properties of combinatorics of normal 
tiling, where, in particular, he proved the following theorem.

Theorem 1 (T. Stehling [4]). If the plane is tiled with convex polygons, such that all of them have at least six sides, contain a disk of 
radius r and are contained in a disk of radius R, then all but a finite number of them are hexagons.

In other words, we can not “spoil” the honeycomb tiling with infinite number of polygons having more than six sides. 
It seems that this result was missed by the mathematical community and the author learned it as an open question from 
S. Markelov [2]. We give a simple proof of it, expressing the upper bound in terms of the area and the diameter of the tiles. 
Define the index of a polygon as the number of its sides minus 6. Theorem 1 is a trivial corollary of the following theorem.
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Fig. 1. Tiling of the plane with hexagons and a single heptagon.

Theorem 2. If the plane is tiled with convex polygons, which have at least six sides, have area at least A and diameter not greater 
than D, then the sum of indices of the tiles is not greater than 2πD2

A − 6.

Proof. First, without loss of generality, we may assume that for each vertex, there are exactly three tiles meeting at it. 
Indeed, if it is not so, we can think of this vertex as of several vertices connected by edges of zero length. We can also 
assume, that the tiling is edge-to-edge, that is any two adjacent tiles share a common vertex or a full edge. Indeed, if the 
interior of a side of a tile P contains a vertex of another tile, then we can consider this vertex as a vertex of P . These 
operations only increase the sum of indices.

The proof is based on comparing the geometric upper bound on a number of pieces in a metric disk of radius i with the 
combinatorial lower bound.

Lets start with the latter bound. Consider the dual triangulation G = (V , E, T ), where vertices V correspond to tiles, and 
two vertices are connected by an edge if they share a common side. Three vertices form a triangle if three corresponding 
tiles have a common vertex.

Supply the 1-skeleton of G by the natural metric, that is each edge has length one. We fix some vertex o as the origin.
Now we describe the combinatorics of the universal cover ˜G , which by simply-connectedness of G will coincide with 

it. Denote by B(i) and S(i) the disk and the circle in the 1-skeleton of ˜G , having radius i and centered at o. The number 
deg(v) − 6 is called the index of a vertex v .

If the vertex o has degree k, the ball B(1) contains k + 1 points and has perimeter k. In the disk B(1), all of these k
vertices have degree 3, two of the edges at every vertex belong to the circle S(1).

In general, the vertices of S(i) in the graph restricted to B(i) have degree 4 or 3. This will be clear from our construction. 
Call them regular and generating vertices, respectively.

Let us describe the annulus between B(i) and B(i + 1) (see Fig. 2). Each edge of S(i) has a triangle attached to it. If 
a vertex v j is regular in B(i) and has index zero, then the third vertices of triangles attached to the edges v j−1 v j and 
v j v j+1 are two consecutive regular vertices of S(i + 1). If the vertex v j is not regular or/and its index is positive, then there 
are some additional edges leading to consecutive vertices of S(i + 1) between those two triangles. Since we describe the 
universal cover of G , we assume that all these vertices on S(i + 1) are new and different (although in the original G they 
could coincide). From this construction, the vertices of Si+1 have degree 3 or 4 in Bi+1. The number of the above additional 
edges equals the index of v j plus one if v j is generating. All vertices of S(i + 1) obtained on these additional edges are 
generating, and the third vertices of the triangles attached to v j−1 v j and v j v j+1 are regular.

Since G itself is simply connected, it actually must coincide with ˜G . Hence, our description of the B(i) is the description 
of metric balls in the 1-skeleton of G .

If I(i) is the sum of indices of points of the circle S(i) and J (i) is the number of generating points on it, then |S(i +1)| =
|S(i)| + I(i) + J (i) and J (i + 1) = I(i) + J (i).

Therefore, if the sum of indices of vertices of G is at least C , then for sufficiently large i we have | J (i)| ≥ C + 6. After 
summation, we obtain |S(i)| ≥ (C + 6)i − O (1). After another summation we have that the total number of points of B(i) is 
at least 6+C

2 i2 − O (i).
Let us compare it with the similar geometric bound. Since the diameter of each tile is not greater than D , all tiles 

corresponding to vertices in B(i) lie inside the disk of radius i · D + D (in the original metric of the plane) centered at a 
point of the tile corresponding to the origin o of the graph G . Each tile has area at least A, so we can conclude that the 
number of tiles lying inside the disk is not greater than π(i+1)2 D2

A for any i. That gives us the bound C ≤ 2πD2

A − 6. �
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Fig. 2. A part of the annulus between S(i) and S(i + 1). Vertices a and c are generating, a and d have non-zero index.
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