EI SEVIER

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Algebraic geometry/Topology

An integrable connection on the configuration space of a Riemann surface of positive genus

Une connexion intégrable sur l'espace de configuration d'une surface de Riemann de genre positif

Payman Eskandari

Department of Mathematics, University of Toronto, 40 St. George St., Room 6290, Toronto, Ontario, M5S 2E4, Canada

ARTICLE INFO

Article history: Received 29 October 2017 Accepted after revision 5 February 2018 Available online 14 February 2018

Presented by Claire Voisin

ABSTRACT

Let X be a Riemann surface of positive genus. Denote by $X^{(n)}$ the configuration space of n distinct points on X. We use the Betti–de Rham comparison isomorphism on $H^1(X^{(n)})$ to define an integrable connection on the trivial vector bundle on $X^{(n)}$ with fiber the universal algebra of the Lie algebra associated with the descending central series of π_1 of $X^{(n)}$. The construction is inspired by the Knizhnik–Zamolodchikov system in genus zero and its integrability follows from Riemann period relations.

© 2018 Académie des sciences, Published by Elsevier Masson SAS, All rights reserved.

RÉSUMÉ

Soit X une surface de Riemann de genre positif. Nous notons $X^{(n)}$ l'espace des configurations de n points distincts sur X. Nous utilisons l'isomorphisme de comparaison de Betti-de Rham sur $H^1(X^{(n)})$ pour définir une connexion intégrable sur le fibré vectoriel trivial sur $X^{(n)}$, dont la fibre est l'algèbre universelle de l'algèbre de Lie associée à la série centrale descendante du π_1 de $X^{(n)}$. La construction s'inspire du système de Knizhnik–Zamolodchikov en genre zéro; l'intégrabilité résulte des relations de périodes de Riemann. © 2018 Académie des sciences, Published by Elsevier Masson SAS. All rights reserved.

Fix $n \ge 1$. Let \mathfrak{g}_0 be the graded complex Lie algebra associated with the descending central series¹ of the classical pure braid group PB_n , i.e. the fundamental group of

$$\mathbb{C}^{(n)} := \{(z_1, \dots, z_n) : z_i \in \mathbb{C}, \ z_i \neq z_i \text{ for } i \neq j\}.$$

E-mail address: payman@math.utoronto.ca.

¹ Let *G* be any group and $G_1 := G \supset \cdots \supset G_k \supset G_{k+1} := [G_k, G] \supset \cdots$ be its descending central series. By the graded complex Lie algebra associated with the descending central series of *G*, we mean the positively graded Lie algebra with degree *k* component $G_k / G_{k+1} \otimes \mathbb{C}$ and Lie bracket induced by the commutator operator in *G*. See [4].

It is generated by degree 1 elements $\{s_{ij}: 1 \le i, j \le n, i \ne j\}$, subject to the relations

$$\begin{aligned}
s_{ij} &= s_{ji} \\
[s_{ij}, s_{kl}] &= 0 \\
[s_{ii} + s_{ik}, s_{ik}] &= 0.
\end{aligned}$$
(1)

The element $s_{ij} \in H_1(\mathbb{C}^{(n)}, \mathbb{C})$ (= degree 1 part of \mathfrak{g}_0) is the homology class of the j-th strand going positively around the i-th, while all other strands stay constant.

Let $U\mathfrak{g}_0$ be the completion of the universal algebra of \mathfrak{g}_0 . Let $\mathcal{O}(\mathbb{C}^{(n)})$ (resp. $\Omega^{\cdot}(\mathbb{C}^{(n)})$) be the space of analytic functions (resp. complex of holomorphic differentials) on $\mathbb{C}^{(n)}$. The relations (1) assure that the Knizhnik–Zamolodchikov connection

$$\nabla_{KZ}:\ \stackrel{\curvearrowleft}{U\mathfrak{g}_0}\otimes\mathcal{O}(\mathbb{C}^{(n)})\longrightarrow\ \stackrel{\curvearrowright}{U\mathfrak{g}_0}\otimes\Omega^1(\mathbb{C}^{(n)})$$

defined by

$$\nabla_{KZ} f = df - \left(\sum_{i < j} \frac{1}{2\pi i} s_{ij} \otimes \frac{d(z_i - z_j)}{z_i - z_j} \right) f$$

is integrable. This connection and its more general variants are of great importance in conformal field theory, representation theory, and number theory.

The connection ∇_{KZ} is related to the comparison isomorphism

$$comp_{\mathbb{C}^{(n)}}: H^1(\mathbb{C}^{(n)}, \mathbb{C}) \longrightarrow H^1_{d\mathbb{R}}(\mathbb{C}^{(n)})$$

between the singular and (say) complex-valued smooth de Rham cohomologies in the following way: λ_0 is the image of $comp_{\mathbb{C}^{(n)}}$ under the map

$$H_1(\mathbb{C}^{(n)}, \mathbb{C}) \otimes H^1_{d\mathbb{R}}(\mathbb{C}^{(n)}) \longrightarrow U \mathfrak{g}_0 \otimes \Omega^1(\mathbb{C}^{(n)})$$

defined by

$$s_{ij} \otimes \left[\frac{d(z_k - z_l)}{z_k - z_l}\right] \mapsto s_{ij} \otimes \frac{d(z_k - z_l)}{z_k - z_l} \qquad (i < j, \ k < l).$$

(Note that the s_{ij} with i < j (resp. $[\frac{d(z_k - z_l)}{z_k - z_l}]$ with k < l) form a basis of $H_1(\mathbb{C}^{(n)}, \mathbb{C})$ (resp. $H^1_{dR}(\mathbb{C}^{(n)})$.)

Now let \overline{X} be a compact Riemann surface of genus g > 0, $S = \{Q_1, \dots, Q_{|S|}\}$ a finite set of points in \overline{X} (possibly empty), and $X = \overline{X} - S$. Let

$$X^{(n)} := \{(x_1, \dots, x_n) : x_i \in X, x_i \neq x_j \text{ for } i \neq j\}.$$

Fix a base point $\underline{e} = (e_1, \dots, e_n) \in X^{(n)}$ and let \mathfrak{g} be the graded complex Lie algebra associated with the descending central series of $\pi_1(X^{(n)}, e)$. The goal of this note is to use the comparison isomorphism

$$comp_{X^{(n)}}: H^1(X^{(n)}, \mathbb{C}) \longrightarrow H^1_{d\mathbb{R}}(X^{(n)})$$
(2)

to define an integrable connection ∇ on the trivial bundle $\overset{\wedge}{U\mathfrak{g}}\otimes \mathcal{O}(X^{(n)})$.

1. Construction of the connection

We make three observations first.

(i) Since g > 0, the natural map

$$H^1_{dR}(X^n) \longrightarrow H^1_{dR}(X^{(n)})$$
 (3)

(induced by inclusion) is an isomorphism. Indeed, thanks to a theorem of Totaro [7, Theorem 1], one knows that the five-term exact sequence for the Leray spectral sequence for the constant sheaf $\mathbb Z$ and the inclusion $X^{(n)} \to X^n$ reads

$$0 \longrightarrow H^1(X^n,\mathbb{Z}) \stackrel{(3)}{\longrightarrow} H^1(X^{(n)},\mathbb{Z}) \longrightarrow \mathbb{Z}^{\{(a,b):1 \leq a < b \leq n\}} \stackrel{(*)}{\longrightarrow} H^2(X^n,\mathbb{Z}) \longrightarrow H^2(X^{(n)},\mathbb{Z}),$$

where the map (*) sends 1 in the copy of $\mathbb Z$ corresponding to (a,b) (a < b) to the class of the pullback of the diagonal $\Delta \subset X^2$ under the projection $p_{ab}: X^n \to X^2$ (defined in the obvious way). Since g > 0, the class of Δ has a nonzero $H^1(X) \otimes H^1(X)$ Kunneth component (if $X = \overline{X}$ this is well known, and the noncompact case follows from the compact case in view of the functoriality of the class of the diagonal with respect to the inclusion $i: X^2 \to \overline{X}^2$ and injectivity of $i^*: H^2(\overline{X}^2) \to H^2(X^2)$ on $H^1 \otimes H^1$ components). Thus the class of $p_{ab}^*(\Delta)$ has a nonzero $p_{ab}^*(H^1(X) \otimes H^1(X))$ component. Since every other $p_{a'b'}^*(\Delta)$ has a zero $p_{ab}^*(H^1(X) \otimes H^1(X))$ component, it follows that (*) is injective.

- (ii) Let $\Omega^1(\overline{X} \log S)$ be the space of differentials of the third kind on \overline{X} with singularities in S. Then one has a distinguished isomorphism $\Omega^1(\overline{X} \log S) \cong F^1H^1_{dR}(X)$ given by $\omega \mapsto [\omega]$ (F being the Hodge filtration). (See [5, (3.2.13)(ii) and (3.2.14)], for instance.)
- (iii) The cohomology $H^1_{dR}(X)$ decomposes as an internal direct sum $F^1H^1_{dR}(X) \oplus H^{0,1}$ (where $H^{0,1} \subset H^1_{dR}(\overline{X}) \subset H^1_{dR}(X)$). Indeed, this is simply the Hodge decomposition in $X = \overline{X}$ case. As for the noncompact case, strictness of morphisms of mixed Hodge structures with respect to the Hodge filtration implies that the two subspaces $F^1H^1_{dR}(X)$ and $H^{0,1}$ of $H^1_{dR}(X)$ have zero intersection, and by (ii) and the Riemann–Roch theorem $F^1H^1_{dR}(X)$ has dimension g + |S| 1. The conclusion follows by a dimension count.

Let θ be the composition

$$H^1_{dR}(X^{(n)}) \cong H^1_{dR}(X^n) \overset{\text{Kunneth}}{\cong} H^1_{dR}(X)^{\oplus n} \xrightarrow{(\dagger)} F^1 H^1_{dR}(X)^{\oplus n} \cong \Omega^1(\overline{X} \log S)^{\oplus n} \xrightarrow{(\ddagger)} \Omega^1(X^{(n)}),$$

where (†) is the sum of n copies of the natural projection, and (‡) is the sum of the pullbacks along projections $X^{(n)} \to X$. Note that the image of θ is contained in the subspace of closed forms, as it is contained in the subspace spanned by the pullbacks of holomorphic 1-forms on X along the aforementioned projections. Let ι be the composition of the inclusion $H_1(X^{(n)}, \mathbb{C}) \subset \mathfrak{g}$ and the natural map $\mathfrak{g} \to U \mathfrak{g}$. Denote by λ the image of the comparison isomorphism (2) under the map

$$\iota \otimes \theta : H_1(X^{(n)}, \mathbb{C}) \otimes H^1_{dR}(X^{(n)}) \longrightarrow \stackrel{\wedge}{U\mathfrak{g}} \otimes \Omega^1(X^{(n)}).$$

Define the connection

$$\nabla: \stackrel{\wedge}{U\mathfrak{g}} \otimes \mathcal{O}(X^{(n)}) \longrightarrow \stackrel{\wedge}{U\mathfrak{g}} \otimes \Omega^1(X^{(n)})$$

by

$$\nabla(f) = df - \lambda f$$
.

(Note that λ multiplies with an element of $U \in \mathcal{O}(X^{(n)})$ through the multiplication in the universal algebra in the first factor and the algebra of differential forms in the second.)

2. Integrability

We prove that the connection ∇ is integrable. Since $\lambda \in U_{\mathfrak{g}} \otimes \Omega^1_{closed}(X^{(n)})$, it is enough to show that

$$\lambda^2 \in \stackrel{\wedge}{U\mathfrak{a}} \otimes \Omega^2(X^{(n)})$$

is zero. For simplicity, denote $d=\dim H_1(X,\mathbb{Z})$ (thus d=2g if $X=\overline{X}$ and d=2g+|S|-1 otherwise). Let $\{\alpha_i\}_{1\leq i\leq d}$ be a basis of $H_1(X,\mathbb{Z})$ such that for $i\leq g,$ α_i and α_{i+g} are (classes of) transversal loops around the i-th handle with $\alpha_i\cdot\alpha_{i+g}=1$ in $H_1(\overline{X},\mathbb{Z})$, and for $1\leq i\leq |S|-1$, α_{2g+i} is a simple loop going positively around the puncture Q_i , contractible in $X\cup\{Q_i\}$. Let $\{\omega_i\}_{1\leq i\leq d}$ be 1-forms such that $\{\omega_i\}_{i\leq g}$ form a basis for holomorphic differentials on \overline{X} , $\omega_{g+i}=\overline{\omega_i}$ for $i\leq g$, and ω_{2g+i} ($1\leq i\leq |S|-1$) is a differential of the third kind with residual divisor $\frac{1}{2\pi i}(Q_i-Q_{|S|})$. With abuse of notation, we denote a differential form (resp. a loop) and its cohomology (resp. homology) class by the same symbol. Write the comparison isomorphism $comp_X\in H_1(X,\mathbb{C})\otimes H^1_{dR}(X)$ as $\sum_{i,j}\pi_{ij}\alpha_i\otimes\omega_j$. (Here and in all the sums in the sequel, unless otherwise

indicated the indices run over all their possible values.) The matrix $(\pi_{ij})_{ij}$ (with ij-entry π_{ij}) is the inverse of the matrix whose ij-entry is $\int_{\alpha_i} \omega_i$, and is of the form

$$\begin{pmatrix} P^{-1} & 0 \\ & I_{|S|-1} \end{pmatrix},$$

where P is the matrix of periods of \overline{X} with respect to the ω_i and α_i , and I denotes the identity matrix.

Let $\{\alpha_i^{(k)}\}_{\substack{1 \leq k \leq n \\ 1 \leq i \leq d}}$ be pure braids in X with n strands based at \underline{e} (= loops in $X^{(n)}$ based at \underline{e}) such that the following hold:

- (i) the only nonconstant strand in $\alpha_i^{(k)}$ is the one based at e_k ;
- (ii) for $i \leq g$, the strands of $\alpha_i^{(k)}$ and $\alpha_{i+g}^{(k)}$ based at e_k are transversal loops around the i-th handle;
- (iii) for $1 \le i \le |S| 1$, the strand of $\alpha_{2g+i}^{(k)}$ based at e_k is a simple loop going around Q_i ;
- (iv) the *k*-th projection $X^{(n)} \to X$ sends $\alpha_i^{(k)}$ to α_i in homology.

Let $\omega_i^{(k)}$ be the pullback of ω_i under the k-th projection $X^{(n)} \to X$. Then $\{\alpha_i^{(k)}\}$ and $\{\omega_i^{(k)}\}$ are bases of $H_1(X^{(n)}, \mathbb{C})$ and $H^1_{d\mathbb{R}}(X^{(n)})$, and

$$comp_{X^{(n)}} = \sum_{i,j,k} \pi_{ij} \alpha_i^{(k)} \otimes \omega_j^{(k)}.$$

Let $\mathcal{F} = \{1, ..., d\} - \{g + 1, ..., 2g\}$. Then

$$\lambda = \sum_{\substack{i \in \mathcal{F} \\ i \mid k}} \pi_{ij} \alpha_i^{(k)} \otimes \omega_j^{(k)}.$$

We have

$$\begin{split} \lambda^2 &= \sum_{\substack{j,j' \in \mathcal{F}; \ i,i' \\ k,k'}} \pi_{ij} \pi_{i'j'} \alpha_i^{(k)} \alpha_{i'}^{(k')} \otimes \omega_j^{(k)} \wedge \omega_{j'}^{(k')} \\ &= \sum_{\substack{j,j' \in \mathcal{F}; \ i,i' \\ k < k'}} \pi_{ij} \pi_{i'j'} [\alpha_i^{(k)}, \alpha_{i'}^{(k')}] \otimes \omega_j^{(k)} \wedge \omega_{j'}^{(k')}. \end{split}$$

Simple calculations using Bellingeri's description of $\pi_1(X^{(n)})$ given in [1, Theorems 5.1 and 5.2] (also see [2] for a misprint corrected) show that in \mathfrak{g} , for arbitrary distinct k, k', one has $[\alpha_i^{(k)}, \alpha_{i'}^{(k')}] = 0$ unless $i, i' \leq 2g$ and |i - i'| = g (i.e. unless $\alpha_i^{(k)}, \alpha_{i'}^{(k')}$ correspond to transversal loops going around the same handle), and moreover that

$$\left[\alpha_i^{(k)}, \alpha_{i+g}^{(k')}\right] \qquad (i \le g) \tag{4}$$

only depends on the set $\{k, k'\}$. (Note that one can take $\alpha_i^{(k)} \in \pi_1(X^{(n)})$ to be Bellingeri's $A_{2i-1,d+k}$, $A_{2(i-g),d+k}$, or $A_{i,d+k}$ depending on whether $i \le g$, $g < i \le 2g$, or $2g < i \le d$ respectively.) Denoting (4) by $s_{kk'} (= s_{k'k})$, we thus have

$$\lambda^2 = \sum_{i,j' \leq g} \left(\sum_{i \leq g} \pi_{ij} \pi_{i+g,\,j'} - \pi_{i+g,\,j} \pi_{ij'} \right) s_{kk'} \otimes \omega_j^{(k)} \wedge \omega_{j'}^{(k')},$$

which is zero by Riemann period relations.

Remarks. (1) In the case $X = \overline{X}$, one can replace \mathfrak{g} by the Lie algebra \mathfrak{l} of the nilpotent completion of $\pi_1(X^{(n)})$. Thanks to a theorem of Bezrukavnikov [3] one knows similar relations to the ones in \mathfrak{g} used above to prove integrability also hold in \mathfrak{l} . (2) It would be interesting to relate the connection defined here with the one defined by Enriquez in [6] on configuration spaces of compact Riemann surfaces.

Acknowledgements

I would like to thank Kumar Murty for some helpful discussions. I would also like to thank Dan Petersen for drawing my attention to Totaro's paper [7] and explaining why (3) is an isomorphism. Finally I would like to thank the anonymous referee for making helpful comments, and in particular bringing the paper [6] to my attention.

References

- [1] P. Bellingeri, On presentations of surface braid groups, J. Algebra 274 (2004) 543-563.
- [2] P. Bellingeri, S. Gervais, J. Guaschi, Lower central series for Artin Tits and surface braid groups, J. Algebra 319 (2008) 1409-1427.
- [3] R. Bezrukavnikov, Koszul DG-algebras arising from configuration spaces, Geom. Funct. Anal. 4 (2) (1994) 119–135.
- [4] N. Bourbaki, Lie Groups and Lie Algebras, Chapters 1-3, Springer, 1988.
- [5] P. Deligne, Théorie de Hodge, II, Publ. Math. Inst. Hautes Études Sci. 40 (1971) 5-57.
- [6] B. Enriquez, Flat connections on configuration spaces and braid groups of surfaces, Adv. Math. 252 (2014) 204-226.
- [7] B. Totaro, Configuration spaces of algebraic varieties, Topology 35 (4) (1996) 1057–1067.