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Let X be a Riemann surface of positive genus. Denote by X (n) the configuration space of n
distinct points on X . We use the Betti–de Rham comparison isomorphism on H1(X (n)) to 
define an integrable connection on the trivial vector bundle on X (n) with fiber the univer-
sal algebra of the Lie algebra associated with the descending central series of π1 of X (n) . 
The construction is inspired by the Knizhnik–Zamolodchikov system in genus zero and its 
integrability follows from Riemann period relations.
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r é s u m é

Soit X une surface de Riemann de genre positif. Nous notons X (n) l’espace des confi-
gurations de n points distincts sur X . Nous utilisons l’isomorphisme de comparaison de 
Betti–de Rham sur H1(X (n)) pour définir une connexion intégrable sur le fibré vectoriel 
trivial sur X (n) , dont la fibre est l’algèbre universelle de l’algèbre de Lie associée à la série 
centrale descendante du π1 de X (n) . La construction s’inspire du système de Knizhnik–
Zamolodchikov en genre zéro ; l’intégrabilité résulte des relations de périodes de Riemann.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Fix n ≥ 1. Let g0 be the graded complex Lie algebra associated with the descending central series1 of the classical pure 
braid group P Bn , i.e. the fundamental group of

C
(n) := {(z1, . . . , zn) : zi ∈C, zi �= z j for i �= j}.

E-mail address: payman @math .utoronto .ca.
1 Let G be any group and G1 := G ⊃ · · · ⊃ Gk ⊃ Gk+1 := [Gk, G] ⊃ · · · be its descending central series. By the graded complex Lie algebra associated with 

the descending central series of G , we mean the positively graded Lie algebra with degree k component Gk
/

Gk+1 ⊗ C and Lie bracket induced by the 
commutator operator in G . See [4].
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It is generated by degree 1 elements {si j : 1 ≤ i, j ≤ n, i �= j}, subject to the relations

si j = s ji

[si j, skl] = 0 (i, j,k, l distinct)

[si j + sik, s jk] = 0. (1)

The element si j ∈ H1(C
(n), C) (= degree 1 part of g0) is the homology class of the j-th strand going positively around the 

i-th, while all other strands stay constant.

Let 
∧

Ug0 be the completion of the universal algebra of g0. Let O(C(n)) (resp. �·(C(n))) be the space of analytic functions 
(resp. complex of holomorphic differentials) on C(n) . The relations (1) assure that the Knizhnik–Zamolodchikov connection

∇K Z : ∧
Ug0 ⊗ O(C(n)) −→ ∧

Ug0 ⊗ �1(C(n))

defined by

∇K Z f = df −

λ0︷ ︸︸ ︷⎛
⎝∑

i< j

1

2πi
si j ⊗ d(zi − z j)

zi − z j

⎞
⎠ f

is integrable. This connection and its more general variants are of great importance in conformal field theory, representation 
theory, and number theory.

The connection ∇K Z is related to the comparison isomorphism

compC(n) : H1(C(n),C) −→ H1
dR(C(n))

between the singular and (say) complex-valued smooth de Rham cohomologies in the following way: λ0 is the image of 
compC(n) under the map

H1(C
(n),C) ⊗ H1

dR(C(n)) −→ ∧
Ug0 ⊗ �1(C(n))

defined by

si j ⊗ [d(zk − zl)

zk − zl
] �→ si j ⊗ d(zk − zl)

zk − zl
(i < j, k < l).

(Note that the si j with i < j (resp. [d(zk − zl)

zk − zl
] with k < l) form a basis of H1(C(n), C) (resp. H1

dR(C(n)).)

Now let X be a compact Riemann surface of genus g > 0, S = {Q 1, . . . , Q |S|} a finite set of points in X (possibly empty), 
and X = X − S . Let

X (n) := {(x1, . . . , xn) : xi ∈ X , xi �= x j for i �= j}.
Fix a base point e = (e1, . . . , en) ∈ X (n) and let g be the graded complex Lie algebra associated with the descending central 
series of π1(X (n), e). The goal of this note is to use the comparison isomorphism

comp X(n) : H1(X (n),C) −→ H1
dR(X (n)) (2)

to define an integrable connection ∇ on the trivial bundle 
∧

Ug ⊗ O(X (n)).

1. Construction of the connection

We make three observations first.

(i) Since g > 0, the natural map

H1
dR(Xn) −→ H1

dR(X (n)) (3)

(induced by inclusion) is an isomorphism. Indeed, thanks to a theorem of Totaro [7, Theorem 1], one knows that the 
five-term exact sequence for the Leray spectral sequence for the constant sheaf Z and the inclusion X (n) → Xn reads

0 −→ H1(Xn,Z)
(3)−→ H1(X (n),Z) −→ Z

{(a,b):1≤a<b≤n} (∗)−→ H2(Xn,Z) −→ H2(X (n),Z),
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where the map (∗) sends 1 in the copy of Z corresponding to (a, b) (a < b) to the class of the pullback of the diagonal 
� ⊂ X2 under the projection pab : Xn → X2 (defined in the obvious way). Since g > 0, the class of � has a nonzero 
H1(X) ⊗ H1(X) Kunneth component (if X = X this is well known, and the noncompact case follows from the compact 
case in view of the functoriality of the class of the diagonal with respect to the inclusion i : X2 → X

2
and injectiv-

ity of i∗ : H2(X
2
) → H2(X2) on H1 ⊗ H1 components). Thus the class of p∗

ab(�) has a nonzero p∗
ab(H1(X) ⊗ H1(X))

component. Since every other p∗
a′b′(�) has a zero p∗

ab(H1(X) ⊗ H1(X)) component, it follows that (∗) is injective.
(ii) Let �1(X log S) be the space of differentials of the third kind on X with singularities in S . Then one has a distinguished 

isomorphism �1(X log S) ∼= F 1 H1
dR(X) given by ω �→ [ω] (F being the Hodge filtration). (See [5, (3.2.13)(ii) and (3.2.14)], 

for instance.)
(iii) The cohomology H1

dR(X) decomposes as an internal direct sum F 1 H1
dR(X) ⊕ H0,1 (where H0,1 ⊂ H1

dR(X) ⊂ H1
dR(X)). 

Indeed, this is simply the Hodge decomposition in X = X case. As for the noncompact case, strictness of morphisms 
of mixed Hodge structures with respect to the Hodge filtration implies that the two subspaces F 1 H1

dR(X) and H0,1 of 
H1

dR(X) have zero intersection, and by (ii) and the Riemann–Roch theorem F 1 H1
dR(X) has dimension g + |S| − 1. The 

conclusion follows by a dimension count.

Let θ be the composition

H1
dR(X (n)) ∼= H1

dR(Xn)
Kunneth∼= H1

dR(X)⊕n (†)−→ F 1 H1
dR(X)⊕n ∼= �1(X log S)⊕n (‡)−→ �1(X (n)),

where (†) is the sum of n copies of the natural projection, and (‡) is the sum of the pullbacks along projections X (n) → X . 
Note that the image of θ is contained in the subspace of closed forms, as it is contained in the subspace spanned by the 
pullbacks of holomorphic 1-forms on X along the aforementioned projections. Let ι be the composition of the inclusion 

H1(X (n), C) ⊂ g and the natural map g → ∧
Ug. Denote by λ the image of the comparison isomorphism (2) under the map

ι ⊗ θ : H1(X (n),C) ⊗ H1
dR(X (n)) −→ ∧

Ug ⊗ �1(X (n)).

Define the connection

∇ : ∧
Ug ⊗ O(X (n)) −→ ∧

Ug ⊗ �1(X (n))

by

∇( f ) = df − λ f .

(Note that λ multiplies with an element of 
∧

Ug ⊗ O(X (n)) through the multiplication in the universal algebra in the first 
factor and the algebra of differential forms in the second.)

2. Integrability

We prove that the connection ∇ is integrable. Since λ ∈ ∧
Ug ⊗ �1

closed(X (n)), it is enough to show that

λ2 ∈ ∧
Ug ⊗ �2(X (n))

is zero. For simplicity, denote d = dim H1(X, Z) (thus d = 2g if X = X and d = 2g + |S| − 1 otherwise). Let {αi}1≤i≤d be a 
basis of H1(X, Z) such that for i ≤ g , αi and αi+g are (classes of) transversal loops around the i-th handle with αi ·αi+g = 1
in H1(X, Z), and for 1 ≤ i ≤ |S| −1, α2g+i is a simple loop going positively around the puncture Q i , contractible in X ∪{Q i}. 
Let {ωi}1≤i≤d be 1-forms such that {ωi}i≤g form a basis for holomorphic differentials on X , ωg+i = ωi for i ≤ g , and ω2g+i

(1 ≤ i ≤ |S| − 1) is a differential of the third kind with residual divisor 1
2πi (Q i − Q |S|). With abuse of notation, we denote 

a differential form (resp. a loop) and its cohomology (resp. homology) class by the same symbol. Write the comparison 
isomorphism comp X ∈ H1(X, C) ⊗ H1

dR(X) as 
∑
i, j

πi jαi ⊗ ω j . (Here and in all the sums in the sequel, unless otherwise 

indicated the indices run over all their possible values.) The matrix (πi j)i j (with i j-entry πi j) is the inverse of the matrix 
whose i j-entry is 

∫
α j

ωi , and is of the form

(
P−1 0

I|S|−1

)
,

where P is the matrix of periods of X with respect to the ωi and α j , and I denotes the identity matrix.
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Let {α(k)
i } 1≤k≤n

1≤i≤d
be pure braids in X with n strands based at e (= loops in X (n) based at e) such that the following hold:

(i) the only nonconstant strand in α(k)
i is the one based at ek;

(ii) for i ≤ g , the strands of α(k)
i and α(k)

i+g based at ek are transversal loops around the i-th handle;

(iii) for 1 ≤ i ≤ |S| − 1, the strand of α(k)
2g+i based at ek is a simple loop going around Q i ;

(iv) the k-th projection X (n) → X sends α(k)
i to αi in homology.

Let ω(k)
i be the pullback of ωi under the k-th projection X (n) → X . Then {α(k)

i } and {ω(k)
i } are bases of H1(X (n), C) and 

H1
dR(X (n)), and

comp X(n) =
∑
i, j,k

πi jα
(k)
i ⊗ ω

(k)
j .

Let F = {1, . . . , d} − {g + 1, . . . , 2g}. Then

λ =
∑
j∈F
i,k

πi jα
(k)
i ⊗ ω

(k)
j .

We have

λ2 =
∑

j, j′∈F ; i,i′
k,k′

πi jπi′ j′α
(k)
i α

(k′)
i′ ⊗ ω

(k)
j ∧ ω

(k′)
j′

=
∑

j, j′∈F ; i,i′
k<k′

πi jπi′ j′ [α(k)
i ,α

(k′)
i′ ] ⊗ ω

(k)
j ∧ ω

(k′)
j′ .

Simple calculations using Bellingeri’s description of π1(X (n)) given in [1, Theorems 5.1 and 5.2] (also see [2] for a misprint 
corrected) show that in g, for arbitrary distinct k, k′ , one has [α(k)

i , α(k′)
i′ ] = 0 unless i, i′ ≤ 2g and |i − i′| = g (i.e. unless 

α
(k)
i , α(k′)

i′ correspond to transversal loops going around the same handle), and moreover that

[α(k)
i ,α

(k′)
i+g] (i ≤ g) (4)

only depends on the set {k, k′}. (Note that one can take α(k)
i ∈ π1(X (n)) to be Bellingeri’s A2i−1,d+k , A2(i−g),d+k , or Ai,d+k

depending on whether i ≤ g , g < i ≤ 2g , or 2g < i ≤ d respectively.) Denoting (4) by skk′ (= sk′k), we thus have

λ2 =
∑
j, j′≤g
k<k′

⎛
⎝∑

i≤g

πi jπi+g, j′ − πi+g, jπi j′

⎞
⎠ skk′ ⊗ ω

(k)
j ∧ ω

(k′)
j′ ,

which is zero by Riemann period relations.

Remarks. (1) In the case X = X , one can replace g by the Lie algebra l of the nilpotent completion of π1(X (n)). Thanks to a 
theorem of Bezrukavnikov [3] one knows similar relations to the ones in g used above to prove integrability also hold in l.

(2) It would be interesting to relate the connection defined here with the one defined by Enriquez in [6] on configuration 
spaces of compact Riemann surfaces.
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