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We study the motion of a visco-elastic solid with large deformations. We prove the 
existence of a local-in-time motion and of a non-negative pressure, which is a measure 
reaction to the incompressibility condition.
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r é s u m é

On étudie le mouvement d’un solide viscoélastique incompressible en grande déformation. 
On démontre l’existence d’un mouvement local en temps et d’une pression positive qui est 
une mesure, réaction à la condition d’incompressibilité.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Nous étudions le mouvement d’un solide viscoélastique incompressible en grande déformation. La condition d’incom-
pressibilité (2) est unilatérale, car en traction des vides peuvent apparaître. Cette condition introduit une pression positive 
(voir (5) et (17)). Par une approximation de Moreau–Yosida de la fonction indicatrice de l’ensemble des matrices d’élonga-
tion qui vérifient la condition d’incompressibilité (2), on démontre l’existence d’un mouvement approché. On montre que 
ce mouvement approché a une limite et que la pression approchée a aussi une limite, qui est une mesure (Theorème 5.1). 
Cette mesure autorise des collisions, c’est-à-dire des discontinuités de vitesse, lors de la disparition de vides.

1. Introduction

We consider the motion between time 0 and time t̃ > 0 of a solid located in a smooth bounded domain Da ⊂ R
3. The 

position function is a ∈ Da, t ∈ (0, ̃t) → �(a, t), with �(a, 0) = a. For the sake of simplicity, we assume that the solid is in 
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contact on a smooth part �a
0 of its boundary with an obstacle schematized by springs applying actions proportional to the 

gap (� − a) and its gradient. Besides the body force 
−→
f , no other external action is applied.

We denote by M the space of 3 × 3 matrices, endowed with the usual scalar product. The subspaces S ⊂ M of the 
symmetric matrices and A ⊂ M of the antisymmetric matrices are orthogonal. We introduce the set

Cα = {B ∈ M
∣∣∣ tr B ≥ 3α, tr(cof B) ≥ 3α2, det B ≥ α3

}
, 0 < α < 1, (1)

where α is the only physical parameter, the value of which we choose different from 1. We recall that for any position �
that is kinematically admissible, i.e. differentiable with det(grad�) > 0, there exists a unique symmetric positive definite 
matrix W, the stretch matrix, and a rotation matrix R with det R = 1, such that grad � = RW. With this decomposition, 
the local impenetrability condition is to require, for the stretch matrix, that W ∈ Cα ∩ S. Note in particular that the physical 
constant α quantifies the resistance of the material to crushing.

This model has been introduced in [1], [3], [6], and in [2] (with more analytical details concerning the existence of 
solutions). We refer the reader to these papers for further details in the derivation of the model and, for some auxiliary 
results, we will exploit in the sequel. Actually, let us point out that the main novelty of this paper consists in the fact that 
incompressibility is required as an unilateral internal constraint (see Sec. 2).

2. The incompressibility condition

The usual incompressibility condition is det W = 1. But let us consider experiments and remark that when tension is 
applied to a sample, some voids may appear during the evolution, mainly at the microscopic level, with a volume increase 
at the macroscopic level. Moreover a phase change may occur and eventually makes possible an increase of volume. This 
behaviour has been described a long time ago by Jean-Jacques Moreau to investigate cavitation in fluid mechanics, [7]. The 
water is incompressible, but bubbles may appear inside water at the microscopic level when pressure is null: this is the 
cavitation phenomenon responsible for water hammers. It results that the unilateral condition

det W ≥ 1 (2)

is possible. On the contrary, for an incompressible material, it is impossible to have interpenetration at the microscopic 
level. It results det W < 1 is impossible. Note that the word incompressible refers to the impossibility to modify the volume 
by compression. We are motivated to think that condition (2) is the condition that accounts for the actual mechanical 
behaviour. The set

K = {B ∈ M | B ∈ S∩ C0, det B ≥ 1} (3)

is convex (C0 is set Cα with α = 0, S ∩ C0 is the set of the semi-definite matrices). We denote by I K the indicator function 
of set K in M. Set K accounts for the two internal constraints: symmetry of stretch matrix and incompressibility.

3. The constitutive laws

We derive the constitutive laws from volume free energy �(W, grad��, ‖gradR‖2), surface free energy ��(� − a,

grad� − I) and volume pseudo-potential of dissipation D(Ẇ, grad�) with � = ṘR
T

and

�(W,grad ��,‖grad R‖2) = 1

2
‖W − I‖2 + 1

2
‖grad ��‖2 + �̂(W) + I K (W) + 1

4
‖grad R‖2 ,

��(� − a,grad � − I) = 1

2

∫
�a

0

(� − a)2d� + 1

2

∫
�a

0

(grad � − I)2d�,

and

D(Ẇ,grad �) = 1

2

∥∥Ẇ
∥∥2 + 1

4
‖grad �‖2 ,

where W is a matrix of M, and ‖W‖2 = W : W, ‖grad��‖2 = �i,αββ�i,αδδ . The function I K (W) is the indicator function of 
convex set K that insures the symmetry of matrix W and incompressibility.

The free energy accounts for the impenetrability condition. In particular, this constraint is related to the presence of 
function �̂(W), which is a smooth approximation from the interior of the indicator function of the set Cα in M (see [1], 
[2], [3] and [6]).

The incompressibility constitutive law is

Sreac + Areac ∈ ∂ I K (W),
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with symmetric and antisymmetric parts given by

Sreac ∈ d det W

dW
∂ I+(det W−1) = −p(cofW), −p ∈ ∂ I+(det W−1), Areac ∈ ∂ IS(W) = A, (4)

with

∂ I+(det W−1) =
{
R

−, i f det W−1 = 0,

{0} , i f det W−1 > 0.

Introducing reaction stress Areac, which ensures that stretch matrix W is symmetric [1–3,6], and non-negative pressure p, 
which ensures incompressibility (I+ is the indicator function of R+).

Position �, reaction stress Areac, and pressure p are the unknowns of the problem.

4. The weak formulation and a first approximated system

For a final time T > 0, the spaces of the virtual linear and angular velocities are

V(T ) = L2(0, T ; H3+δ(Da)) ∩ H1(0, T ; L2(Da)), δ > 0,

Vrv(T ) = L2(0, T ; H1(Da)).

Note that we need test functions with grad V ∈ C0([0, T ]; H2(Da)). For the sake of simplicity, we are using the same notation 
for a Banach space X and any power of it. We denote by 〈〈·, ·〉〉 the duality pairing between V(T ) and its dual, while the 
duality between Vrv(T ) and its dual space is denoted by 

∫ T
0 〈·, ·〉, where 〈·, ·〉 stands for the duality between H1 and the 

dual. We denote by ∂ Iε+ the Moreau–Yosida approximation of ∂ I+ , which is in particular a Lipschitz function, and we define 
the approximated pressure:

pε = −
(

∂ Iε+
∂x

(det W−1)

)
= (det W−1)−

ε
. (5)

Now, we fix ε > 0 and apply Theorem 12 in [2] ensuring that the resulting approximated problem admits a local in time 
solution, where the final time, denoted by T with 0 < T ≤ t̃ , does not depend on ε. Thus, the variational formulation of the 
approximated problem on time interval (0, T ) reads as follows. We look for

� ∈ L∞(0, T ; H3(Da)) ∩ H1(0, T ; H1(Da)) ∩ W 1,∞(0, T ; L2(Da)),

d2�

dt2
∈ V′(T ), A ∈ V′

rv(T ) such that ∀−→
V ∈ V(T ) and ∀�̂ ∈ Vrv(T ),

〈〈d2�

dt2
,
−→
V 〉〉 +

T∫
0

∫
Da

−pε (det W)RW−1 : grad
−→
V da dτ

+
T∫

0

∫
Da

R

{
(W − I) + Ẇ+ ∂�̂

∂W
(W)

}
: grad

−→
V da dτ

+
T∫

0

〈A,Rᵀ grad
−→
V − grad

−→
V ᵀR〉dτ +

T∫
0

∫
Da

grad�� : grad�
−→
V da dτ

+
T∫

0

∫
�a

0

(� − a) · −→V d�dτ +
∫
�a

0

(grad � − I) : grad
−→
V d�dτ =

T∫
0

∫
Da

−→
f · −→V da dτ , (6)

� = ṘR
ᵀ ∈ Vrv(T ), RW = F = grad �, R(a,0) = I, (7)

T∫
0

∫
Da

(grad R)Rᵀ : grad �̂ + grad � : grad �̂da dτ

=
T∫

0

∫
Da

R
{

ẆW − WẆ
}

Rᵀ :�̂da dτ +
T∫

0

〈A,Rᵀ�̂RW + WRᵀ�̂R〉dτ . (8)
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The variational formulations are completed with the initial conditions

�(a,0) = a, �̇(a,0) = 0, (9)

giving I+(det W(0) − 1) = Iε+(det W(0) − 1) = 0.
Note that here we have, in addition, the boundary contributions that were not present in [2]. Actually, this choice does 

not create further difficulties in the mathematical treatment. The reader may refer to the arguments that we will detail to 
perform the passage to the limit as ε ↘ 0.

Following [1,2], we prove the following existence (and stability) result.

Theorem 4.1. The approximated problem has local in time solution (�ε, Aε, pε) on (0, T ). The final time T is independent of ε and 
satisfies 0 < T ≤ t̃ . Moreover, the solution satisfies

‖�̇ε‖L2(0,T ;H1(Da))∩L∞(0,T ;L2(Da))
+ ‖�ε‖L∞(0,T ;H3(Da))

+
∫
Da

Iε+(Wε(T ))da

+‖Ẇε‖L2(0,T ;L2(Da))
+ ‖Rε‖L∞(0,T ;H1(Da))

+ ‖�ε‖Vrv(T ) + ‖Aε‖V′
rv(T ) ≤ c

where c does not depend on ε.

The proof of the theorem is performed by use of a Galerkin approximation combined with a priori estimates and passage 
to the limit procedure. In particular, it is required a Lipschitz regularity for the involved nonlinearities. The fact that the 
existence is proved just locally in time comes from the fact that the motion may be interrupted by crushing resulting 
in a discontinuity of velocity (i.e. an internal collision, [5], [6]). The existence is proved for a suitably introduced weak 
formulation, we will clarify in the following the statement of the existence of a solution to our problem. Let us point out 
that the above estimates are recovered by the Theorem of kinetic energy. From the analytical point of view, they are obtained 
testing the equations by the actual velocities d�/dt , �. Hence, the reaction Aε is directly estimated by a comparison in the 
equation due to the fact that Wε belongs to Cα . Finally, the terms involving �̂ are estimated exploiting the smoothness of 
the function �̂ in the interior of Cα .

5. The limit process as ε ↘ 0

In this section, we perform the passage to the limit for solutions to the approximated problem as ε ↘ 0. Actually, let us 
point out that we can pass to the limit for a weaker version of the problem, which we are going to clarify.

5.1. The pressure a priori estimate

Now, we aim to estimate the term pε independently of ε. To this aim, we take as a test function �ε ∈ L∞(0, T ; H3(Da))

in the variational formulation of the approximated problem; using Aε : Wε = 0, we get

T∫
0

∫
Da

pεRε cof Wε : grad �ε da dτ =
T∫

0

∫
Da

3pε (det Wε) da dτ ≤ c. (10)

Because pressure pε is non negative and det Wε ≥ α3, one has

‖pε‖L1(Q ) ≤ c, (11)

independently of ε, where Q = (0, T ) ×Da . The estimate (11) combined with the regularity of Wε and Rε ensures that the 
operator

〈〈 Pε, V 〉〉 =
T∫

0

∫
Da

pε(det Wε)RεW−1
ε : grad V da dτ

is bounded in V(T )′ .

5.2. The limit of pressure

First, we point out that pressure pε converges weakly star (for topology σ(M(Q ), C(Q )) to a measure p ∈ M(Q ). Fol-
lowing the arguments introduced in [4] considering the boundedness of the operator
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‖Pε‖V(t̂)′ ≤ c, (12)

we can also deduce a convergence in the dual space. Then, passing to the limit and exploiting the weak and weak star 
convergence results detailed in [2], we can rewrite the variational formulation of the term

< p (det W)RW−1 : grad V >σ =< pI : (det W) (grad V )W−1Rᵀ >σ , (13)

where p (det W) RW−1 is the product of measure p with continuous function (det W) RW−1 and < · : · >σ stands for the 
duality between measures and smooth functions.

Now, our aim is to show that p ∈ ∂ I+ , at least when it is sufficiently regular. To this aim, we prove a lower semicontinuity 
property, directly passing to the limit in the equations and using the strong convergence of R and W in C(Q ). We choose 
the gradient of the virtual velocities grad V continuous in Q . This is the reason why we have considered a more regular set 
of test functions with respect to the existence result detailed in [2]. To get the properties of pressure, we have

T∫
0

∫
Da

−pε(det W̃ − det Wε)da dτ +
T∫

0

∫
Da

Iε+(det Wε − 1)da dτ ≤
T∫

0

∫
Da

Iε+(det W̃ − 1)da dτ . (14)

Let us choose W̃ ∈S satisfying det W̃ ≥1. Then, we have Iε+(det W̃ − 1) = 0 and

T∫
0

∫
Da

−pε det W̃ da dτ −
T∫

0

∫
Da

−pε det Wε da dτ +
T∫

0

∫
Da

Iε+(det Wε − 1)da dτ ≤ 0, (15)

and

T∫
0

∫
Da

−pε det W̃ da dτ −
T∫

0

∫
Da

−pε (det Wε) da dτ ≤ 0, (16)

giving

< −p : (det W̃ − 1) >σ − < −p : (det W − 1) >σ ≤ 0. (17)

Note that, in case pressure is sufficiently regular (here we have just an L1 estimate), due to the fact that det W ≥ 1, by the 
previous argument and the definition of the subdifferential of convex functions, we can deduce −p ∈ ∂ I+(det W − 1), in 
term of the duality between V(t̂) and V(t̂)′ .

Note that, dealing with measures and the abstract operator Pε , we cannot in general identify the pressure a.e. as an 
element of the subdifferential. However, the weak formulation of the problem we are solving and (17) correspond to the 
weak formulation of the constraint.

5.3. The limit of the acceleration

By a comparison in the equations, we can estimate the acceleration term ‖ d2�ε

dt2 ‖V(t̂)′ ≤ c. Then the approximated accel-

eration converges weakly star in this dual space. Note that velocity �̇ is expected not to be continuous with respect to the 
time and to present jumps. From a physical point of view, this lack of regularity, related to the presence of the internal 
non-smooth constraint represented by pressure, corresponds to the fact that collisions may occur when voids are closing 
[5], [6]. For the initial condition, we study the evolution before time t = 0 with all the external actions null and solution 
� = a when t < 0 and all the solutions are in L2(d, T ), the beginning of the evolution being at time d < 0. One may also 
remark that velocity �̇− = limt→0− �̇(t), the velocity before a possible collision at initial time t = 0, is given.

The existence result is

Theorem 5.1. Under the assumptions we have specified, there exists a solution to (6)–(9) in the time interval (0, T ) with 0 < T ≤ t̃ . The 
incompressibility condition det W ≥ 1 is satisfied, the reaction pressure p is a positive measure satisfying (17), and the terms involving 
p are understood in the duality.
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