
C. R. Acad. Sci. Paris, Ser. I 356 (2018) 288–292
Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Complex analysis

Inequalities involving the multiple psi function

Inégalités mettant en jeu la fonction psi multiple

Sourav Das

Department of Mathematics, National Institute of Technology, Hamirpur, Himachal Pradesh, 177005, India

a r t i c l e i n f o a b s t r a c t

Article history:
Received 29 September 2017
Accepted after revision 22 January 2018
Available online 1 February 2018

Presented by the Editorial Board

In this work, multiple gamma functions of order n have been considered. The logarithmic 
derivative of the multiple gamma function is known as the multiple psi function. 
Subadditive, superadditive, and convexity properties of higher-order derivatives of the 
multiple psi function are derived. Some related inequalities for these functions and their 
ratios are also obtained.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous considérons ici les fonctions gamma multiples d’ordre n. La dérivée logarithmique de 
la fonction gamma multiple est la fonction psi bien connue. Nous obtenons des propriétés 
additives et de convexité des dérivées d’ordre supérieur de la fonction psi multiple. Nous 
obtenons également quelques inégalités faisant intervenir ces fonctions et leurs quotients.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Multiple gamma functions were introduced and studied systematically by E. W. Barnes [8,9], in the early 1900s. These 
multiple gamma functions are a generalization of Euler’s gamma function. It is well known that Euler’s gamma function 
� is useful to define the n-dimensional volume of the unit ball in Rn [15]. Multiple gamma functions are also useful to 
study the determinants of Laplacians on the n-dimensional unit sphere Sn [13–17]. Recently, V. S. Adamchik [2] discovered 
the application of multiple gamma functions in the computation of certain series. Multiple gamma functions of order n are 
denoted by �n and defined [18, Theorem 3] as

�n(1 + z) = exp[Pn(z)] ·
∞∏

k=1

⎧⎨
⎩

(
1 + z

k

)−(n+k−2
n−1

)
exp

⎡
⎣(

n + k − 2

n − 1

)⎛
⎝ n∑

j=1

(−1) j−1

j

z j

k j

⎞
⎠

⎤
⎦

⎫⎬
⎭ , (1.1)

where Pn(z) is a polynomial in z of degree n defined by
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with Bn being the Bernoulli numbers and n ∈ N.
�n(z) can also be expressed in a simple way by the following recurrence relations

�n+1(1 + z) = �n+1(z)

�n(z)
, �1(z) = �(z), �n(1) = 1, n ∈ N, z ∈C.

M. F. Vignéras [22] redefined multiple gamma functions by introducing a hierarchy of functions Gn(z) = (�n(z))(−1)n−1

satisfying the conditions of the generalized Bohr–Mollerup theorem [15,21,22].

Theorem 1.1. [15] For all n ∈N, there exists a unique meromorphic function Gn(z) satisfying each of the following properties:

(i) Gn(z + 1) = Gn(z)Gn−1(z) for z ∈C;
(ii) Gn(1) = 1;

(iii) For x ≥ 0, Gn(x + 1) are infinitely differentiable and

dn+1

dxn+1 log Gn(x + 1) ≥ 0;

(iv) G0(z) = z.

The function G2(z) = 1
�2(z) = G(z) is known as the Barnes G-function. The multiple psi function �n is defined as the 

logarithmic derivative of �n , i.e. �n = �′
n

�n
. The poly multiple gamma function �(m)

n is the m-th order derivative of �n , where 
m, n ∈N. More information on multiple gamma functions can be found in [2,8,9,15,18,20] and the references cited therein.

Finding bounds for Euler’s gamma function and multiple gamma functions and their ratios have been the subject of study 
of many mathematicians and researchers [1–6,8–10,12,15,18,19]. Subadditivity (superadditivity) is a part of the theory of 
inequalities. A function f is called subadditive on a set I of real numbers if f (x + y) ≤ f (x) + f (y) for all x, y ∈ I such that 
x + y ∈ I . If the inequality reverses, then f is called superadditive on I . If f (xy) ≤ f (x) f (y) holds for all x, y ∈ I such that 
xy ∈ I , then f is known as submultiplicative. If the inequality reverses, then f is called supermultiplicative. These functions 
play vital role in number theory, in the theory of differential equations and also in the theory of convex bodies.

H. Alzer and S. Ruscheweyh [7] proved that x �→ (�(x))α is subadditive on (0, ∞) if and only if α∗ ≤ α ≤ 0, where 
α∗ ≈ −0.946850 . . . . In [4], H. Alzer derived that �(ex) is strictly concave on R, where �(x) = d

dx log�(x) is known as the 
psi (digamma) function. Recently, in 2007, H. Alzer [5] proved the subadditive and superadditive properties of Euler’s gamma 
function, and obtained the following interesting inequality:

(
�(x + y + c)

�(x + y)

)1/α

<

(
�(x + c)

�(x)

)1/α

+
(

�(y + c)

�(y)

)1/α

.

The above inequality holds for all x, y > 0 if and only if α ≤ max(1, c), where 0 < c �= 1. The reverse inequality is valid for all 
positive x and y if and only if α ≤ min(1, c). In [10,11], N. Batir obtained bounds for double gamma function and discussed 
the monotonicity properties of q-analogue of digamma and trigamma functions. Bounds for multiple gamma functions were 
derived by J. Choi and H. M. Srivastava in [18].

Motivated by the above results, subadditive, superadditive and convexity properties and related inequalities for the poly 
multiple gamma functions are obtained in this article.
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2. Inequalities for the poly multiple gamma function

Let m ≥ n be any natural number. Applying logarithm on both sides of (1.1) and differentiating m + 1 times, we have

�
(m)
n (x) = (−1)m+1

∞∑
k=0

(
n + k − 1

n − 1

)
m!

(x + k)m+1 , x > 0. (2.1)

Therefore for x > 0, we obtain

�
(m)
n (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞∑
k=0

ak

(x + k)m+1 , m is odd;

−
∞∑

k=0

ak

(x + k)m+1 , m is even,

(2.2)

where ak = m!(n+k−1
n−1

)
. Clearly, �(m)

n (x) is positive (negative) if m is odd (even) for all x > 0.

Hence, �(m)
n (x) is decreasing if m is odd and increasing if m is even for all x > 0. For our next results, we consider m ≥ n, 

where m, n ∈N. The following results are immediate. Proofs are omitted.

Theorem 2.1. �(m)
n (x) is convex (concave) on R if m is odd (even).

Corollary 2.2. �(m)
n (ex) is convex (concave) on R if m is odd (even).

Next results deal with subadditive (superadditive) properties of �(m)
n (x).

Theorem 2.3. For a ≥ 0, x, y > 0 and m ≥ n ≥ 1, the following inequalities hold:

�
(m)
n (a + x + y) < �

(m)
n (a + x) + �

(m)
n (a + y), m is odd;

�
(m)
n (a + x + y) > �

(m)
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(m)
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Proof. Let

gm(x) = 1

(a + x + k)m+1 + 1

(a + y + k)m+1 − 1
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Then keeping y fixed, we have

g′
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+ m + 1

(a + x + y + k)m+2
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which implies that gm(x) is decreasing and lim
x→∞ gm(x) > 0. Therefore, gm(x) > 0.

Now,

�
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which proves the theorem. �
Now we have the following corollary explaining the subadditivity (superadditivity) of �(m)

n (x) for x > 0.

Corollary 2.4. �(m)
n (x) is subadditive (superadditive) if m is odd (even) for x > 0.

Proof. a = 0 in Theorem 2.3 gives the proof of the corollary. �
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Theorem 2.5. Let m ≥ n ≥ 1 be any integer, α be a real number, and

fα(x) = xα |�(m)
n (x)|, x > 0.

Then fα is strictly increasing on (0, ∞) if α ≥ m + 1.

Proof. Let x > 0. By differentiation, we obtain

f ′
α(x) = −xα |�(m+1)

n (x)| + αxα−1|�(m)
n (x)|

= xα−1m!
∞∑

k=0

(
n + k − 1

n − 1

)
(x(α − m − 1) + kα)

(x + k)m+2
.

If α ≥ m + 1, then f ′
α(x) > 0. Hence the theorem is proved. �

Theorem 2.6. Let a, x and y be positive real numbers. Then for all m ≥ n ≥ 1, the following inequalities hold[
�
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]2
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Similarly,

�
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(m)
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Combining (2.5) and (2.6), we have

�
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n (a + y) >
[
�

(m)
n (a + x + y)

]2
.

If m is any even natural number, then the inequality (2.4) can also be proved in a similar way. Hence the proof is 
complete. �
Theorem 2.7. Let a ≥ 0, m ≥ n ≥ 1 and 0 < x, y < 1. Then[
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]2
. Then

f ′(x) = 2�
(m)
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which implies that f (x) is a decreasing on (0, 1). Therefore,[
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and [
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Combining the above inequalities (2.7) and (2.8), we have[
�
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]4
>
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n (a + y)
]2

.

Since, �(m)
n (a + x)�(m)

n (a + y) > 0. Therefore,[
�
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n (a + xy)

]2
> �

(m)
n (a + x)�(m)

n (a + y),

which completes the proof. �
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The next result describes the bounds for the ratio of poly multiple gamma functions.

Theorem 2.8. Let a, b, c, d, e, f be real numbers and f (x) be a function defined as

f (x) = �
(m)
n (a + bx)c

�
(m)
n (d + ex) f

, x ≥ 0, m ≥ n ≥ 1.

(a) If a, b, d, e > 0, c ≤ 0, f ≥ 0, then f (x) is increasing in [0, ∞) and for all x ∈ [0, 1], the following inequality holds:

�
(m)
n (a)c

�
(m)
n (d) f

≤ �
(m)
n (a + bx)c

�
(m)
n (d + ex) f

≤ �
(m)
n (a + b)c

�
(m)
n (d + e) f

.

(b) If a, b, d, e > 0, c ≥ 0, f ≤ 0, then f (x) is decreasing in [0, ∞) and for all x ∈ [0, 1], the following inequality holds:

�
(m)
n (a + b)c

�
(m)
n (d + e) f

≤ �
(m)
n (a + bx)c

�
(m)
n (d + ex) f

≤ �
(m)
n (a)c

�
(m)
n (d) f

.

Proof. Let g(x) = ln f (x). Then

g′(x) = bc�(m)
n (d + ex)�(m+1)

n (a + bx) − ef �(m)
n (a + bx)�(m+1)

n (d + ex)

�
(m)
n (a + bx)�(m)

n (d + ex)
. (2.9)

From (2.2), we have

�
(m)
n (d + ex)�(m+1)

n (a + bx) < 0, �
(m+1)
n (d + ex)�(m)

n (a + bx) < 0

and �
(m)
n (a + bx)�(m)

n (d + ex) > 0.

Hence, using the conditions of part (a), we have g′(x) ≥ 0, which implies that g(x) is increasing in [0, ∞). Consequently, 
f (x) is increasing in [0, ∞) and for 0 ≤ x ≤ 1, f (0) ≤ f (x) ≤ f (1), which proves part (a) of the theorem.

Note that the condition (b) reverses the inequalities given in part (a). Hence, proceeding similarly like part (a), part (b) 
of the theorem can be established. �
Remark. It can be observed that the case n = 1 in Theorem 2.5 leads to be a part of Lemma 2.3 of [4].
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