
C. R. Acad. Sci. Paris, Ser. I 356 (2018) 272–277
Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Mathematical analysis/Complex analysis

Improved version of Bohr’s inequality

Version améliorée de l’inégalité de Bohr

Ilgiz R. Kayumov a, Saminathan Ponnusamy b

a Kazan Federal University, Kremlevskaya 18, 420 008 Kazan, Russia
b Department of Mathematics, Indian Institute of Technology Madras, Chennai-600 036, India

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 July 2017
Accepted after revision 19 January 2018

Presented by the Editorial Board

In this article, we prove several different improved versions of the classical Bohr’s 
inequality. All the results are proved to be sharp.
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r é s u m é

Nous montrons ici plusieurs améliorations de l’inégalité de Bohr classique. Nous montrons 
également que les constantes numériques dans nos résultats sont optimales.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main results

The classical theorem of Bohr [3] (after subsequent improvements due to M. Riesz, I. Schur and F. Wiener) states that 
if f is a bounded analytic function on the unit disk D := {z ∈ C : |z| < 1}, with the Taylor expansion 

∑∞
k=0 akzk , and 

‖ f ‖∞ := supz∈D | f (z)| < ∞, then

M f (r) :=
∞∑

n=0

|an|rn ≤ ‖ f ‖∞ for 0 ≤ r ≤ 1/3 (1)

and the constant 1/3 is sharp. There are a number of articles that deal with Bohr’s phenomenon. See, for example, [2,10], 
the recent survey on this topic by Abu-Muhanna et al. [1] and the references therein. Bombieri [4] considered the function 
m(r) defined by m(r) = sup

{
M f (r)/‖ f ‖∞

}
, where the supremum is taken over all nonzero bounded analytic functions, and 

proved that

m(r) = 3 − √
8(1 − r2)

r
for 1/3 ≤ r ≤ 1/

√
2.
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Later Bombieri and Bourgain [5] studied the behaviour of m(r) as r → 1 (see also [6]) and proved the following result, 
which validated a question raised in [11, Remark 1] in the affirmative.

Theorem A. ([5, Theorem 1]) If r > 1/
√

2, then m(r) < 1/
√

1 − r2 . With α = 1/
√

2, the function ϕα(z) = (α − z)/(1 − α z) is 
extremal, giving m(1/

√
2) = √

2.

A lower estimate for m(r) as r → 1 is also obtained in [5, Theorem 2]. We are now ready to state several different 
improved versions of the classical Bohr inequality (1).

Theorem 1. Suppose that f (z) = ∑∞
k=0 akzk is analytic in D, | f (z)| ≤ 1 in D, and Sr denotes the area of the Riemann surface of the 

function f −1 defined on the image of the subdisk |z| < r under the mapping f . Then

B1(r) :=
∞∑

k=0

|ak|rk + 16

9

(
Sr

π

)
≤ 1 for r ≤ 1

3
(2)

and the numbers 1/3 and 16/9 cannot be improved. Moreover,

B2(r) := |a0|2 +
∞∑

k=1

|ak|rk + 9

8

(
Sr

π

)
≤ 1 for r ≤ 1

2
(3)

and the constants 1/2 and 9/8 cannot be improved.

Remark 1. Let us remark that if f is a univalent function then Sr is the area of the image of the subdisk |z| < r under the 
mapping f . In the case of multivalent function, Sr is greater than the area of the image of the subdisk |z| < r. This fact 
could be shown by noting that

Sr =
∫

f (Dr)

| f ′(z)|2 dA(w) =
∫

f (Dr)

ν f (w)dA(w) ≥
∫

f (Dr)

dA(w) = Area( f (Dr)),

where Dr = {z ∈C : |z| < r} and ν f (w) = ∑
f (z)=w 1 denotes the counting function of f .

Theorem 2. Suppose that f (z) = ∑∞
k=0 akzk is analytic in D and | f (z)| ≤ 1 in D. Then

|a0| +
∞∑

k=1

(
|ak| + 1

2
|ak|2

)
rk ≤ 1 for r ≤ 1

3
(4)

and the numbers 1/3 and 1/2 cannot be improved.

Theorem 3. Suppose that f (z) = ∑∞
k=0 akzk is analytic in D and | f (z)| ≤ 1 in D. Then

∞∑
k=0

|ak|rk + | f (z) − a0|2 ≤ 1 for r ≤ 1

3

and the number 1/3 cannot be improved.

Finally, we also prove the following sharp inequality.

Theorem 4. Suppose that f (z) = ∑∞
k=0 akzk is analytic in D and | f (z)| ≤ 1 in D. Then

| f (z)|2 +
∞∑

k=1

|ak|2r2k ≤ 1 for r ≤
√

11

27
= 0.63828 . . .

and this number cannot be improved.
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2. Proofs of Theorems 1, 2, 3 and 4

If f and g are analytic in D, then g is subordinate to f , written g ≺ f or g(z) ≺ f (z), if there exists a function ω
analytic in D satisfying ω(0) = 0, |ω(z)| < 1 and g(z) = f (ω(z)) for z ∈ D. If f is univalent in D, then g ≺ f if and only if 
g(0) = f (0) and g(D) ⊂ f (D) (see [7, p. 190 and p. 253] and [1,8]).

For the proof of Theorem 1, we need the following lemma, especially when 0 < r ≤ 1/2.

Lemma 1. Let |b0| < 1 and 0 < r ≤ 1/
√

2. If g(z) = ∑∞
k=0 bk zk is analytic and satisfies the inequality |g(z)| < 1 in D, then the 

following sharp inequality holds:

∞∑
k=1

k|bk|2r2k ≤ r2 (1 − |b0|2)2

(1 − |b0|2r2)2
. (5)

Proof. Let b0 = a. Then, it is easy to see that the condition on g can be rewritten in terms of subordination as

g(z) =
∞∑

k=0

bkzk ≺ ϕa(z) = a − z

1 − az
= a − (1 − |a|2)

∞∑
k=1

(a)k−1zk, z ∈D, (6)

where ≺ denotes the subordination. Note that ϕa is analytic in D and |ϕa(z)| < 1 for z ∈ D. The subordination relation (6)
gives

∞∑
k=1

k|bk|2r2k ≤ (1 − |a|2)2
∞∑

k=1

k|a|2(k−1)r2k = r2 (1 − |a|2)2

(1 − |a|2r2)2

from which we arrive at the inequality (5), which proves Lemma 1. For 0 < r ≤ 1/
√

2, it is important to note here that the 
sequence {kr2k} is non-increasing for all k ≥ 1, so that we were able to apply the classical Goluzin’s inequality [8] (see also 
[7, Theorem 6.3]), which extends the classical Rogosinski inequality. �
Proof of Theorem 1. Since the left-hand side of (2) is an increasing function of r, it is enough to prove it for r = 1/3. 
Therefore, we set r = 1/3. Moreover, the present authors in the proof of Theorem 1 in [9] proved the following inequalities:

∞∑
k=1

|ak|rk ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A(r) := r
1 − |a0|2
1 − r|a0| for |a0| ≥ r

B(r) := r

√
1 − |a0|2√

1 − r2
for |a0| < r.

(7)

Note that |ak| ≤ 1 − |a0|2 for k ≥ 1 and, from the definition of Sr , we see that

Sr

π
= 1

π

∫ ∫
|z|<r

| f ′(z)|2 dx dy =
∞∑

k=1

k|ak|2r2k

≤ (1 − |a0|2)2
∞∑

k=1

kr2k = (1 − |a0|2)2 r2

(1 − r2)2
. (8)

At first, we consider the case |a0| ≥ r = 1/3. In this case, using (7) and (8), we have

B1(r) = |a0| +
∞∑

k=1

|ak|rk + 16

9π
Sr ≤ |a0| + A(1/3) + 16

9π
S1/3

≤ |a0| + 1 − |a0|2
3 − |a0| + (1 − |a0|2)2

4

= 1 − (1 − |a0|)3(5 − |a0|2)
4(3 − |a0|) ≤ 1.

Next we consider the case |a0| < r = 1/3. Again, using (7) and (8), we deduce that

B1(r) =
∞∑

|ak|rk + 16

9π
Sr ≤ |a0| + B(1/3) + 16

9π
S1/3
k=0
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≤ |a0| +
√

1 − |a0|2√
8

+ (1 − |a0|2)2

4

≤ 1

3
+ 1√

8
+ 1

4
< 1 (since |a0| < 1/3)

and the desired inequality (2) follows.
To prove that the constant 16/(9π) is sharp, we consider the function f = ϕa given by

ϕa(z) = a − z

1 − az
= a − (1 − a2)

∞∑
k=1

ak−1zk, z ∈ D,

where a ∈ (0, 1). For this function, straightforward calculations show that

∞∑
k=0

|ak|rk + λ

π
Sr = a + r

1 − a2

1 − ra
+ λ(1 − a2)2 r2

(1 − a2r2)2
.

In the case r = 1/3, the last expression becomes

a + 1 − a2

3 − a
+ 9λ

(1 − a2)2

(9 − a2)2
= 1 − 2(1 − a)3(19 + 12a + a2)

(a2 − 9)2
+ (9λ − 16)

(1 − a2)2

(9 − a2)2

which is obviously bigger than 1 in case λ > 16/9 and a → 1. The proof of the first part of Theorem 1 is complete.
Let us now verify the inequality (3). To do it we will use the method presented above and Lemma 1 for r ≤ 1/2. From 

Lemma 1, it follows that

Sr

π
≤ (1 − |a0|2)2 r2

(1 − |a0|2r2)2
, r ≤ 1/2. (9)

Let r ≤ 1/2 and we first consider the case |a0| ≥ 1/2. Then, using (7) and (9), we obtain that

B2(r) = |a0|2 +
∞∑

k=1

|ak|rk + 9

8π
Sr ≤ |a0|2 + A(1/2) + 9

8π
S1/2

≤ |a0|2 + 1 − |a0|2
2 − |a0| + 4(1 − |a0|2)2

(4 − |a0|2)2

= 1 − (1 − |a0|)3(1 + |a0|)(7 + 6|a0| + 2|a0|2)
2(4 − |a0|2)2

≤ 1.

Now we consider the case |a0| < 1/2. In this case, using (7) and (9), we have

B2(r) ≤ |a0|2 + B(1/2) + 9

8π
S1/2

≤ |a0|2 +
√

1 − |a0|2√
3

+ 4(1 − |a0|2)2

(4 − |a0|2)2

≤ 1√
3

+ |a0|2 + 4(1 − |a0|2)2

(4 − |a0|2)2

≤ 1√
3

+ 41

100
− (1 − 4|a0|2)(256 − 104|a0|2 + 25|a0|4)

100(|a0|2 − 4)2

which is less than 1. The sharpness of the constant 9/8 can be established as in the previous case and thus, we omit the 
details. The proof of the theorem is complete. �
Proof of Theorem 2. Let A(r) and B(r) be defined as in (7). Furthermore, the present authors in [9] demonstrated the 
following inequality for the coefficients of f :

∞∑
k=1

|ak|2rk ≤ r(1 − |a0|2)2

1 − |a0|2r
. (10)

Also, it is worth pointing out that the inequality (10) for 0 < r ≤ 1/
√

2 follows from (5) by integrating it. As remarked in 
the proof of earlier theorems, it suffices to prove the inequality (4) for r = 1/3, and thus we may set r = 1/3 in the proof 
below. At first, we consider the case |a0| ≥ 1/3 so that, by (7) and (10),
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∞∑
k=0

|ak|rk + 1

2

∞∑
k=1

|ak|2rk ≤ |a0| + A(1/3) + (1 − |a0|2)2

6 − 2|a0|2

= |a0| + 1 − |a0|2
3 − |a0| + (1 − |a0|2)2

6 − 2|a0|2

= 1 − (1 − |a0|)2

2
≤ 1 (since |a0| ≤ 1).

Similarly, for the case |a0| < 1/3, we have, by (7) and (10),

∞∑
k=0

|ak|rk + 1

2

∞∑
k=1

|ak|2rk ≤ |a0| + B(1/3) + (1 − |a0|2)2

6 − 2|a0|2

≤ |a0| +
√

1 − |a0|2√
8

+ (1 − |a0|2)2

6 − 2|a0|2

≤ 1

3
+ 1√

8
+ 1

6
< 1,

which concludes the proof of Theorem 2 since the proof of sharpness follows similarly. �
Proof of Theorem 3. Let A(r) and B(r) be defined as in (7). Also, we may let r = 1/3. Accordingly, we first consider the case 
|a0| ≥ 1/3, so that

∞∑
k=0

|ak|rk + | f (z) − a0|2 ≤ |a0| + A(1/3) + A(1/3)2

= |a0| + 1 − |a0|2
3 − |a0| + (1 − |a0|2)2

(3 − |a0|)2

= 1 − (1 − |a0|)3(5 + |a0|)
(3 − |a0|)2

≤ 1 (since |a0| ≤ 1).

Next, we consider the case |a0| < 1/3 so that

∞∑
k=0

|ak|rk + | f (z) − a0|2 ≤ |a0| + B(1/3) + B(1/3)2

= |a0| +
√

1 − |a0|2√
8

+ 1 − |a0|2
8

≤ 1

3
+ 1√

8
+ 1

8
< 1.

This concludes the proof of Theorem 2 and the sharpness follows similarly. �
Proof of Theorem 4. Using (10) (see [9, Lemma 1]) and the classical inequality for | f (z)|, we have

| f (z)|2 +
∞∑

k=1

|ak|2r2k ≤
(

r + |a0|
1 + r|a0|

)2

+ r2(1 − |a0|2)2

1 − |a0|2r2
.

For r = √
11/27, the last expression on the right gives

1 − 3(1 − |a0|2)
(9 + √

33|a0|)2(27 − 11|a0|2)
(135 − 66

√
33|a0| + 66

√
33|a0|3 + 121|a0|4),

and straightforward calculations show that this expression is less than or equal to 1 for all |a0| ≤ 1. The example

f (z) = z + a

1 + az

with a = √
3/11 shows that r = √

11/27 is sharp. This completes the proof. �
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