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There are two theories describing the linearizability of 3-webs: one is developed in [10]
and another in [8]. Unfortunately they cannot be both correct because on an explicit 3-web 
W0 they contradict: the first predicts that W0 is linearizable, while the second states 
that W0 is not linearizable. The essential question beyond this particular 3-web is: which 
theory describes correctly the linearizability condition? In this paper, we present a very 
short proof, due to J.-P. Dufour, that W0 is linearizable, confirming the result of [10].

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Il existe deux théories décrivant la linéarisabilité des 3-tissus : l’une est développée dans 
[10], l’autre dans [8]. Malheureusement, elles ne peuvent pas être correctes toutes les 
deux, car sur un 3-tissu W0 elles se contredisent : la première prédit que le tissu W0
est linéarisable, tandis que la seconde affirme que W0 n’est pas linéarisable. La question 
essentielle au-delà de ce 3-tissu particulier est : quelle théorie décrit correctement la 
condition de linéarisabilité ? Dans cet article, nous présentons une preuve très courte, due 
à J.-P. Dufour, de ce que le tissu W0 est linéarisable, confirmant le résultat de [10].

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. The linearizability problem for planar 3-webs

On a two-dimensional real or complex differentiable manifold M , a 3-web is given by three foliations of smooth curves 
in general position. Two webs W and ˜W are locally equivalent at p ∈ M , if there exists a local diffeomorphism on a 
neighborhood of p that exchanges them. A 3-web is called linear if it is given by three foliations of straight lines. A web 
that is equivalent to a linear web is called linearizable.

The linearizability problem: characterize the 3-webs on real or complex 2-dimensional manifolds that are equivalent, up to a 
local diffeomorphism, to linear webs, that is, webs such that the corresponding foliations are straight lines in a convenient coordinate 
system.
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In a fashion similar to the linearizability is the notion of parallelizability, a 3-web is called parallelizable if it is equivalent 
to three families of parallel lines. One can remark that for 1- and 2-webs, the notion of linearizability and parallelizability 
coincide: because of the inverse function theorem, any 1- and 2-webs are linearizable and also parallelizable. This is not true 
in general: the notion of parallelizability is much stronger than that of linearizability. A generic 3-web is non-linearizable, 
and even if a web is linearizable, it is in general non-parallelizable.

Basic examples of planar 3-webs comes from complex projective algebraic geometry. If C ⊂ P
2 is a not necessarily 

irreducible and possibly singular algebraic curve of degree 3 on the projective plane P2, then by duality in the Grassmannian 
manifold Gr(1, P2), one can obtain a 3-web called the algebraic web associated with C ⊂ P

2 (cf. [14]). Graf and Sauer 
proved a theorem, which in web geometry language can be stated as follows: a linear web is parallelizable if and only if 
it is associated with an algebraic curve of degree 3, i.e. if its leaves are tangent lines to an algebraic curve of degree 3 [3, 
page 24]. This theorem is a special case of N.H. Abel’s classical theorem and its converse: the general Lie–Darboux–Griffiths 
theorem [9].

Concerning the parallelizability of 3-webs, an elegant coordinate free characterization can be given in terms of the 
associated Chern connection: a 3-web is parallelizable if and only if the curvature of the Chern connection, called also 
Blaschke curvature, vanishes [5]. A new theoretical set-up of the problem can be found in [13].

Although the problem of finding a linearizability criterion is a very natural one, it is far from being trivial. T.H. Gronwall 
conjectured that if a non-parallelizable 3-web W is linearizable, then up to a projective transformation there is a unique 
diffeomorphism that maps W into a linear 3-web. G. Bol suggested in [4] a method to find a criterion of linearizability, but 
he was unable to carry out the computation. He showed that the number of projectively different linear 3-webs in the plane 
that are equivalent to a non-parallelizable 3-web is finite and less that 17. The formulation of the linearizability problem 
in terms of the Chern connection was suggested by M.A. Akivis in a lecture given in Moscow in 1973. In his approach, the 
linearizability problem is reduced to the solvability of a system of nonlinear partial differential equations on the components 
of the affine deformation tensor. Using Akivis’ idea, V.V. Goldberg determined in [6] the first integrability conditions of the 
partial differential system.

2. The controversy

In 2001, J. Grifone, Z. Muzsnay, and J. Saab solved the linearizability problem by carrying out the computation [10]. They 
showed that, in the non-parallelizable case, there exists an algebraic submanifold A of the space of vector valued symmetric 
tensors (S2T ∗ ⊗ T ) on a neighborhood of any point p ∈ M , expressed in terms of the curvature of the Chern connection and 
its covariant derivatives up to order 6, so that the affine deformation tensor is a section of S2 T ∗ ⊗ T with values in A. In 
particular, the web is linearizable if and only if A �= ∅, and there exists at most 15 projectively nonequivalent linearizations 
of a nonparallelizable 3-web. The expressions of the polynomials and their coefficients that define A can be found in [11]. 
The criteria of linearizability provides the possibility to make explicit computation on concrete examples to decide whether 
or not they are linearizable.

In 2006, V.V. Goldberg and V.V. Lychagin found results on the linearizability in [8]. Their results were different from that 
of [10] and they qualified [10] “incomplete because they do not contain all conditions” (see [7, page 171] and [8, page 70]) 
without pointing out any missing integrability condition or developing any further justification.

The GMS-approach developed in [10] and the GL-approach described in [8] cannot be both correct because there are cases 
where the two theories contradict.

Hence the small but dedicated scientific community working on the problems related to web geometry is in suspense 
(see for example [1, page 2], [2, page 2], or [15, page 40]). Therefore, the focus of this paper is to conclude which theory is 
describing correctly the linearizability condition.

3. Decisive example

The direct comparison of the two theories is not straightforward, since the formulas in both cases are long and complex 
containing the curvature tensor and its different derivatives. There is, however, a very specific case, where the two theories 
show clearly opposite results. This explicit example of 3-web was described in [10]. The particular 3-web W0 is determined 
by the web function f (x, y) := (x + y)e−x , i.e. it is the 3-web given by the foliations

x = const, y = const, (x + y) e−x = const, (1)

on the domain D := {(x, y) | x + y �= 1} ⊂ R
2. Using the GMS-theory one gets that W is linearizable (page 2653, [10]) while 

GL-theory states the opposite (page 171, line 7–10, [8]). Evidently, the correct theory should give a correct answer in that specific 
situation. In the theorem below we show that the web W0 is linearizable, therefore the prediction of GMS-theory is correct. 
This result was obtained in [10] but the very short proof is due to J.-P. Dufour.

Theorem. The 3-web W0 defined by the foliations x = const, y = const and f (x, y) := (x + y) e−x = const, is linearizable.

Proof. The change of variable x̄ = f (x, y), ȳ = y clearly transforms the foliations y = const and f (x, y) = const into linear 
foliations. The line x = c of the first foliation becomes the line x̄ = (c + ȳ) e−c . �



Z. Muzsnay / C. R. Acad. Sci. Paris, Ser. I 356 (2018) 97–99 99
Remark. The statement of the theorem remains true if the function f (x, y) has the form f (x, y) = a(x)x + b(x)y.

We note that the linearizability of W0 has already been investigated in [12] from a different point of view: it was 
showed, using the GMS approach, that W0 is linearizable by proving the existence of the affine deformation tensor. The 
lack of presenting the explicit linearization map, however, could maintain in some way the suspense. Now the suspense is 
over: using the Theorem, we can conclude that the prediction of GMS-theory is correct and the statement of GL-theory is 
wrong. One can also conclude that the criterion of linearizability of [10,11] provides effective tools to decide whether or not 
a 3-web is linearizable.
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