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In this note, we give normal approximation results for the conditional value at risk (CVaR) 
of partial sums of random variables satisfying moment assumptions. These results are 
based on Berry–Esseen-type bounds for transport costs in the central limit theorem and 
extensions of Cantelli’s inequalities to the CVaR.
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r é s u m é

Dans cette note, nous donnons des résultats d’approximation normale pour la CVaR d’une 
somme de variables aléatoires réelles satisfaisant des hypothèses de moments. Ces résultats 
sont fondés sur des bornes de type Berry–Esseen pour des coûts de transport dans le 
théorème limite central ainsi que sur des extensions des inégalités de Cantelli à la CVaR.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Let (Xk)k>0 be a sequence of integrable and centered real-valued random variables. Set Sn = X1 + · · · + Xn and S0 = 0.
In this note, we are interested in upper bounds on the conditional value at risk (CVaR) of Sn , as defined below.

Definition 1.1. Let X be a real-valued integrable random variable. The tail function H X is defined by H X (t) = P(X > t). In 
this note, the function Q X is the cadlag inverse of H X , which is defined by

Q X (u) = inf{x : H X (x) ≤ u}.
We emphasize that Q X (u) is the value of the usual quantile function at point 1 − u. The function Q̃ X is defined by

Q̃ X (u) = u−1

u∫
0

Q X (s)ds for any u ∈ ]0,1]. (1.1)
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With this definition, Q̃ X is the conditional value at risk (CVaR) of X , also called “expected shortfall”. It is worth noticing 
that Q̃ X (u) is the expected value of X conditionally on the fact that X is larger than Q X (u).

Remark 1.1. The function Q̃ X (u) is in fact the Hardy–Littlewood maximal function associated with the law of X , as defined 
by Hardy and Littlewood [6] in a well-known paper.

Throughout this note, we assume that (Sn)n≥0 is a martingale in L1. Our original motivation was to give deviation 
inequalities for S∗

n = max(S0, S1, . . . , Sn). Recall now that

Q S∗
n
(u) ≤ Q̃ Sn(u) for any u ∈]0,1], (1.2)

which shows that Q Sn ≤ Q S∗
n
≤ Q̃ Sn . This result may be found in [5]. From (1.2), any upper bound on the CVaR of Sn yields 

immediately the same upper bound on the quantile of S∗
n . Accordingly, from now on we will focus on conditional values at 

risk.
Let p be any real in ]1, ∞[. For random variables Xk in Lp for some p in ]1, 2], Rio [9, Theorem 4.1] gives the following 

upper bound on the conditional value at risk of Sn:

Q̃ Sn(1/z) ≤ ‖Sn‖p z1/p(
1 + (z − 1)1−p)−1/p

for any z > 1. (1.3)

For example, when p = 2, the above upper bound is equal to ‖Sn‖2
√

z − 1. Our aim in this note is to improve (1.3) in the 
case p ≥ 2. A possible way to improve this bound is to use global versions of the central limit theorem. Let Vn = Var Sn . For 
independent and identically distributed square integrable random variables Xk , Agnew [1, Theorem 3.1] proved that

lim
n→∞

∫
R

∣∣H Sn

(
t
√

V n
) − HY (t)

∣∣ dt = 0, (1.4)

where Y is a random variable with standard normal law N(0, 1). From the elementary identity

lim
n→∞

∫
R

∣∣H Sn

(
t
√

V n
) − HY (t)

∣∣dt =
1∫

0

∣∣∣V −1/2
n Q Sn(u) − Q Y (u)

∣∣du, (1.5)

we immediately infer that

∣∣V −1/2
n Q̃ Sn(1/z) − Q̃ Y (1/z)

∣∣ ≤ z

∫
R

∣∣H Sn

(
t
√

V n
) − HY (t)

∣∣dt (1.6)

for any z > 1. It follows that V −1/2
n Q̃ Sn (1/z) converges to Q̃ Y (1/z) as n tends to ∞. Since Q̃ Y (1/z) ≤ √

2 log z (see Re-
mark 3.1), (1.6) provides a much more efficient upper bound on Q̃ Sn (1/z) than (1.3) for z large, at least for large values of n. 
However, the upper bound on the right-hand side in the above inequality is rapidly increasing as z tends to ∞. To improve 
(1.6), we will use Fréchet’s Lr -distances or generalizations of these distances rather than the L1-distance between the tail 
functions. For r ≥ 1 and X and Y real-valued random variables in Lr with respective laws P X and P Y , the Fréchet distance 
Wr is defined by

Wr(P X , P Y ) =
( 1∫

0

|Q X (u) − Q Y (u)|rdu

)1/r

. (1.7)

As shown by Fréchet [4], Wr(P X , P Y ) is the minimal transport cost in Lr . In Section 2, we give upper bounds on Q̃ X − Q̃ Y

involving Wr(P X , P Y ) or generalizations of this distance. In Section 3, we apply the results of Section 2 to the conditional 
value at risk of sums of independent random variables in Lp for p ≥ 3. Section 4 is devoted to stationary martingale 
differences sequences.

2. Conditional value at risk and power transport costs

Throughout this section, X and Y are real-valued random variables in Lr for some r ≥ 1. Let ψ be a positive, measur-
able and integrable function on ]0, 1[, bounded from below by some positive constant. Let Lr,ψ be the subspace of Lr of 
real-valued random variables Z such that

1∫
|Q Z (u)|rψ(u)du < ∞. (2.1)
0
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For r ≥ 1 and X and Y real-valued random variables in Lr,ψ with respective laws P X and P Y , the distance Wr,ψ is defined 
by

Wr,ψ (P X , P Y ) =
( 1∫

0

|Q X (u) − Q Y (u)|rψ(u)du

)1/r

. (2.2)

For random variables in Lr,ψ , the following upper bound holds true.

Theorem 2.1. Let r > 1 and let X and Y be real-valued random variables in Lr,ψ . Then, for any z > 1

|Q̃ X (1/z) − Q̃ Y (1/z)| ≤ z1/rη(z)Wr,ψ (P X , P Y ), where η(z) =
(

z

1/z∫
0

(
ψ(u)

)−1/(r−1)
du

)(r−1)/r

.

Remark 2.1. When ψ = 1, Theorem 2.1 yields the elementary inequality

|Q̃ X (1/z) − Q̃ Y (1/z)| ≤ z1/r Wr(P X , P Y ). (2.3)

If ψ(u) → ∞ as u tends to 0, then η(z) converges to 0 as z ↑ ∞. In that case, Theorem 2.1 provides sharper bounds 
than (2.3) for large values of z. If furthermore ψ is nonincreasing on ]0, 1/2], then η(z) ≤ (ψ(1/z))−1/r for any z ≥ 2 and, 
consequently,

|Q̃ X (1/z) − Q̃ Y (1/z)| ≤ (z/ψ(1/z) )1/r Wr,ψ (P X , P Y ), for any z ≥ 2. (2.4)

Proof of Theorem 2.1. From the definition of the CVaR,

|Q̃ X (1/z) − Q̃ Y (1/z)| ≤ z

1/z∫
0

f (u)g(u)du, where f (u) = |Q X − Q Y |ψ1/r and g = ψ−1/r .

Applying now the Hölder inequality to f and g with respective exponents r and r/(r − 1), we get that

|Q̃ X (1/z) − Q̃ Y (1/z)| ≤
(

z
1/z∫
0

|Q X (u) − Q Y (u)|rψ(u)du
)1/r

η(z),

which implies Theorem 2.1. �
When ψ = 1, Theorem 2.1 can be further improved for random variables X and Y in Lr satisfying the additional condition 

E(X) = E(Y ), as shown by Theorem 2.2 below.

Theorem 2.2. Let r ≥ 1 and let X and Y be real-valued random variables in Lr . Assume furthermore that E(X) =E(Y ). Then

|Q̃ X (1/z) − Q̃ Y (1/z)| ≤ z1/r(1 + (z − 1)1−r)−1/r Wr(P X , P Y ) for any z > 1. (2.5)

Remark 2.2. From Theorem 2.2 applied with z = 2,

|Q̃ X (1/2) − Q̃ Y (1/2)| ≤ Wr(P X , P Y ) for any r ≥ 1, (2.6)

which cannot be derived from (2.3). Note also that, for r = 2, Theorem 2.2 yields the Cantelli-type inequality

|Q̃ X (1/z) − Q̃ Y (1/z)| ≤ √
z − 1 W2(P X , P Y ) for any z > 1. (2.7)

Remark 2.3. For r > 1, the upper bound in (2.5) is equivalent to z1/r Wr(P X , P Y ) as z ↑ ∞. Now, from the elementary 
equality

z1/r(1 + (z − 1)1−r)−1/r = z1/r(z − 1)(r−1)/r(1 + (z − 1)r−1)−1/r, (2.8)

the upper bound in (2.5) is equivalent to (z − 1)1−(1/r)Wr(P X , P Y ) as z ↓ 1. Hence, for r > 1 this upper bound converges to 
0 as z ↓ 1.

Remark 2.4. Inequality (2.5) is equivalent to the symmetric inequality

|u Q̃ X (u) − u Q̃ Y (u)| ≤ (
u(1 − u)

)1−(1/r)(
ur−1 + (1 − u)r−1)−1/r

Wr(P X , P Y ) for any u ∈ ]0,1[.
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Proof of Theorem 2.2. We proceed as in Rio [9], Section 4. If U be a random variable with uniform law on [0, 1], then 
Q X (U ) has the same law as X . Hence E(X) = Q̃ X (1) and E(Y ) = Q̃ Y (1), which ensures that Q̃ X (1) = Q̃ Y (1). It follows that, 
for any b in [0, 1],

|Q̃ X (1/z) − Q̃ Y (1/z)| =
∣∣∣z

1∫
0

(Q X (u) − Q Y (u))(1zu≤1 − b)du
∣∣∣.

Applying then the Hölder inequality with exponents r and q = r/(r − 1) to the integral on the right-hand side, we get that

|Q̃ X (1/z) − Q̃ Y (1/z)| ≤ z Wr(P X , P Y )‖1zU≤1 − b‖q.

If r = 1, then q = ∞. We then choose b = 1/2, which gives (2.5) for r = 1. If r > 1, we choose b = 1/(1 + (z − 1)r−1) as in 
Rio [9], which yields (2.5) for r > 1 (see the proof of Theorem 4.1 in Rio [9] for the calculations). �
3. Normal approximation of the CVaR in the independent case

Throughout Section 3, (Xk)k>0 is a sequence of independent and centered random variables in L p+2 for some p ≥ 1. Let

Vn = Var Sn, Wn = V −1/2
n Sn, μn = P Wn and Ls,n = V −s/2

n

n∑
k=1

E|Xk|s for any s ≥ 2. (3.1)

Let γ denote the standard normal law. Then, according to Theorem 4.1 in Rio [8] for p ≤ 2 and Corollary 1.2 in Bobkov [2]
for p > 2, there exists a positive constant cp depending only on p, such that

Wr(μn, γ ) ≤ cp L1/r
p+2,n for any r ∈ [p, p + 2]. (3.2)

If Lp+2,n converges to 0 as n ↑ ∞, (3.2) provides a rate of convergence in the central limit theorem for the L p-transport 
cost. Applying Theorem 2.2 and (3.2), we immediately get the normal approximation result below.

Theorem 3.1. Let Y be a random variable with standard normal law. Then, for any z > 1 and any r in [p, p + 2],
|Q̃ Wn (1/z) − Q̃ Y (1/z)| ≤ cpϕ(r, z), where ϕ(r, z) = (

Lp+2,nz
)1/r

(1 + (z − 1)1−r)−1/r

and cp is the constant in Inequality (3.2).

Remark 3.1. According to Inequality (3.13) in Pinelis [7], Q̃ Y (1/z) ≤ √
2 log z for any z > 1, which shows that Q̃ Y (1/z) is 

much smaller than 
√

z − 1 for large values of z.

Remark 3.2. Assume that Lp+2,n ≤ 1/2. Then, for any z in ]2, 1/Lp+2,n], the function ϕ is increasing with respect to r, since

∂ logϕ

∂r
= −r−2 log(Lp+2,nz) + (z − 1) log(z − 1)

r (1 + (z − 1)1−r)
> 0 (3.3)

for any z in ]2, 1/Lp+2,n]. In that case, the best upper bound in Theorem 3.1 is obtained for r = p.

Remark 3.3. Suppose that the random variables Xk are identically distributed. Set βs = (Var X1)
−s/2

E|X1|s . Then Lp+2,n =
n−p/2βp+2 and consequently Theorem 3.2 applied with r = p yields the non-uniform Berry–Esseen bound

√
n |Q̃ Wn (1/z) − Q̃ Y (1/z)| ≤ cpβ

1/p
p+2z1/p(1 + (z − 1)1−p)−1/p for any z > 1, (3.4)

where cp is the constant in Inequality (3.2). This upper bound is equivalent to cpβ
1/p
p+2z1/p as z ↑ ∞ and, using (2.8), 

equivalent to cpβ
1/p
p+2(z − 1)1−(1/p) as z ↓ 1.

We now give an improved version of Inequality (3.2) with r = p, valid for p in ]1, 2].

Theorem 3.2. Let Y be a random variable with standard normal law. Then, for any p in ]1, 2] there exists a constant C p depending 
only on p such that

1∫
0

|Q Wn (u) − Q̃ Y (u)|p| log(min(u,1 − u))|du ≤ C p Lp+2,n,

provided that Lp+2,n ≤ 1.
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Before proving Theorem 3.2, we give an application of this theorem to the normal approximation of the CVaR.

Corollary 3.1. Let Y be a random variable with standard normal law. Then, for any p in ]1, 2], there exists a constant c′
p depending 

only on p such that

|Q̃ Wn (1/z) − Q̃ Y (1/z)| ≤ (C p Lp+2,n)
1/p(z/ log z)1/p for any z ≥ 2,

provided that Lp+2,n ≤ 1.

Remark 3.4. It is worth noticing that Corollary 3.1 provides a better estimate as z ↑ ∞ than Theorem 3.1. In particular, in 
the identically distributed case

√
n |Q̃ Wn (1/z) − Q̃ Y (1/z)| ≤ (C pβp+2)

1/p(z/ log z)1/p for any z ≥ 2, (3.5)

which improves (3.4) for p in ]1, 2] and large values of z.

Proof of Theorem 3.2. For X and Y in Lp+2, define the cost function κp,2 by

κp,2(P X , P Y ) =
1∫

0

|Q X (u) − Q Y (u)|p(
1 + Q 2

X (u) + Q 2
Y (u)

)
du. (3.6)

Then, from Theorem 6.1 in Rio [8], for any p in ]1, 2], there exists some constant c′
p depending only on p such that

κp,2(P Wn , P Y ) ≤ c′
p Lp+2,n. (3.7)

Now, recall that log HY (x) ∼ −x2/2 as x tends to ∞. Hence there exists some positive x0 such that

− log HY (x) ≥ x2 for any x ≥ x0.

It follows that Q 2
Y (u) ≥ log(1/u) for any u ≤ exp(−x2

0), which ensures that 1 + Q 2
Y (u) ≥ c log(1/u) for any u in ]0, 1/2], for 

some positive universal constant c. Since Q Y (1 − u) = −Q Y (u), we finally get that

1 + Q 2
Y (u) ≥ c| log(min(u,1 − u))| for any u ∈ ]0,1[. (3.8)

Now (3.7) and (3.8) imply Theorem 3.2 with C p = c′
p/c. �

Proof of Corollary 3.1. Set ψ(u) = | log(min(u, 1 − u) )|. Then ψ fulfills the conditions of Theorem 2.1 and Remark 2.1. 
Consequently (2.4) holds true. Hence, for any z ≥ 2,

|Q̃ Wn (1/z) − Q̃ Y (1/z)| ≤ (z/ log z)1/p W p,ψ (P Wn , Y ) ≤ (C p Lp+2,n)
1/p(z/ log z)1/p

by Theorem 3.2, which ends the proof of Corollary 3.1. �
We now discuss the optimality of (3.2), (3.4), and (3.5). Concerning (3.2), some lower bounds have been proved in Rio 

[8, Theorem 5.1] in the independent and identically distributed case. For any r ≥ 1 and any a ≥ 1, there exists a sequence 
(Xi)i>0 of iid random variables with mean zero, satisfying E(X2

1) = 1 and E(|X1|r+2) = ar , such that

lim inf
n→∞

√
n Wr(μn, γ1) ≥ b1/r

r a with br = 2−r/(r + 1). (3.9)

In the proof of Theorem 5.1 in Rio [8], the distribution of X1 is the symmetric distribution with values in the lattice aZ
defined by P(X1 = a) = 1/(2a2) = P(X1 = −a) and P(X1 = 0) = 1 −1/a2. The lower bound (3.9) is derived from the fact that 
μn has a distribution with values in the lattice n−1/2aZ, while γ1 is a continuous law. Unfortunately, this argument cannot 
be used to provide lower bounds in (3.4) or (3.5).

Let us conclude this section by some open problems. Concerning Corollaries (3.1) and (3.5), one can conjecture that these 
results are still valid for p > 2. Concerning (3.4), it seems to me that the strong moment of order p + 2 in the upper bound 
may be replaced by a weak moment of order p + 2, although I have no idea about the proof of such a result.
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4. About the CVaR of stationary martingale differences

Throughout this section, Y is a N(0, 1)-distributed random variable. We will also use the following notations. Let 
(	, A, P) be a probability space, and T : 	 �→ 	 be a bijective bimeasurable transformation preserving the probabil-
ity P. For a σ -algebra F0 satisfying F0 ⊆ T −1(F0), we define the nondecreasing filtration (Fi)i∈Z by Fi = T −i(F0). Let 
F−∞ = ⋂

k∈ZFk and F∞ = ∨
k∈ZFk .

Let X0 be a F0-measurable real-valued random variable, and define the stationary sequence (Xi)i∈Z by Xi = X0 ◦ T i . For 
n > 0, set Sn = X0 + X1 + · · · + Xn . Then the sequence (Xi)i∈Z is a stationary martingale differences sequence in L2 if

σ 2 := E(X2
0) < ∞ and E(X0 | |F−1) = 0. (4.1)

From now on, we assume that (4.1) is satisfied for some positive σ 2. Under the additional condition E(X2
0 | F−∞) = 0, it 

is well known that the normalized sums n−1/2 Sn converge in distribution to σ Y . However, the question of the rates of 
convergence in this central limit theorem is much more intricate. Concerning power transport distances, there are only a 
few results. Below I recall a result that can be found in Dedecker et al. [3]. Assume that X0 is in Lp+2 for some p in ]0, 1[
and that the sequence (Xi)i∈Z satisfies the projective criterion

∞∑
n=1

1

n1−p/2

∥∥∥E( S2
n

n

∣∣∣F0

)
− σ 2

∥∥∥
(p+2)/2

< ∞ . (4.2)

Then, according to Theorem 2.1 and Remark 2.1 in Dedecker et al. [3], for any r in [1, p + 2] there exists a constant C p,r , 
depending on p, r and (Xi)i∈Z such that, for any integer n > 0,

Wr(Pn−1/2 Sn
, Pσ Y ) ≤ C p,rn(p−2)/2r . (4.3)

From the above upper bound and Theorem 2.2, we immediately get the normal approximation result below.

Theorem 4.1. Let (Xi)i∈Z be a stationary sequence, as defined above, satisfying (4.1) for some σ 2 > 0. Assume furthermore that X0 is 
in Lp+2 for some p in ]0, 1[ and that (4.2) is satisfied. Then, for any r in [1, p + 2],

|Q̃ n−1/2 Sn
(1/z) − σ Q̃ Y (1/z)| ≤ C p,r n−p/2r z1/r(1 + (z − 1)1−r)−1/r for any z > 1,

where C p,r is the constant in Inequality (4.3).

Remark 4.1. Theorem 4.1 provides rates of convergence under weaker moment assumptions than the conditions required in 
Inequalities (3.4) and (3.5). It is worth noticing that the rate of convergence appearing here in the case r = 1 is the usual 
rate of convergence appearing in the Berry–Esseen theorem under the moment condition E|X0|p < ∞. However, in the case 
p ≥ 1, the extension of (3.4) and (3.5) to martingales remains open.
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