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Any positive matrix M partitioned in four n-by-n blocks satisfies the unitarily invariant 
norm inequality ‖M‖ ≤ ‖M1,1 + M2,2 + ωI‖, where ω is the width of the numerical range 
of M1,2. Some related inequalities and a reverse Lidskii majorization are given.
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r é s u m é

Toute matrice positive partitionnée en quatre blocs de même taille satisfait l’inégalité en 
norme unitairement invariante ‖M‖ ≤ ‖M1,1 + M2,2 + ωI‖, où ω est la largeur de l’image 
numérique de M1,2.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

We shall prove an original inequality between positive semidefinite matrices partitioned into four blocks and the sums 
of their diagonal blocks. The numerical range of the off-diagonal block will play a central role. Our result leads to some 
unexpected norm inequalities. We will also discuss a reverse estimate to the famous Lidskii majorization.

Given a positive (semidefinite) matrix partitioned into four blocks of same size, it is well known that∥∥∥∥
[

A X
X∗ B

]∥∥∥∥ ≤ ‖A‖ + ‖B‖ (1.1)

for all symmetric (i.e. unitarily invariant) norms, where ‖ · ‖ denotes a symmetric norm defined on M2n and the induced 
norm on Mn , the space of n-by-n matrices. In the special case of the Schatten p-norms, this easily yields∥∥∥∥

[
A X

X∗ B

]∥∥∥∥
p

≤ 21−1/p‖A + B‖p
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where the constant 21−1/p is the best possible one by considering the simple example of the block-matrix,

E =

⎡
⎢⎢⎣

(
1 0
0 0

) (
0 1
0 0

)
(

0 0
1 0

) (
0 0
0 1

)
⎤
⎥⎥⎦ . (1.2)

However, if the block-matrix is in the PPT class, that is if both[
A X

X∗ B

]
and

[
A X∗
X B

]

are positive, then Hiroshima [5] proved a stronger inequality than (1.1),∥∥∥∥
[

A X
X∗ B

]∥∥∥∥ ≤ ‖A + B‖. (1.3)

This happens in particular when the off-diagonal block X is Hermitian.
Our theorem states a companion inequality to (1.3) involving the numerical range W (X) of X . Our main tool is a unitary 

orbit technique based on a useful decomposition [2, Lemma 3.4], which considerably strengthens (1.1): for every positive 
matrix in M2n partitioned into four blocks, we have[

A X
X∗ B

]
= U

[
A 0
0 0

]
U∗ + V

[
0 0
0 B

]
V ∗ (1.4)

for some unitaries U , V ∈M2n.

2. The width of the numerical range

By a strip S we mean the closed region between two parallel lines of the complex plane. The width of S is the distance 
between the two lines of its boundary. The identity matrix, of any size, is denoted by I .

Theorem 2.1. Let 
[

A X
X∗ B

]
be a positive matrix partitioned into four blocks in Mn. Suppose that W (X) lies in a strip S of width ω. 

Then, for all symmetric norms,∥∥∥∥
[

A X
X∗ B

]∥∥∥∥ ≤ ‖A + B + ωI‖.

We can take ω as the width of W (X), i.e. the smallest possible ω such that W (X) is contained in a strip of width ω. 
The theorem is sharp with the block-matrix (1.2) and the operator norm ‖ · ‖∞ , since the numerical range of the left lower 
block of (1.2) is a disc of diameter 1.

Proof. By using the unitary congruence implemented by[
eiθ 0
0 I

]

we see that our block matrix is unitarily equivalent to[
A eiθ X

e−iθ X∗ B

]
.

As W (eiθ X) = eiθ W (X), by choosing the adequate θ and replacing X by eiθ X , we may and do assume that W (X) lies in a 
strip S of width ω and parallel to the imaginary axis,

S = { x + iy : y ∈ R, r ≤ x ≤ r + ω } .

The projection property for the real part Re W (X) = W (Re X) then ensures that

r I ≤ Re X ≤ (r + ω)I. (2.1)

Now we use the decomposition [3, Corollary 2.1] derived from (1.4),[
A X

X∗ B

]
= U

[
A+B

2 + Re X 0
0 0

]
U∗ + V

[
0 0
0 A+B − Re X

]
V ∗ (2.2)
2
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for some unitaries U , V ∈M2n . Note that the two matrices in the right-hand side of (2.2) are positive since so are

[
I I

][
A X

X∗ B

][
I
I

]
and

[
I −I

][
A X

X∗ B

][
I

−I

]
.

Combining (2.1) and (2.2) yields[
A X

X∗ B

]
≤ U

[
A+B

2 + (r + ω)I 0
0 0

]
U∗ + V

[
0 0
0 A+B

2 − r I

]
V ∗ (2.3)

where the two matrices of the right-hand side are positive. From each Ky Fan k-norm, k = 1, 2, . . . , 2n, we then have∥∥∥∥
[

A X
X∗ B

]∥∥∥∥
(k)

≤
∥∥∥∥ A + B

2
+ (r + ω)I

∥∥∥∥
(k)

+
∥∥∥∥ A + B

2
− r I

∥∥∥∥
(k)

= ‖A + B + ωI‖(k) .

The Ky Fan principle [1, p. 93] then ensures that this inequality holds for all symmetric norms. �
The important special case of Theorem 2.1 with ω = 0, first proved in [10], reads as: let 

[
A L
L∗ B

]
be a positive matrix 

partitioned into four blocks in Mn. Suppose that W (L) is a line segment. Then, for all symmetric norms,∥∥∥∥
[

A L
L∗ B

]∥∥∥∥ ≤ ‖A + B‖.

This contains (1.3) when X = X∗ . A simple example of such a block matrix is⎡
⎢⎢⎣

2.6 2 1 − i −i
2 3.6 i 1 − i

1 + i −i 3.6 0
i 1 + i 0 2.6

⎤
⎥⎥⎦ .

This matrix is not PPT, hence Theorem 2.1 provides more block-matrices for which the Hiroshima majorization (1.3) holds.
Theorem 2.1 also contains some interesting norm inequalities. For any symmetric norm and A ∈ Mn , we have ‖A∗ A‖ =

‖A A∗‖ as A∗ A and A A∗ are unitarily invariant. Our first corollary yields an interesting comparison between the similar 
expressions for two operators, A∗ A + B∗B and A A∗ + B B∗ .

Corollary 2.2. Let A, B ∈Mn and let ω be the width of W (AB∗). Then, for all symmetric norms,∥∥A∗ A + B∗B
∥∥ ≤ ∥∥A A∗ + B B∗ + ωI

∥∥ .

Corollary 2.2 is sharp for the operator norm with A and B in place of the upper left corner and lower left corner of (1.2), 
respectively. It seems difficult to find an analogous statement involving three, or more, matrices. It would be interesting to 
have a detailed description of W (AB∗) when both A and B are partial isometries; the special case of two projections is 
nicely studied in [8].

Proof. Note that∥∥A∗ A + B∗B
∥∥ = ‖T ∗T ‖ = ‖T T ∗‖

with T =
[

A
B

]
and

T T ∗ =
[

A A∗ AB∗
B A∗ B B∗

]

so that Theorem 2.1 yields the result. �
Corollary 2.3. Let H, K , X ∈Mn be Hermitian. If X is invertible, then, for all symmetric norms,∥∥∥X H2 X + X−1 K 2 X−1

∥∥∥ ≤
∥∥∥H X2 H + K X−2 K + γ I

∥∥∥ ,

where the constant γ can be chosen as

(a) γ = 2, if H and K are two contractions;
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(b) γ = 1, if H is positive and H K is a contraction;
(c) γ = 1/2, if H and K are two positive contractions;
(d) γ = 0, if H K = K H.

Since both ‖X‖∞ and ‖X−1‖∞ may be arbitrarily large, it is rather surprising that we have bounded constants γ in 
Corollary 2.3. However, we note that (d) is a byproduct of Hiroshima’s theorem as a special case of [9].

Proof. Setting A = H X and B = K X−1, Corollary 2.2 shows that it suffices to check that W (H K ) has width less or equal 
than γ . This follows from the estimate for the imaginary part of H K ,

−γ

2
I ≤ Im H K ≤ γ

2
I, (2.4)

which does hold. Indeed, in case of assumption (a) or (d), this is obvious. If (b) holds, this follows from a beautiful result 
of Kittaneh for commutators involving a positive matrix [7]. If (c) holds, this is also well known, see for instance [4] where 
a proof of Fuzhen Zhang is proposed. �

For any pair A, B ∈Mn of positive matrices, Lidskii’s majorization holds: for all symmetric norms,

‖A + B‖ ≥
∥∥∥A↑ + B↓

∥∥∥ .

Here, as usual, A↑ is the diagonal matrix whose diagonal entries are the eigenvalues of A arranged in increasing order, and 
similarly B↓ is the diagonal matrix whose diagonal entries are the eigenvalue of B arranged in decreasing order. A proof is 
in [1, p 98].

Proposition 2.4. Let 
[

A X
X∗ B

]
be a positive matrix partitioned into four blocks in Mn. Let ν = ‖X‖∞ . Then, for all symmetric norms,

∥∥∥∥
[

A X
X∗ B

]∥∥∥∥ ≤ ‖A↑ + B↓ + ν I‖.

Note that by Lidskii’s majorization, we have

‖A↑ + B↓ + ν I‖ ≤ ‖A + B + ν I‖.
Hence the proposition says that Theorem 2.1 is significant when ω is not too large, ω ≤ ν . (ω ≤ 2ν always holds.) If 
0 /∈ W (X), then necessarily ω < ν . However, Theorem 2.1 is more informative than Proposition 2.4; the case ω = 0 is 
already interesting, while the case ν = 0 is trivial.

Proof. Note that, with adequate unitary matrices U , V ∈ Mn and the unitary congruence implemented by[
U 0
0 V

]
,

our block matrix is unitarily equivalent to[
A↑ U X V ∗

V X∗U∗ B↓
]

.

Since Z ≤ |Z | for any Hermitian matrix Z , we have[
A↑ U X V ∗

V X∗U∗ B↓
]

≤
[

A↑ 0
0 B↓

]
+

[ |V X∗U∗| 0
0 |U X V ∗|

]

≤
[

A↑ 0
0 B↓

]
+

[
ν I 0
0 ν I

]
.

Therefore, for each Ky Fan k-norm, k = 1, 2, . . . , n, we have∥∥∥∥
[

A↑ U X V ∗
V X∗U∗ B↓

]∥∥∥∥
(k)

≤
∥∥∥∥
[

A↑ 0
0 B↓

]∥∥∥∥
(k)

+
∥∥∥∥
[
ν I 0
0 ν I

]∥∥∥∥
(k)

≤ ‖A↑ + B↓‖(k) + ‖ν I‖(k)

= ‖A↑ + B↓ + ν I‖(k)

thanks to the basic majorization ‖A↑ ⊕ B↓‖ ≤ ‖A↑ + B↓‖. This also obviously holds for n ≤ k ≤ 2n because the block matrix 
has same trace than A↑ + B↓ . Applying the Ky Fan principle then completes the proof. �
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If C ∈ Mn is positive, we define C ′ := C − λn(C)I where λn(·) is the smallest eigenvalue. Hence, if C is singular, C ′ = C .

Corollary 2.5. Let A, B ∈Mn be positive and let ρ ′ be the spectral radius of A′B ′ . Then, for all symmetric norms,

‖A + B‖ ≤
∥∥∥A↑ + B↓ + √

ρ ′ I
∥∥∥ .

Proof. First, observe that for each Ky Fan k-norms, k = 1, 2, . . . , n

‖A + B‖(k) = ‖A′ + B ′‖(k) + k(λn(A) + λn(B))

and ∥∥∥A↑ + B↓ + √
ρ ′ I

∥∥∥
(k)

=
∥∥∥A′ ↑ + B ′ ↓ + √

ρ ′ I
∥∥∥

(k)
+ k(λn(A) + λn(B)).

Hence we may assume that A = A′ and B = B ′ . Since∥∥A′ + B ′∥∥ = ‖T ∗T ‖ = ‖T T ∗‖

with T =
[

A′ 1/2

B ′ 1/2

]
and T T ∗ =

[
A′ A′ 1/2 B ′ 1/2

B ′ 1/2 A′ 1/2 B ′
]

, we may apply Proposition 2.4 with ν = ‖A′ 1/2 B ′ 1/2‖∞ = √
ρ ′ . �

The following consequence of Corollary 2.5 was first obtained by Kittaneh in [6, Corollary 2].

Corollary 2.6. Let A, B ∈Mn be two positive matrices. Then, the spectral radius of AB satisfies

ρ(AB) ≥ {‖A + B‖∞ − ‖A ⊕ B‖∞}2 .

Proof. By adding some zero columns and rows we may assume that A, B ∈ Mm with m = 2n, hence A = A′ , B = B ′ , and 
rank A + rank B ≤ m so that ‖A↑ + B↓‖∞ = ‖A ⊕ B‖∞ . Corollary 2.5 with ρ ′ = ρ(AB) then yields

‖A + B‖∞ ≤ ‖A ⊕ B‖∞ + √
ρ(AB)

which proves our last corollary. �
Denote by λ1(M) ≥ λ2(M) ≥ · · · ≥ λn(M) the eigenvalues in non-increasing order of a positive matrix M ∈ Mn . From 

(2.3) and the classical Weyl inequalities [1, p. 62], we infer several estimates which complete the majorization stated in 
Theorem 2.1.

Proposition 2.7. Let 
[

A X
X∗ B

]
be a positive matrix partitioned into four blocks in Mn. Let ω be the width of W (X). Then, for all 

j, k ∈ {0, 1, . . . , n − 1},

λ1+ j+k

([
A X

X∗ B

])
≤ λ1+ j(A + B) + λ1+k(A + B)

2
+ ω.

It follows that Corollaries 2.2–2.3 have similar eigenvalue versions.
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