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In this paper, we study the irreducible representation of PSL(2, R) in PSL(5, R). This 
action preserves a quadratic form with signature (2, 3). Thus, it acts conformally on the 
3-dimensional Einstein universe Ein1,2. We describe the orbits induced in Ein1,2 and its 
complement in RP4. This work completes the study in [2], and is one element of the 
classification of cohomogeneity one actions on Ein1,2 [5].

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Dans cet article, nous étudions l’action irréductible de PSL(2, R) dans PSL(5, R). Cette 
action préserve une forme quadratique de signature (2, 3). Elle sur agit donc conformément 
sur l’univers d’Einstein Ein1,2 de dimension 3, ainsi que sur son complément dans RP4. Ce 
travail complète l’étude préliminaire dans [2], et est un élément de la classification des 
actions sur Ein1,2 de cohomogenéité un [5].

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

1.1. The irreducible representation of PSL(2, R)

Let V denote an n-dimensional vector space. A subgroup of GL(V ) is irreducible if it preserves no proper subspace of V .
It is well known that, for every integer n, up to isomorphism, there is only one n-dimensional irreducible representation 

of PSL(2, R). For n = 5, this representation is the natural action of PSL(2, R) on the vector space V = R4[X, Y ] of homo-
geneous polynomials of degree 4 in two variables X and Y . This action induces three types of orbits in the 4-dimensional 
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projective space RP4 = P(V): an 1-dimensional orbit, three 2-dimensional orbits, and the orbits on which PSL(2, R) acts 
freely.

The irreducible action of PSL(2, R) on V preserves the following quadratic form

q(a4 X4 + a3 X3Y + a2 X2Y 2 + a1 XY 3 + a0Y 4) = 2a4a0 − 1

2
a1a3 + 1

6
a2

2.

The quadratic form q is non-degenerate and has signature (2, 3). This induces an irreducible representation PSL(2, R) →
O (2, 3) ⊂ PSL(5, R) [2]. On the other hand, by [3, Theorem 1], up to conjugacy, S O ◦(1, 2) � PSL(2, R) is the only irreducible 
connected Lie subgroup of O (2, 3).

1.2. Einstein’s universe

Let R2,3 denote a 5-dimensional real vector space equipped with a non-degenerate symmetric bilinear form q with 
signature (2, 3). The null cone of R2,3 is

N= {v ∈R
2,3 \ {0} : q(v) = 0}.

The 3-dimensional Einstein universe Ein1,2 is the image of the null cone N under the projectivization:

P : R2,3 \ {0} −→ RP
4.

The degenerate metric on N induces a O (2, 3)-invariant conformal Lorentzian structure on the Einstein universe. The group 
of conformal transformations on Ein1,2 is O (2, 3) [4].

A light-like geodesic in Einstein’s universe is a photon. A photon is the projectivization of an isotropic 2-plane in R2,3. 
The set of photons through a point p ∈ Ein1,2 denoted by L(p) is the lightcone at p. The complement of a lightcone L(p) in 
Einstein’s universe is the Minkowski patch at p and we denote it by Mink(p). A Minkowski patch is conformally equivalent 
to the 3-dimensional Minkoski space E1,2 [1].

The complement to the Einstein universe in RP4 has two connected components: the 3-dimensional Anti de-Sitter space 
AdS1,2 and the generalized hyperbolic space H2,2: the first (respectively the second) is the projection of the domain R2,3

defined by {q < 0} (respectively {q > 0}).
An immersed submanifold S of AdS1,2 or H2,2 is of signature (p, q, r) (respectively Ein1,2) if the restriction of the 

ambient pseudo-Riemannian metric (respectively the conformal Lorentzian metric) is of signature (p, q, r), meaning that the 
radical has dimension r, and that maximal definite negative and positive subspaces have dimensions p and q, respectively. 
If S is nondegenerate, we forgot r and simply denote its signature by (p, q).

Theorem 1.1. The irreducible action of PSL(2, R) on the 3-dimensional Einstein universe Ein1,2 admits three orbits:

– a 1-dimensional light-like orbit, i.e. of signature (0, 0, 1),
– a 2-dimensional orbit of signature (0, 1, 1),
– an open orbit (hence of signature (1, 2)) on which the action is free.

The 1-dimensional orbit is light-like, homeomorphic to RP1, but not a photon. The union of the 1-dimensional orbit and 
the 2-dimensional orbit is an algebraic surface, whose singular locus is precisely the 1-dimensional orbit. It is the union 
of all projective lines tangent to the 1-dimensional orbit. Fig. 1 describes a part of the 1 and 2-dimensional orbits in the 
Minkowski patch Mink([Y 4]).

Fig. 1. Two partial views of the intersection of the 1 and 2-dimensional orbits in Einstein’s universe with Mink([Y 4]). Red: Part of the 1-dimensional orbit 
in Minkowski patch. Green: Part of the 2-dimensional orbit in Minkowski patch.



M. Hassani / C. R. Acad. Sci. Paris, Ser. I 355 (2017) 1133–1137 1135
We will also describe the actions on the Anti de-Sitter space and the generalized hyperbolic space H2,2:

Theorem 1.2. The orbits of PSL(2, R) in the Anti de-sitter component AdS1,3 are Lorentzian, i.e. of signature (1, 2). They are the leaves 
of a codimension-1 foliation. In addition, PSL(2, R) induces three types of orbits in H2,2: a 2-dimensional space-like orbit (of signature 
(2, 0)) homeomorphic to the hyperbolic plane H2, a 2-dimensional Lorentzian orbit (i.e. of signature (1, 1)) homeomorphic to the 
de-Sitter space dS1,1 , and four kinds of 3-dimensional orbits where the action is free:

– a one-parameter family of orbits of signature (2, 1), consisting of elements with four distinct non-real roots,
– a one-parameter family of Lorentzian (i.e. of signature (1, 2)) orbits consisting of elements with four distinct real roots,
– two orbits of signature (1, 1, 1),
– a one-parameter family of Lorentzian (i.e. of signature (1, 2)) orbits consisting of elements with two distinct real roots, and two 

distinct complex conjugate roots so that the cross-ratio of the four roots has an argument strictly between −π/3 and π/3.

2. Proofs of the theorems

Let f be an element in V. We consider it as a polynomial function from C2 into C. Actually, by specifying Y = 1, we 
consider f as a polynomial of degree at most 4. Such a polynomial is determined, up to a scalar, by its roots z1 , z2, z3, z4
in CP1 (some of these roots can be ∞ if f can be divided by Y ). It provides a natural identification between P(V) and the 
set ĈP1

4 made of 4-tuples (up to permutation) (z1, z2, z3, z4) of CP1 such that if some zi is not in RP1, then its conjugate 
z̄i is one of the z j ’s. This identification is PSL(2, R)-equivariant, where the action of PSL(2, R) on ĈP1

4 is simply the one 
induced by the diagonal action on (CP1)4.

Actually, the complement of RP1 in CP1 is the union of the upper half-plane model H2 of the hyperbolic plane, and the 
lower half-plane. We can represent every element of ĈP1

4 by a 4-tuple (up to permutation) (z1, z2, z3, z4) such that:

– either every zi lies in RP1,
– or z1, z2 lies in RP1, z3 lies in H2 and z4 = z̄3,
– or z1, z2 lies in H2 and z3 = z̄1, z4 = z̄2.

Theorems 1.1 and 1.2 will follow from the proposition below.

Proposition 2.1. Let [ f ] be an element of P(V). Then:

– it lies in Ein1,2 if and only if it has a root of multiplicity at least 3, or two distinct real roots z1, z2 , and two complex roots z3 , 
z4 = z̄3 , with z3 in H2 and such that the argument of the cross-ratio of z1, z2, z3, z4 is ±π/3;

– it lies in AdS1,3 if and only it has two distinct real roots z1 , z2 , and two complex roots z3 , z4 = z̄3 , with z3 in H2 and such that the 
argument of the cross-ratio of z1, z2, z3, z4 has absolute value > π/3;

– it lies in H2,2 if and only if it has no real roots, or four distinct real roots, or a root of multiplicity exactly 2, or it has two distinct 
real roots z1 , z2 , and two complex roots z3 , z4 = z̄3 , with z3 in H2 and such that the argument of the cross-ratio of z1, z2, z3, z4
has absolute value < π/3.

Proof of Proposition 2.1. Assume that f has no real root. Hence we are in the situation where z1, z2 lie in H2 and z3 = z̄1, 
z4 = z̄2. By applying a suitable element of PSL(2, R), we can assume z1 = i, and z2 = ri for some r > 0. In other words, f is 
in the PSL(2, R)-orbit of (X2 + Y 2)(X2 + r2Y 2). The value of q on this polynomial is 2 × 1 × r2 + 1

6 (1 + r2)2 > 0, hence [ f ]
lies in H2,2.

Hence, we can assume that f admits at least one root in RP1, and by applying a suitable element of PSL(2, R), one can 
assume that this root is ∞, i.e. that f is a multiple of Y .

We first consider the case where this real root has multiplicity at least 2:

f = Y 2(aX2 + b XY + cY 2)

Then, q( f ) = 1
6 a2: it follows that if f has a root of multiplicity at least 3, it lies in Ein1,2, and if it has a real root of 

mulitplicity 2, it lies in H2,2.
We assume from now on that the real roots of f have multiplicity 1. Assume that all roots are real. Up to PSL(2, R), one 

can assume that these roots are 0, 1, r and ∞ with 0 < r < 1.

f (X, Y ) = XY (X − Y )(X − rY ) = X3Y − (r + 1)X2Y 2 + r XY 3.

Then, q( f ) = − 1
2 r + 1

6 (r + 1)2 = 1
6 (r2 − r + 1) > 0. Therefore, f lies in H2,2 once more.

The only remaining case is the case where f has two distinct real roots, and two complex conjugate roots z, z̄ with 
z ∈ H

2. Up to PSL(2, R), one can assume that the real roots are 0, ∞, hence:
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f (X, Y ) = XY (X − zY )(X − z̄Y ) = XY (X2 − 2|z| cos θ XY + |z|2Y 2)

where z = |z| eiθ . Then:

q( f ) = 2|z|2
3

(cos2 θ − 3

4
).

Hence f lies in Ein1,2 if and only if θ = π/6 or 5π/6. The proposition follows easily.

Remark 1. F. Fillastre indicated to us that our description of the open orbit in Ein1,2 appearing in the first item of Propo-
sition 2.1 has an alternative and more elegant description: this orbit corresponds to polynomials whose roots in CP1 are 
ideal vertices of a regular ideal tetraedra in H3.

Remark 2. In order to determine the signature of the orbits induced by PSL(2, R) in P(V), we consider the tangent vectors 
induced by the action of 1-parameter subgroups of PSL(2, R). We denote by E , P , and H , the 1-parameter elliptic, parabolic 
and hyperbolic subgroups stabilizing i, ∞ and {0, ∞}, respectively.

Proof of Theorem 1.1. It follows from Proposition 2.1 that there are precisely three PSL(2, R)-orbits in Ein1,2:

– one orbit N comprising polynomials with a root of multiplicity 4, i.e. of the form [(sY − t X)4] with s, t ∈R. It is clearly 
1-dimensional, and equivariantly homeomorphic to RP1 with the usual projective action of PSL(2, R). Since d

dt |t=0(Y −
t X)4 = −4XY 3 is a q-null vector, this orbit is light-like (but cannot be a photon since the action is irreducible);

– one orbit L comprising polynomials with a real root of multiplicity 3, and another real root. These are the polynomials 
of the form [(sY − t X)3(s′Y − t′ X)] with s, t, s′, t′ ∈ R. It is 2-dimensional, and it is easy to see that it is the union 
of the projective lines tangent to N . The vectors tangent to L induced by the 1-parameter subgroups P and E at 
[XY 3] ∈ L are v P = −Y 4 and v E = 3X2Y 2 + Y 4. Obviously, v P is orthogonal to v E and v E + v P is space-like. Hence L
is of signature (0, 1, 1);

– one open orbit comprising polynomials admitting two distinct real roots and a root in H2 such that the argument of the 
cross-ratio of the four roots is π/3. The stabilizers of points in this orbit are trivial, since an isometry of H2 preserving 
a point in H2 and one point in ∂H2 is necessarily the identity. �

Proof of Theorem 1.2. According to Proposition 2.1, the polynomials in AdS1,3 have two distinct real roots, and a complex 
root H2 (and its conjugate) such that the argument of the cross-ratio of the four roots has absolute value > π/3. It follows 
that the action in AdS1,3 is free, and that the orbits are the level sets of the function θ . Suppose that M is a PSL(2, R)-orbit 
in AdS1,3. There exists r ∈ R such that [ f ] = [Y (X2 + Y 2)(X − rY )] ∈ M . The orbit induced by the 1-parameter subgroup E
at [ f ] is:

γ (t) = [
(X2 + Y 2)

(
(sin t cos t − r sin2 t)X2 − (sin t cos t + r cos2 t)Y 2 + (cos2 t − sin2 t + 2r sin t cos t)XY

)]
.

Then q( dγ
dt |t=0) = −2 − 2r2 < 0. This implies, as for any submanifold of a Lorentzian manifold admitting a time-like vector, 

that M is Lorentzian, i.e., of signature (1, 2).
The case of H2,2 is the richest one. According to Proposition 2.1, there are four cases to consider.

– No real roots. Then f has two complex roots z1, z2 in H2 (and their conjugates). It corresponds to two orbits: one 
orbit corresponding to the case z1 = z2: it is space-like and has dimension 2. It is the only maximal PSL(2, R)-invariant 
surface in H2,2 described in [2, Section 5.3]. The case z1 	= z2 provides a one-parameter family of 3-dimensional orbits 
on which the action is free (the parameter being the hyperbolic distance between z1 and z2). One may assume that 
z1 = i and z2 = ri for some r > 0. Denote by M the orbit induced by PSL(2, R) at [ f ] = [(X2 + Y 2)(X2 + r2Y 2)]. The 
vectors tangent to M at [ f ] induced by the 1-parameter subgroups H , P and E are:

v H = −4X4 + 4r2Y 4, v P = −4X3Y − 2(r2 + 1)XY 3, v E = 2(r2 − 1)X3Y + 2(r2 − 1)XY 3,

respectively. The time-like vector v H is orthogonal to both v P and v E . It is easy to see that the 2-plane generated by 
{v P , v E } is of signature (1, 1). Therefore, the tangent space T [ f ]M is of signature (2, 1).

– Four distinct real roots. This case provides a one-parameter family of 3-dimensional orbits on which the action is free – 
the parameter being the cross-ratio between the roots in RP1. Denote by M the PSL(2, R)-orbit at [ f ] = [XY (X −
Y )(X − rY )] (here as explained in the proof of Proposition 2.1, we can restrict ourselves to the case 0 < r < 1). The 
vectors tangent to M at [ f ] induced by the 1-parameter subgroups H , P , and E are:

v H = −rY 4 + 2(r + 1)XY 3 − 3X2Y 2, v P = −2X3Y + 2r XY 3,

v E = X4 − rY 4 + 3(r − 1)X2Y 2 + 2(r + 1)XY 3 − 2(r + 1)X3Y ,
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respectively. A vector x = av H + bv P + cv E is orthogonal to v P if and only if 2ra + b(r + 1) + c(r + 1)2 = 0. Set a =(
b(r + 1) + c(r + 1)2

)
/ − 2r in

q(x) = 2ra2 + 3

2
b2 + (7

2
(r2 + 1) − r

)
c2 + 2(r + 1)ab + 2(r + 1)2 + ac(2r2 − r + 5).

Consider q(x) = 0 as a quadratic polynomial F in b. Since 0 < r < 1, the discriminant of F is non-negative and it is 
positive when c 	= 0. Thus, the intersection of the orthogonal complement of the space-like vector v P with the tangent 
space T [ f ]M is a 2-plane of signature (1, 1). This implies that M is Lorentzian, i.e. of signature (1, 2).

– A root of multiplicity 2. Observe that if there is a non-real root of multiplicity 2, when we are in the first “no real root” 
case. Hence we consider here only the case where the root of multiplicity 2 lies in RP1. Then, we have three subcases 
to consider:
– two distinct real roots of multiplicity 2: The orbit induced at X2Y 2 is the image of the PSL(2, R)-equivariant map

dS1,1 ⊂ P(R2[X, Y ]) −→ H
2,2, [L] 
→ [L2],

where R2[X, Y ] is the vector space of homogeneous polynomials of degree 2 in two variables X and Y , endowed with 
discriminant as a PSL(2, R)-invariant bilinear form of signature (1, 2) [2, Section 5.3]. (Here, L is the projective class 
of a Lorentzian bilinear form on R2.) The vectors tangent to the orbit at X2Y 2 induced by the 1-parameter subgroups 
P and E are v P = −2XY 3 and v E = 2X3Y − 2XY 3, respectively. It is easy to see that the 2-plane generated by 
{v p, v E } is of signature (1, 1). Hence, the orbit induced at X2Y 2 is Lorentzian.

– three distinct real roots, one of them being of multiplicity 2; denote by M the orbit induced by PSL(2, R) at [ f ] =
[XY 2(X − Y )]. The vectors tangent to M at [ f ] induced by the 1-parameter subgroups H , P and E are:

v H = −2XY 3, v P = Y 4 − 2XY 3, v E = Y 4 − X4 − 2X2Y 2 + X3Y − XY 3,

respectively. Obviously, the light-like vector v H + v P is orthogonal to T [ f ]M . Therefore, the restriction of the metric 
on T [ f ]M is degenerate. It is easy to see that the quotient of T [ f ]M by the action of the isotropic line R(v H + v P ) is 
of signature (1, 1). Thus, M is of signature (1, 1, 1).

– one real root of multiplicity 2, and one root in H2: Denote by M the orbit induced by PSL(2, R) at [ f ] = [Y 2(X2 +
Y 2)]. The vectors tangent to M at [ f ] induced by the 1-parameter subgroups H , P and E are v H = 4Y 4, v P = −2XY 3, 
and v E = 2X3Y +2XY 3, respectively. Obviously, the light-like vector v H is orthogonal T [ f ]M . Therefore, the restriction 
of the metric on T [ f ]M is degenerate. It is easy to see that the quotient of T [ f ]M by the action of the isotropic line 
R(v H ) is of signature (1, 1). Thus M is of signature (1, 1, 1).

– Two distinct real roots, and a complex root in H2 (and its conjugate) such that the argument of the cross-ratio of the four roots has 
absolute value < π/3. Denote by M the orbit induced by PSL(2, R) at [ f ] = [Y (X2 + Y 2)(X − rY )]. The vectors tangent to 
M at [ f ] induced by the 1-parameter subgroups H , P and E are:

v H = −4rY 4 − 2X3Y + 2XY 3, v P = −3X2Y 2 + 2r XY 3 − Y 4, v E = X4 − Y 4 − 2r X3Y − 2r XY 3,

respectively. The following set of vectors is an orthogonal basis for T [ f ]M where the first vector is time-like and the 
two others are space-like.

{(7r + 3r3)v H + (6 − 2r2)v P + (5 + r2)v E ,4v P + v E , v H }.
Therefore, M is Lorentzian, i.e. of signature (1, 2). �
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