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RESUME

Nous montrons des relations de récurrence entre les vecteurs partition des polynémes
de Bell exponentiels partiels. Utilisant ces relations, le n-iéme polynéme d’Adomian, pour
n’'importe quel opérateur non linéaire, s’exprime explicitement en termes des polyndmes
de Bell exponentiels partiels. On en déduit des identités nouvelles pour ces derniers, via
la solution de certaines équations différentielles ordinaires, en utilisant la méthode de
décomposition d’Adomian.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The Bell polynomials studied by Bell [4,5] are special polynomials in combinatorial analysis, with numerous applications
in different areas of mathematics. The incomplete or partial exponential Bell polynomials By (see [7], [10, p. 96]) in
n —k + 1 variables are triangular arrays of polynomials defined by
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n—k+1 1 U k;
Bpk(u1, Uz, ..., Un—k+1) =n!Z o (—{) : (11)
Ak =1 AT

where the partition set is given by Ak = {(k1,k2,...,l<n_k+1):Z’};’f” Iq:k,Z'};’]‘“ jkj:n,kjeNo}. Here N, =

{x:x>m,xe NU{0}} and N denotes the set of positive integers. Also, the sum

n
Bn(u1, Uz, ..., Un) = Y Bog(U, iz, ..., Un41), (12)
k=1

is called the n-th complete exponential Bell polynomial. For more details, results and some known identities on Bell poly-
nomials, we refer the reader to [6, pp. 133-137], [7] and [10, pp. 95-98].

Next we briefly explain the Adomian decomposition method (ADM) [2,3], which will be used later to obtain some new
identities for Bell polynomials. In ADM, the solution to the functional equation

u=f+ L)+ NQ), (1.3)

where L and N are linear and nonlinear operators respectively and f is a known function, is expressed in the form of an
infinite series

u= Zun. (1.4)
n=0

The nonlinear term N(u) decomposes as

[o¢]
N@) =) An(uo. u1..... up), (1.5)
n=0
where A, denotes the n-th Adomian polynomial in ug, u1, ..., uy. Also, the series (1.4) and (1.5) are assumed to be abso-

lutely convergent. So, (1.3) can be rewritten as

o0 oo oo
Dotn=f+) Ln)+) A
n=0 n=0 n=0

Thus the u,s are obtained by the following recursive relation
up=f and up=~L(Up_1)+ An_1.

The crucial step involved in ADM is the calculation of Adomian polynomials. Adomian [2, pp. 19-21] gave a method
for determining these polynomials, by parameterizing u as uy =Y o, u,A" and assuming N(u;) to be analytic in A, which

decomposes as N(uy) = 2510 An(ug, u1q, ..., uy)A". Hence, Adomian polynomials are given by
1 8"N(u;)
An(ug, uq,...,Up) = ——— , VneNp. 1.6
n(Uo, U n) g o 0 (1.6)

An improved version of the above result (see Zhu et al. [13]) is given by

1 "N uprk)
An(uo,u1,...,un):m%‘+ , VneNg. (1.7)

r=0

Rach [12] suggested the following formula for these polynomials: Ag(ug) = N(up) and

n
An(uo, U1, ... ) = ) Ck, mIN® (ug), Vn e N, (18)
k=1
where

n u’fj

— _]
Clk,m) = Zl‘[ K (1.9)

of j=1

and the summation is taken over the partition set (-)’,i = {(Iq,kz, o kn) s 2?21 ki =k, Z’}Zl jkj=n,kje No}. Also, N® ()

denotes the k-th derivative of the nonlinear term. One can easily show the equivalence of (1.6) and (1.8) using the Faa
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di Bruno’s formula. Recently, Kataria and Vellaisamy [11] obtained simple parameterization methods for generating these
Adomian polynomials both explicitly and recursively.

In this paper, we first obtain some results related to the partition vectors of the partial exponential Bell polynomials.
Then we show that the C(k,n)’s, which are homogeneous polynomials of order k, can be represented in terms of the
well-known Bell polynomials. Hence, a closed form expression of the n-th order Adomian polynomial for any nonlinear
operator is obtained as a finite sum of the partial exponential Bell polynomials. The significance of this result is that any
algorithm or identity for the C(k,n)’s will give the corresponding results for the Bell polynomials and vice versa. Indeed we
use the results of Duan [8,9] to obtain some recursive algorithms for the partial exponential Bell polynomials. Also, we use
the Adomian decomposition method to solve certain ordinary differential equations to obtain some new identities for the
partial exponential Bell polynomials.

2. The partition vectors of the Bell polynomials

We use the following results by Duan [8] for the partition set @’,j of Adomian polynomials to show some similar results
for the partition set Aﬁ of Bell polynomials.

Lemma 2.1. For 1 <k <n, ®’,‘l C Nj and G)} ={(D)}, ®}l ={(0,0,...,0, D}

Il
=]

Lemma 2.2. For every vector (k1,ka,...,ky) € ®’,§, 2 <k <n, the last (k — 1) entries are zero, i.e. kn_g12 =kn_y+3 =...=kn
Theorem 2.1. For n € Ny, if 2 <k < [3], then ©f = ©1 U ®,, and if [ 3] < k <n, then ©F = ©1, where

O1={(k1 + 1. ka, ... . kn_1,0) : (k1, ko, ..., kn_1) € O]}
and

©2 ={(0,k1,ka, ..., kn—k, 0,0, ...,0): (ki ka, ..., kn_g) € O _,}.
N’

k—1 times

Next we obtain some results for the partition set A{g of Bell polynomials. The following lemmas are easy to prove.
Lemma 2.3. For 1 <k <n, Ak ¢ NI 7*1 with Al = ®] foralln e N.

The following result is evident from Lemma 2.2.
Lemma 2.4. Let e? denote the n-tuple vector with unity at the j-th place and zero elsewhere. Then

n—k+1
ek = Z kel : (k1,k2, ... .kn_41) € Ak
j=1

Similar recurrence relationships among the partition vectors of the partial exponential Bell polynomials hold.

Theorem 2.2. Forn € Ny, if 2 <k <[5 ], then Ak = A7 U A, and if[5] <k <n, then Ak = A1, where

Ar={(ki + 1. ko, ko) (K1oka, oo knoin) € AKZY)
and

n—k

Ay ={(0,k1, k2, ... kn_2k+1,0,0,...,0) : (k1. ko, ... kn_+1) € AX_,).
————

k—1 times
Proof. The proof is evident on using Lemma 2.2 and Theorem 2.1. O

A relationship between Adomian polynomials and Bell polynomials was first obtained by Abbaoui et al. [1]. Here we
establish a relationship between Adomian and partial exponential Bell polynomials, which is different from the one proved
in [1].
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Theorem 2.3. Let Ay, n > 1, be the n-th Adomian polynomial for the nonlinear term N(u). Then

.l n
Ao, un, .. ) = — 3 B (11, 2z, ..., (1 =k + Dlttn )N (wo). (21)
k=1
Proof. On setting kn_ryj =0 for j=2,3,...,k and using Lemma 2.4, we have
n—k+1 u’fj n u’fj
! ! _ | —_n! o b
Bnie(1u1, 2z, ..., (0= k+ Dlp 1) =0y ]_[ 4 _n.ZH K =n!C(k, n).
Ak J=1 of j=1
Hence,
1
Ck,n) = mBn,k(l!UL 2y, ..., —k+ Dlupg_grq). (2.2)

The proof completes on using (1.8). O

From (2.2) it is clear that the homogeneous polynomials of order k, ie. the C(k,n)’s are the partial exponential Bell
polynomials. On using (2.2), the following results follow from the recursive algorithm of C(k,n) given by Corollary 1 of
Duan [8].

Corollary 2.1. For all n € N, we have B 1(1luy, 2!ua, ..., nlup) = nlu, and By n(u1) = uf. When [%] <k <nandn € Ny, we have
Bu(1luq, 2y, ..., —k+ Dy pp1) =n Bp_q,_1(1lug, 2lug, ..., (n —k+ 1)’“n—k+1)|kﬁk1+1 .
For2 <k <[%] and n € N4, we have
Buk(Mlug, 2y, ..., (n —k+Dup_gy1) =n By g—1(Nug, 2lup, ..., (n —k + 1)!un,k+1)|k1_)k]+]
+ (M Bp—kk(1luz, 2lus, ..., (0 = 2k + Dlup_ok42),
where (n)y =n(n—1)...(n — k + 1) denotes the falling factorials.

An alternate recursive algorithm for the Bell polynomials follows from Corollary 3 and 4 of Duan [9].

Corollary 2.2. Let n be any positive integer. Then for 2 <k < n, we have

Bnxk(Mlug, 2y, ..., (n —k + Dlup_g41)
n—k
= Z(] + DM —Djujr1Bnj1e—1(1ug, 2y, .., (M — j—k+ Dy j g pq).
j=0
Alternatively, for 2 <k <n — 1, we have

Bnx(Nug, 2Mug, ..., (0 —k+ Dy 1) =urBrq g1 (Mug, 2, .., =k + Dluyg gy 1)

n—k
. J
+ ];(J + 1>u,-+1£j3n71,k(1!u1, 2y, ..., (1 —k)lup_g).

Next we show that the n-th Adomian polynomial for exponential non-linearity can be expressed in terms of the n-th
complete exponential Bell polynomial. By using (2.1), the Adomian polynomials for N(u) =e" are Ag(up) =e"0 and

A1(ug, u1) = B11(1lug) e = uqe'o,

etto ul
Az(ug, uq,up) = EN [B2,1(1luy, 2lup) + Boo(Mluy)] = [uz + 5 elo,

euo u3
A3z(ug, uq, Uz, u3) = ET [B3,1(11uy, 2!z, 3lu3) + B3 2 (1lu, 2!uz) + B3 3(1lug) ] = (U3 +uqup + é) elo,
eto I etlo
An(io, U1, ..., ) = —- > Bua(luy. 2luz, ... (1 =k + Dlup_gyq) = —Ba(lluy, 2, .. nlup).

k=1
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Now we give two recursive algorithms for the complete exponential Bell polynomials.

Theorem 2.4. Let n be any positive integer. Then

n—1
Bn(llur, ..., nlun) = ) (k+1)(1 = D1 Bpg—1 (1lu1, ..., (1 =k — Dlttn_ie1),
k=0
and
n—1 3
Bn(1luq,...,nup) =u1Bp—1(luq, ..., (n — Dluy_q) + Z(k + Dug4q WBnq(l!lH, oo (m—Dlup_q).
k
k=1

Proof. From Corollary 1 and 2 of Duan [9], we have the following recursive algorithms for Adomian polynomials:

n—1
d
An(upg, uq,...,Up) = — k+ Dugs1—An—k—1Ug, U1, ..., Up—k—1),
n(Uo, U n) nZ(+)k+1auOnkl(Ol n—k-1)
k=0
n—1 3
An(uo, u1, ... un) = — Y (k4 Ditgy1 —An_1(tlo, U1, ..., Un—1), n>1.
n— auy

933

The result follows by choosing the nonlinear term N(u) =e" in Theorem 2.3 and using (2.1) in the above expressions for

Adomian polynomials. O

3. Some identities of the Bell polynomials

We now state and prove some new identities for the partial exponential Bell polynomials. This is achieved by solving

certain ordinary differential equations using the Adomian decomposition method.

Theorem 3.1. Let «, 8 be any real numbers and n be any positive integer. Then

> (=B Bri(Olar, —11a?B. ... (=1)"* (n — k)l 1K) = ni(—ap)".

k=1

Proof. Consider the following ordinary differential equation

du

— yeBU
— =qoe PH,
dx

Equivalently,

u©0) =1, |apx| <eP.

X
u(x) = u(0) +oe/.e’ﬂ”(t) dt.
0

(3.1)

(3.3)

In (3.3), the nonlinear term is N(u) = e, Substituting u = Yo oun and N(u) =Y 2 Ay in the above equation and

applying ADM, we get

> un =u@ +a) / An (Uo(t), U1 (D), ..., un()) dt.
n=0

n=0 0
Therefore, for all n > 0,

X

Unp1(X) =« / An (uo(®), uq (1), ..., up(t)) dt.

0

On comparing ug = u(0) =1, hence uq, uy, us, u4 are recursively obtained as
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1 X
Ao (ug(x)) =e P10 = - W=« f Ag (up(t)) dt = %x,
e e
0

X

A1 (Uo(x), u1(x)) = —pure o = aT’Zx uz(x)za/fh (uo(t), u1(t)) clt——z—zix2
0
1 212
Ao (o), 1 (0, 120 = o (§208 — 2puz) e 0 = L5
X 3'32
u3(X)=a/Az (ug(t), uy (t), uz(t)) dt = 33 ¥
0
3,33
A3 (uo(x), u1(x), u2(x), uz(x)) = —( p*u +6ﬂ2u1uz—65u3) e Po — g
X 4133
u4(X)=oe/A3 (uo(t), uq (t), uz(t), uz(t)) dt = ——— TR

0

and so on, where the Adomian polynomials A1, Ay, ... are calculated using (1.7).
By using the method of separation of variables, it is easy to see that u(x) =1+ 8~ 'In(1 4+ aBe#x) is the solution to
(3.2). Since |aBe~Px| < 1, from the Taylor series expansion of In(1 + aBe—#x), we have

n—1
u(x)_l—i-Z( 3} e ’3 =X _u(0)+Zun(x) (3.5)

n=1 n=1

By the uniqueness of the solution to the differential equation (3.2), the series solution obtained by ADM is consistent with
(3.5). Therefore, the n-th component of u(x) is

nﬁn1

tn(x) = (= 1)1 T

n>1. (3.6)

Now using Rach’s formula (1.8) in (3.4), we obtain

X kj : oo kj
n u; (t) NN+l yigi-1\ "
N P | Ei e / ray o gy (%)

o k=1 ek j=1 o’<Jl

n—k+1

. o kj

1 (=) — Diad pi=1\ "

(n+])eﬂ(n+1)z( ) Z 1_[ k ( j! ’
A

where the last two steps follow from (3.6) and Lemma 2.4, respectively. Finally, by using (3.6) and rearranging the terms,
we get

n— k+1 kj
DI (G = 1) pi—1
Z‘( B H <( Y7 d-De'p ) — nl(—ap)",

il
Ak j=1 J:

which is the required identity. O
Substituting {c, 8} € {{—1, 1}, {1,1},{—1, —1}, {1, —1}} in (3.1), we obtain the following results, respectively.

Corollary 3.1. For any positive integer n, the following identities hold:

n
D (=DFBui(=0L =1L, ... —(n— k) =n!,

k=1

n
D (=DFBui(0L =11 (=D — k) =nl(—1)",

k=1
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n
D Bua(=0L 1L (=D (= k)l =n!(=1)", (3.7)
k=1

> Bak(OL 1L ..., (n—k)) =n!. (3.8)
k=1

Remark 3.1. The identities given by (3.7) and (3.8) above can be expressed in terms of the n-th complete exponential Bell
polynomials as follows:

Bo(—=0L 1, ..., (D" n—=1DH =n!(-1" and B!, 1!,...,(n—1)!) =n!
Note that (3.8) is a known result, i.e. By (0!, 1!, ..., (n — k)!) = s(n, k), where the s(n, k)’s are Stirling numbers of the first
kind.

Next we obtain an identity of the partial exponential Bell polynomials in terms of the falling factorials.

Theorem 3.2. Let o be any non-zero real number and n be any positive integer. Then

! 1
Z <1 - —) Bnk((@)1, (@)2, ..., (@n—ky1) = (@ — D),
k=1 “k
where (@) = (o — 1)(o — 2) ... (o — k + 1) denotes the falling factorial.

Proof. Consider the following ordinary differential equation

du =ou' V¢ wO)y=1, |x <1. (3.9)
dx
Equivalently,
X
u(x)=u(0)+afu1_l/“(t)dt. (3.10)
0

In (3.10), there is no linear term, but the nonlinear term is N(u) = u!~!/%, Substituting u = Yoo oun and N(u) =Y 02 An
in the above equation and applying ADM, we get

o0 o0 X
Zun(x)=u(0>+aZ/An (uo(t), ur (1), ..., up(t)) dt.
n=0 n=0 0
Therefore, for all n > 0,
X
un+1(X)=a/An (uo(t), u1(t), ..., up(t)) dt. (3.11)
0
On comparing ug =u(0) =1 and hence uq, uz, us, ug are recursively obtained as

Ao o) =uy " =1, w0 =(@nx,
1\ _ ()2 ()2
A1 (uo(x), u1 (X)) = (1 - E) ug Uy = 2, up(x) = 7;@,
1 1 1 _1/0— _
Az o), u1 (9, 1200) = o (1=~ ) (——ug Vo2 25 Vou ) = 32wy = C20e,
! o o 2l 3!
1 1 1 1 1o— 4 /e _
A3 (1o (%), u1 (%), U2 (X), U3 () = o <1 - &) ((& + ﬁ) ug 7} = —ug Ty + 6up s
2 —1/a—1 (@)4 3
— —u Uiy | = ——x,
a ! 2) 3l
_ (05)4 4
ug(x) = 4—!X s

and so on.
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Also, using the method of separation of variables, it is easy to see that u(x) = (1 4+ x)* is the solution to (3.9). Since
|x| <1, expand (1 + x)% by using generalized binomial theorem

u(X)—1+Z( n u(O)+Zun(x) (312)

n=1

By the uniqueness of the solution to the differential equation (3.9), the series solution obtained by ADM is consistent with
(3.12). Therefore, the n-th component of u(x) is

Un(X) = (‘Z?”x“, n>0. (3.13)
Now, from (3.11) and (3.13), we have
@ni1 p1 [ ~ n ’( v, ,
———Xx"" = | Ay (ugt),uq(t),...,up(t)) dt = Z (using (1.8) and (1.9))
(n+1)!
0 0 k=1 ok j=1

1~ e ((“)f> (using (3.13))

j=1

—a[t“dtZ(l——>l<Xk:
njl-l n+1z< ) ;"ﬁﬂkl'((ah) ,

k=1

where the last step follows on using Lemma 2.4. On rearranging the terms, we get

n n—k+1
Z(“-) H k,((a)]> =(@= 1,

k=1

which is the required identity. 0O
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