C. R. Acad. Sci. Paris, Ser. I 355 (2017) 859-865

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. |

www.sciencedirect.com

Mathematical analysis/Complex analysis

Intersection of harmonically weighted Dirichlet spaces
CrossMark

Intersection d’espaces de Dirichlet a poids harmonique
Guanlong Bao?, Nihat Gokhan Gbgﬁsb, Stamatis Pouliasis ”
a Department of Mathematics, Shantou University, Shantou, Guangdong 515063, China
b Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
ARTICLE INFO ABSTRACT
Am’c{e history: In 1991, S. Richter introduced harmonically weighted Dirichlet spaces D(u), motivated by
Received 7 January 2017 his study of cyclic analytic two-isometries. In this paper, we consider (), p D(1t), the
Acc,elp;eld aftl?r revision 20 July 2017 intersection of D(u) spaces, where P is the family of Borel probability measures. Several
Available online 7 August 2017 function-theoretic characterizations of the Banach space ﬂﬂEPD(M) are given. We also
Presented by the Editorial Board show that ﬂﬂeﬂm D() is located strictly between some classical analytic Lipschitz spaces

and ﬂﬂeﬂm D(u) can be regarded as the endpoint case of analytic Morrey spaces in some

sense.
© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RESUME

En 1991, S. Richter a introduit les espaces de Dirichlet D(®) a poids harmonique,
motivé par I'étude des 2-isométries analytiques. Dans cet article, on considére une
intersection ﬂﬂep D(u) d’espaces D(u), ot P est I'espace des mesures de probabilité
boréliennes. On donne plusieurs caractérisations de ﬂueﬂ;, D(w) en termes de théorie des
fonctions. On montre également que ﬂueﬂ}, D(w) se compare dans les deux sens par des
relations d’inclusion strictes avec certains espaces de fonctions analytiques Lipschitz et que
ﬂﬂeﬂ, D(u) peut étre considéré comme le cas extréme des espaces de Morrey analytiques
en un certain sens.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Denote by T the boundary of the open unit disk I in the complex plane C. Let H(ID) be the space of analytic functions
in D. In 1991, S. Richter [7] introduced harmonically weighted Dirichlet spaces D(u) when he investigated cyclic analytic
two-isometries. Let © be a finite positive Borel measure on T. The space D(u) consists of functions f € H(D) with
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IIfIID(m:/If’(Z)I P, (2)dA(2) < +oo,
D

where dA is the Lebesgue measure on D and

Pu2) fl_'z'zd ©)
HO= ) e
T
is the Poisson integral of i on D. S. Richter [7] showed that every cyclic analytic two-isometry can be represented as a
multiplication by z on a harmonically weighted Dirichlet space D(u). If u = §,, the Dirac measure at ¢ € T, then D(§;) is
called the local Dirichlet space at ¢. If w is the arc-length Lebesgue measure on T, then D(u) coincides with the classical
Dirichlet space D. As proved in [7], D(u) spaces are always subsets of the Hardy space HZ. See [8,9] for deep studies of
D(u) spaces, which have attracted a lot of attention in recent years. We refer to the recent book [3] for a general exposition
on D(w) spaces.

Let PP denote the family of positive Borel probability measures on T. It is well known that the functions in D(u), u € P,
behave nicely near the points of the support of w; in particular, their radial limit exists at p-almost every point of T (cf. [3,
p. 112]). Based on this fact, one may ask for a description of the smoothness properties of functions that belong to D(u)
for every u € IP. The purpose of this paper is to consider ﬂuep D(u), the intersection of D(w) spaces with positive Borel
probability measures (. The properties and the applications of the intersection of Poletsky-Stessin Hardy spaces have been
studied recently in [5,6].

In section 2, we give some function-theoretic characterizations of [ MEPD(/L). By these characterizations, we know that
ﬂuep D(w) is a Banach function space. We also characterize analytic functions with nonnegative coefficients in the space
ﬂMeP D(w). We answer the question of the previous paragraph in section 3, where we show that ﬂuepD(M) is located
strictly between some classical analytic Lipschitz spaces. In Section 4, we point out that ) MepD(pL) can be regarded as the
endpoint case of analytic Morrey spaces in some sense.

Throughout this paper, we will write a < b if there exists a constant C such that a < Cb. Also, the symbol a = b means
that a <b <a.

2. Characterizations of (1), cp D (1)

In this section, we give several characterizations of (1 P D(w). We also characterize analytic functions with nonnegative
coefficients in ﬂuep D(w).
For any z, w € D, denote by
zZ—w
1-2zw

oz(W) =

the Mobius transformation of the unit disk D interchanging z and 0. The following theorem is the main result in this
section.

Theorem 2.1. Let f(z) =Y 2, bnz" € H(D). Then the following conditions are equivalent.
(i) f € Mper D).

(i) suPges (1L Jiy |F' @1 = lou@P) dA@) ) < +o.

(i) supcer (fi1F/@P 1725 dA@)) < +oo.

)

)

-tz
. 1 _k12
(V) SUPaen YonZi g | Zkmo(k + Dbigra™ ™" < 0.

2
(V) SUP;er Y pey m |3k kbreg*|” < oo,

Let © be a positive Borel measure on ID. Note that the function
1 2
- 5 [ A —loa(@)|)du(2)
1—a|
D

is subharmonic on . Bearing in mind the maximum principle for subharmonic functions, we are led to prove the following
lemma. We will use it to prove Theorem 2.1.

Lemma 2.2. Let w be a positive Borel measure on D. Then
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1
sup —— Ja-tou@Prane = sup e
D

aehD {e'JI‘ |§

Proof. Fix ¢ € T and let {wy} C D satisfying lim;_, o W, = {. From Fatou’s lemma,

/ |Z|2 d,u(z) llmmff |z|2 du(z) =liminf
¢ — - 11— wnz|? n—00

1 2
m[(l — low, (2] )du(2)
D

1 2
Szlelg mf(l —loa(2)19) du(2)
D

For the other direction, fix w € D. Note that z — (1 — |wz|®)/(|]1 — wz|?) is a positive harmonic function on DD as the
composition of the Poisson kernel with the holomorphic function z— wz. In particular,

1—|wz|? - |z|2
L / i),

1 —wz|?

where dvy, (¢) = (1 — |w|?)/@2x|¢ — w|?)|dz| and vy, (T) = 1. We also have

L2
|W|2/(1 oW (@) da(2) = /“ i '|2 dM(Z)_/ T " du).

Combining the above facts and Fubini’s theorem, we deduce that

2
|W|2/(1 low (2] )dM(Z)<// = — Iz :2 du(z) dvw (5)

< vy (T) sup/ 1 j2? du(2)
R R TEPTE
D
1— |z
=sup du(z)
ceTd 1C z|?

The proof is complete. O
Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. (i) = (iii). Note that the condition (iii) is equivalent to

sup || fllpes,) < +oo.
¢eT

Let f e ﬂuepD(u) and suppose that supcr || fllpes,) = +oo. Then, for every n € N, there exists ¢, € T such that
1 fllpes,,) = 2" Consider the measure v = Z+°° 27"5;,. Then v € P and

11l —Zz "I f 11D, )221 = +00.

n=1

Therefore f ¢ D(v), contradiction. Thus the condition (iii) holds.
(iii) = (i). Let u € P. Applying Fubini’s theorem, one gets that

2
||f||%)(l4) //|f (Z)| | | dA(Z)dIL(C)—/”f”p(,s{)dﬂ@)<5UP||f||D(,§C)IL(T)—SUP”f”D(a[)s

which implies the desired result.
(ii) < (iii). Note that

(1—lal®)(1 - |z]?)
|1 —az|?

Take du(z) = |f'(2)|> dA(z) in Lemma 2.2. Then the equivalence between (ii) and (iii) is from Lemma 2.2 directly.

1—loa(@)?* = , a, zeD.
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(iii) < (v). For ¢ € T, the following characterization of the local Dirichlet space D(8;) via Taylor coefficients can be
founded in [3, Theorem 7.2.6].

00 2

,1 n
/If()l TP D=3 o
=1 k=1

The above formula gives that conditions (iii) and (v) are equivalent.
(ii) < (iv). Let a € D. Note that

f (Z) = Z(n + Dbpa 2"y @' =) (Z(k + 1)bk+1a“—"> "
n=0 n=0 \k=0

Bear in mind that

5UP/|f (Z)| dA(Z) < 00

if and only if the functions z — foz ]ffgvvidw belong to the Hardy space H? uniformly for a € D. Thus the condition (ii) is
equivalent to

pz(n+1)2

aeD

2

< Q.

n

>k + Dby
k=0

The proof of Theorem 2.1 is finished. O

Remark 1. It follows from the proof of Theorem 2.1 and the Local Douglas formula [3, Theorem 7.2.5, p. 113] that, if
fe ﬂuep D(w), then

1f &) — f©)I?
sup | ———————

1—|oq dA
EETT &€ —¢|? /|f @121 —|04(2)|?) dA(2).

2
|d$|=sum|fllpw)=sup 3
nelP aehD | | )

It is also easy to check that ﬂMeP D(u) is a Banach space with the norm
1/2

IfIF=1fO)+ P T T |2/If(z)l (1—0a(2)*) dA(2)

Recall that for o > 0, the Bloch type space B“ is the class of functions f € H(D) satisfying

sup(1 —1z1)%| f'(2)| < oo.
zeD

In [11], H. Wulan obtained many results associated with the coefficients of Bloch type spaces. In particular, he characterized
analytic functions with nonnegative coefficients in 5 as follows.

Theorem A. Let o > 0 and let f(z) =) o, bnz" € H(D) with b, > 0 for every n. Then f € B¢ if and only if

lim sup — Zkbk < 0.

n—oo k=1

Next, we describe analytic functions with nonnegative coefficients in the space (1 uep D(1). Unlike the characterizations
in Theorem 2.1, the following characterization is without using the supremum.

Theorem 2.3. Let f(z) = Y 12 byz" € H(D) with b, > 0 for every n. Then f € ﬂMEP D(w) if and only if

o 2
Z n(n D (Zkbk> < Q.

n=1
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Proof. Let f € ﬂuep D(w). By Theorem 2.1, one gets that

00 2
2 was D n(n 1) (Zkb"> = SUPZ n(n )

n=1

n 2

Zkka

< Q.

Conversely, since b, > 0 for every n, we deduce that

n o0 n o0 2

1
E:kb k <su§:— E:kb k § Ekb . O
k=1 kg _gegnzl n(n+l) (k:1| kg |) n(n+1)< k) =

n=1

00 2

1
sup Y ————
;eqr,; nn+1)

3. N 1eP D(p) and analytic Lipschitz spaces

In this section, we show that the space [ LeP D(u) is located strictly between some classical analytic Lipschitz spaces.
For 0 <« < 1, let A be the analytic Lipschitz space consisting of functions f € H(D) with

If(@) — f(w)| <Clz—w|*

for some positive constant C and for all z, w € D. G. Hardy and J. Littlewood [4] showed that the space A“ is equal to the
Bloch type space B1—2,
The following theorem reveals the location of the space MEPD(M).

Theorem 3.1.
_ 1
U asnNomeat
ae0,1) ueP

Proof. Let f ano,%) A% Then f e BP for some f € (0, J). Namely
sup | f'(@)](1 = |21)F < oo,
zeD

Combining this with the well-known estimate in Zhu’s book ([14, Lemma 3.10]), we have

| |2 _dA
(2)

(1—|z)'~%
SsupfwdA(z)zl

sup
aep 1— |af?

/If’(2)|2(1 —loa(2)1*) dA(z) =sup/ Lf’ (z)|

From Theorem 2.1, we obtain f € ﬂuepD(M). Hence Uae(O,%) Al C ﬂuep D(w). Let h(z) = Y ;2 anz" satisfying a, =0
for 1 <n <8, 9a9 = +v/9(log9)~! and

Vnogn)~' — v/n —1[log(n — 1)]~!
an = " , n>9.

Then a, > 0 for all n. Moreover,

o0 oo 1

n 2
1
2 nn+1) (;kak) - Z:g (n+ 1)(logn)? =%

n= n=
and
1-2a

: n
llm sup (Z kak> =limsup (log—n)2 =

n—oo

Note that A'~* = B%. From Theorem A and Theorem 2.3, we get that h € (,pD(u) and h ¢ Uae(o_%)A““. Thus

Use.1) A7 & Nyer D).
For the second inclusion, let A, be the disk with center a € D and radius (1 — |a|)/2. It is well known that

1—la|~|1—za ~1—|z|
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for all ze Aq. Let f € ﬂuep D(it). From the subharmonicity of | f|?> on I, we obtain that for every a € D,

1 —japyf@p < 421 )/If(Z)I dA@) ~

A(Aa) /|f @2 dAQ)

II)

Q

/ 201 2
7(1_|a|2)/|f(2)| (1—l]0a(2)|) dA(2)

“ap )/If(l)l (1—0a(2)|*) dA(2).

This together with Theorem 2.1 gives that ﬂMEPD(M) - A%. Set g(z) = Zﬁil b,z" satisfying by = by = 0, 3b3 =
31/2(log3)~1/2 and
n'/2(logn)~1/2 — (n — 1)!/?[log(n — 1)] /2

b, = , n>4.
n

Then b, > 0 for all n. Furthermore,
1
lim sup Z kbk =limsup — =0,
n— o0 —1 n— 00 10
and
00 1 ( n 2 00 1
> () =3 -
= nn+1) P = (n+1)logn

By Theorem A and Theorem 2.3, one gets that g € A'/? and g ¢ ﬂMEPD(u). Thus ﬂueIP D() ;Ct AZ. The proof is com-
plete. O

4. N nep D) and analytic Morrey spaces

For A € (—o0, +00), denote by £2*(T) the Morrey space of all Lebesgue measurable functions f on T that satisfy

sup = / 1f () — fil?1d¢| < oo,
- I

where |I| denotes the length of the arc I and f; = %f f(©)|dz|. Clearly, £>1(T) coincides with BMO(T), the space of
functions with bounded mean oscillation on T (cf. [1]). Moreover,

BMO(T) C £>M(T) € £>*(T) C L% (T), 0 <iy <Aj <1.

Note that every function in the Hardy space H? has non-tangential limit almost everywhere on T (cf. [2]). Following [12,
p. 54, for A € (0,2), the analytic Morrey space £2*(D) is defined as H? N £>*(T). See [10,13] for analytic Morrey spaces.
From [12, Corollary 3.2.2.], f € £2*(D) if and only if

sup (1= 10! [ 1/ @PA - 0a@P) dAG) | < +oc.
acD

D
By Theorem 2.1, the above condition with A =2 gives a characterization of ﬂuep D(w). In this sense, ﬂuep D(u) can be
regarded as the endpoint case of analytic Morrey spaces.
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