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RESUME

Dans cette note, nous démontrons un résultat concernant le gap d’énergie L2 pour les
connexions de Yang-Mills sur un fibré principal de groupe structural G sur une variété
compacte, sans utiliser I'inégalité du gradient de Lojasiewicz-Simon.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let X be a compact n-dimensional Riemannian manifold endowed with a smooth Riemannian metric g, P — X a princi-
pal G-bundle over X, where G is a compact Lie group. We define the Yang-Mills functional by

YM(A) =/|FA|2dvolg,
X

where A is a C*°-connection on P and Fj is the curvature of A.
A connection A on P is called a Yang-Mills connection if it is a critical point of Y M, i.e. it obeys the Yang-Mills equation
with respect to the metric g:

d%Fa =0. (11)

In [2], Feehan proved an L%-energy gap result for Yang-Mills connections on the principal G-bundle P over an arbitrary
closed smooth Riemannian manifold with dimension n > 2 ([2] Theorem 1.1). Feehan applied the Lojasiewicz-Simon gradient
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inequality ([2] Theorem 3.2) to remove a positivity hypothesis on the Riemannian curvature tensors in a previous Lg-energy
gap result due to Gerhardt [3] (Theorem 1.2).

In this note, we give another proof of this L%-energy gap result of Yang-Mills connection without using the Lojasiewicz-
Simon gradient inequality.

Theorem 1.1. (/2] Theorem 1.1) Let X be a compact Riemannian manifold without boundary of dimension n > 2 endowed with a
smooth Riemannian metric g, P be a G-bundle over X. Then, either any smooth Yang-Mills connection A over X with compact Lie
group G satisfies

/|FA|%dvolg > Co
X

for a constant Cy > 0 depending only on X, n, G, or the connection A is flat.
2. Preliminaries and basic estimates

We shall generally adhere to the now standard gauge-theory conventions and notation of Donaldson and Kronheimer [1]
and Feehan [2]. Throughout our article, G denotes a compact Lie group and P a smooth principal G-bundle over a compact
Riemannian manifold X of dimension n > 2 endowed with a Riemannian metric g, gp denote the adjoint bundle of P,
endowed with a G-invariant inner product and QP (X, gp) denote the smooth p-forms with values in gp. Given a connection
on P, we denote by V4 the corresponding covariant derivative on *(X, gp) induced by A and the Levi-Civita connection
of X. Let d4 denote the exterior derivative associated with V4.

For u € LP(X, gp), where 1 < p < oo and k is an integer, we denote

k

o i p 1/p
lulig, 0= (3 / v ulPdvolg)”.
=0

where V£ :=Vjao0...0V, (repeated j times for j > 0). For p = 0o, we denote

k
o j
lullzge, ) = E 35551)1(P|VA11|-
=0

At first, we review a key result due to Uhlenbeck for the connections with LP-small curvature (2p > n) [5], which provides
the existence of a flat connection I" on P, of a global gauge transformation u of A to Coulomb gauge with respect to I', and
of a Sobolev norm estimate for the distance between I' and A.

Theorem 2.1. ([5] Corollary 4.3 and [2] Theorem 5.1) Let X be a closed, smooth manifold of dimension n > 2 endowed with
a Riemannian metric, g, and G be a compact Lie group, and 2p > n. Then there are constants, ¢ = ¢(n, g, G, p) € (0,1] and
C=C(n,g,G,p) €1, c0), with the following property. Let A be a Lf connection on a principal G-bundle P over X. If the curva-
ture F4 obeys

IFalle(x) <&,

then there exist a flat connection, |I'|, on P, and a gauge transformation u € Lg (X) such that

(1) di(u*(A)—T)=0o0nX,

(2) lu*(A) = Tllp = ClIFallrx) and
* —_ nY n

(3) llu*(A) l“HLEF SC”FA””(X)-

Next, we also review another key result due to Uhlenbeck concerning an a priori estimate for the curvature of a Yang-
Mills connection over a closed Riemannian manifold.

Theorem 2.2. ([4] Theorem 3.5 and [2] Corollary 4.6) Let X be a compact manifold of dimension n > 2 endowed with a Riemannian
metric g, let A be a smooth Yang-Mills connection with respect to the metric g on a smooth G-bundle P over X. Then there exist
constants € = €(X,n, g) > 0 and C = C(X, n, g) with the following property. If the curvature F 4 obeys

IIFAIILg(X) <e,
then

IFallLeecxy < ClIFAll2¢xy-
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3. Proof of Theorem 1.1

For any p > 1, the estimate in Theorem 2.2 yields

IFalliLex) < CliFallieox) < ClIFall2x)s (3.1)
for C=C(g,n).
If n > 4, using Holder inequality, we have
IFallzo0 < ClIFall g - (32)
If n=2, 3, the LP interpolation implies that
n 1-n
IFalli2x) < C”FA”;%(X) IFall o (x)
n 1-n
< CIFANS I Fallz iy
and thus
IFall2cx) < ClIFall g - (3.3)

Therefore, by combining (3.1)-(3.3), we obtain

IFallLe(x)y < ClIFall V2p>nandn>2.

n )
L2 (X)

Hence, if we suppose ”FA”L%(X)
rem 2.1, then Theorem 2.1 provides a flat connection I" on P, a gauge transformation u € Gp, and the estimate

sufficiently small so that ||Fallra(x) (29 > n and n > 2) satisfies the hypothesis of Theo-

lu*(A) — Flng(X) <C@IFallLacx),
and

di u*(A)—T)=0.
We denote A :=u*(A) and a :=u*(A) — T, then the curvature of A is

Fi=drat+ana.
The connection A also satisfies Yang-Mills equation

0= d*A Fj. (34)
Hence, taking the L2-inner product of (3.4) with a, we obtain

0= (d*AF;\, @ 2x)

= (Fa,d30)1>(x)

= (FA,dl"a + 2a /\a)LZ(X)
= (FA, FA +a /\a)LZ(X).

Then we get

IFAlF2 0 = 1FAlI72x)
=—(Fj,a /\a),_z(x)
< Fallpzoollanallpaex
= Fallpzxlla Aallpzx

here we use the fact |Fys(ay| = |Fa| since Fyxay =uo Fqou™l.
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If n>4:

lla Aall2x) < Cllallfa,
< Clall3nx,

<Cllal?s
LE(X)

<ClIFall?s
L2 (X)

< C”FA”%OO(X)

< ClIFallfz -

where we apply the Sobolev embedding Lf o L"
Ifn=2,3,
lla Aall2x) < Cllallfa

<Clla|?
< Clalls )

< ClIFallf2 x-
where we apply the Sobolev embedding L2 < L%.
Combining the preceding inequalities, we have
IFAll2 ) < CIF Al -
We can choose ||Fallj2(x, sufficiently small so that C||Fall;2(x) < 1, hence [|[Fall;2(xy =0 and thus A must be a flat connec-
tion. This completes the proof.

Acknowledgements

I would like to thank Professor Paul Feehan for helpful comments in connection with his article [2]. I thank the anony-
mous referee for a careful reading of my article and helpful comments and corrections. This work is partially supported by
Wu Wen-Tsun Key Laboratory of Mathematics of the Chinese Academy of Sciences at USTC.

References

[1] S.K. Donaldson, P.B. Kronheimer, The Geometry of Four-Manifolds, Oxford University Press, 1990.

[2] PM.N. Feehan, Energy gap for Yang-Mills connections, II: arbitrary closed Riemannian manifolds, Adv. Math. 312 (2017) 547-587.
[3] C. Gerhardt, An energy gap for Yang-Mills connections, Commun. Math. Phys. 298 (2010) 515-522.

[4] K.K. Uhlenbeck, Removable singularities in Yang-Mills fields, Commun. Math. Phys. 83 (1982) 11-29.

[5] KK. Uhlenbeck, The Chern classes of Sobolev connections, Commun. Math. Phys. 101 (1985) 445-457.


http://refhub.elsevier.com/S1631-073X(17)30201-7/bib446F6E616C64736F6E2F4B726F6E6865696D6572s1
http://refhub.elsevier.com/S1631-073X(17)30201-7/bib46656568616E32303135s1
http://refhub.elsevier.com/S1631-073X(17)30201-7/bib4765726861726474s1
http://refhub.elsevier.com/S1631-073X(17)30201-7/bib55686C656E6265636Bs1
http://refhub.elsevier.com/S1631-073X(17)30201-7/bib55686C656E6265636B31393835s1

	A proof of energy gap for Yang-Mills connections
	1 Introduction
	2 Preliminaries and basic estimates
	3 Proof of Theorem 1.1
	Acknowledgements
	References


