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We prove that fully oscillating sequences are orthogonal to multiple ergodic realizations 
of affine maps of zero entropy on compact Abelian groups. It is more than what Sarnak’s 
conjecture requires for these dynamical systems.
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r é s u m é

Nous montrons que les suites pleinement oscillantes sont orthogonales aux réalisations 
d’une application affine d’entropie nulle sur un groupe abélien compact. Ceci est plus que 
ce que demande la conjecture de Sarnak à ces systèmes dynamiques.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction and results

A sequence of complex numbers c = (cn)n≥0 is said to be oscillating of order d (d ≥ 1) if for any real polynomial P ∈ Rd[x]
of degree less than or equal to d, we have

lim
N→∞

1

N

N−1∑
n=0

cne2πiP (n) = 0. (1)

It is said to be fully oscillating if it is oscillating of all orders. This notion of oscillation of higher order was introduced in [7]. 
The oscillation of order 1 was earlier considered in [8] in order to formulate some results related to Sarnak’s conjecture. 
See [19], [20] for Sarnak’s conjecture. See [1], [2], [6], [9], [14], [17], [15], [23] for some related recent works. The Möbius 
sequence (μ(n)) is a typical example of fully oscillating sequences ([5], [13]). Recall that μ(1) = 1, μ(n) = (−1)k if n is 
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square free and has k distinct prime factors, and μ(n) = 0 for other integers n. The random subnormal sequence is almost 
surely fully oscillating ([7]) and the sequence (βn mod 1) is fully oscillating for almost all β > 1 ([3]). The oscillating 
sequences of orders d are characterized by their orthogonality to different classes of dynamical systems ([21]).

Sarnak’s conjecture states that for any topological dynamical system (X, T ) of zero entropy, for any continuous function 
f ∈ C(X) and any point x ∈ X , we have

lim
N→∞

1

N

N∑
n=1

μ(n) f (T nx) = 0.

This conjecture remains open in its generality. The above equality is referred to as the orthogonality of Möbius sequence 
to the realization f (T nx) of the system (X, T ), or as the disjointness of (μ(n)) to the system (X, T ). For �(≥ 1) functions 
f1, · · · , f� ∈ C(X), the sequence f1(T nx) f2(T 2nx) · · · f�(T �nx) could be referred to as a multiple ergodic realization.

Following Liu and Sarnak [18], we can prove the following orthogonality of fully oscillating sequences to the multiple 
ergodic realizations of affine linear maps on a compact Abelian group that are of zero entropy.

Theorem 1. Let � ≥ 1 be an integer. Let G be a compact Abelian group. Assume that
(i) T : G → G is an affine linear map of zero entropy;
(ii) (cn) is a fully oscillating sequence;
(iii) q1, · · · , q� ∈ Z[x] are � polynomials such that q j(N) ⊂N for all j.

Then, for any continuous function F ∈ C(G�) and any point x ∈ G, we have

lim
N→∞

1

N

N−1∑
n=0

cn F (T q1(n)x, · · · , T q�(n)x) = 0. (2)

Recall that an affine map on a compact Abelian group G is defined by

T x = Ax + b

where A : G → G is an automorphism of G and b ∈ G .
Theorem 1 generalizes the following theorem due to Liu and Sarnak, which holds for the Möbius sequence to fully 

oscillating sequences.

Theorem 2 (Liu and Sarnak [18]). The Möbius sequence (μ(n)) is linearly disjoint from any affine linear map on a compact Abelian 
group that is of zero entropy.

The result of Theorem 1 was proved in [7], based on [10], [11], [12], for the class of topological systems of quasi-discrete 
spectrum in the sense of Hahn–Parry [10], including minimal affine linear maps on a connected compact Abelian group. 
The proof of Theorem 1 in this note will be based on ideas of Liu and Sarnak and on the fact that arithmetic subsequences 
of oscillating sequences are oscillating. One of the ideas of Liu and Sarnak is stated as follows. It is drawn from the proof of 
their first theorem in [18].

Theorem 3 (Liu–Sarnak [18]). Let T x = Ax + b be an affine linear map of zero entropy on X := T
d × F where d ≥ 1 and F is a finite 

Abelian group. Consider the automorphism W on the product group X × X defined by W (x1, x2) := (Ax1 + x2, x2). Then
(i) (T nx, b) = W n(x, b) for all x ∈ X;
(ii) there exist integers ν ≥ 1 and κ ≥ 0 such that W ν = I + N where N is nilpotent in the sense Nκ+1 = 0.

The following fact, which has its own interest, will also be useful in the proof of Theorem 1.

Theorem 4. Let a ≥ 2 be an integer. A sequence (wn) is oscillating of order d if and only if the arithmetic subsequence (wan+b) is 
oscillating of order d for any integer b ≥ 0.

Before proving Theorem 1, we prove Theorem 4.

2. Proof of Theorem 4

If (wan+b) are oscillating of order d for 0 ≤ b ≤ a − 1, it is obvious that (wn) is oscillating of order d.
Now assume that (wn) is oscillating of order d. First observe that from the definition, it is clear that any shifted sequence 

(wn+b) (b ≥ 0) is oscillating of order d. So, it suffices to prove that (wan) is oscillating of order d. Since a can be decomposed 
into a product of primes, we have only to prove that (w pn) is oscillating of order d for any prime p ≥ 2.
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Let P ∈ Rd[t]. For any N ≥ p, denote

SN =
∑

0≤n<N

wne2πiP (n),

SN, j =
∑

m:0≤pm+ j<N

w pm+ je
2πiP (pm+ j) (0 ≤ j < p).

We have the trivial decomposition

SN = SN,0 + SN,1 + · · · + SN,p−1. (3)

For any integer 0 ≤ u ≤ p − 1, denote

Su
N =

∑
0≤n<N

wne2πi(P (n)+ un
p )

where x �→ P (x) + ux/p is a real polynomial. Write ω = e2πi/p . We have the following decomposition

Su
N = SN,0 + ωu SN,1 + ω2u SN,2 · · · + ω(p−1)u SN,p−1, (4)

which is similar to (3) and which contains (3) as a particular case corresponding to u = 0. Taking sum over u, we get

p−1∑
u=0

Su
N = pSN,0 + SN,1

p−1∑
u=0

ωu + SN,2

p−1∑
u=0

ω2u + · · · + SN,p−1

p−1∑
u=0

ω(p−1)u.

Since p is prime, any j with 1 ≤ j ≤ p − 1 is invertible in the ring Z/pZ so that 
∑p−1

u=0 ω ju = 0 for all 1 ≤ j ≤ p − 1. Thus

SN,0 = 1

p

p−1∑
u=1

Su
N .

Since the sequence {wn} is oscillating of order d, we have Su
N = o(N) for all u as N → ∞, so that

lim
N→∞

1

N

[N/p]∑
m=0

w pme2πiP (pm) = lim
N→∞

SN,0

N
= 0.

This implies that m �→ w pm is oscillating of order d.

3. Proof of Theorem 1

Let Ĝ be the dual group of G . We have Ĝ� = Ĝ� . Any continuous function F ∈ C(G�) can be uniformly approximated 
by trigonometric polynomials on G� , which are finite linear combinations of functions of the form φ1(x1) · · ·φ�(x�) where 
φ1, · · · , φ� ∈ Ĝ . So, it suffices to prove that

lim
N→∞

1

N

N−1∑
n=0

cnφ1(T q1(n)x) · · ·φ�(T q�(n)x) = 0 (5)

holds for all φ1, · · · , φ� ∈ Ĝ and all x ∈ G (see [7] for details).
Now, we mimic Liu and Sarnak [18]. First remark that the problem can be reduced to a torus. In fact, let � =

{φ1, · · · , φ�} ⊂ Ĝ . Recall that the action of A on Ĝ is defined by (Aγ )(x) = γ (Ax) for γ ∈ Ĝ and x ∈ G . Let 〈�〉 be the 
smallest A-invariant closed subgroup of Ĝ which contains � and

〈�〉⊥ := {x ∈ G : γ (x) = 1 ∀γ ∈ Ĝ}
be the annihilator of 〈�〉, a closed subgroup of G . Let

G� := G/〈�〉⊥
be the quotient group. The A-invariance of 〈�〉 implies that

∀x ∈ G, ∀y ∈ 〈�〉⊥, T (x + y) = T x mod 〈�〉⊥.

Thus T induces an affine map, which will be denoted by T� , on the quotient group G� . Being a factor of (G, T ), the system 
(G�, T�) has zero entropy. By Aoki’s Theorem ([4], a statement in the proof on p. 13), 〈�〉 is finitely generated. Remark that 
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Ĝ� = 〈�〉. Then G� , as dual group of 〈�〉, is isomorphic to Td × F for some d ≥ 1 and some finite Abelian group F . On the 
other hand, for any φ ∈ � and any x ∈ G , we have

φ(T nx) = φ̃(T n
� x̃)

where x̃ := x + 〈�〉⊥ is the projection of x onto G� and φ̃ is the character in G̃� induced by φ. Thus the proof of (5) is 
reduced to the dynamics (Td × F , T�).

By Theorem 3, it suffices to treat the automorphism W appearing in Theorem 3. Recall that W ν = 1 + N with Nκ+1 = 0. 
For any integer n ≥ 1, write n = mν + r with m ≥ 0 and 0 ≤ r ≤ ν − 1. The following expression was obtained in [18]

W mν+r x =
min(m,κ)∑

j=0

(
m

j

)
N j yr, j =

κ∑
j=0

(
m

j

)
N j yr, j (6)

when m ≥ κ , where yr, j = W r N j x. Notice that these yr, j with 0 ≤ r ≤ ν − 1 and 0 ≤ j ≤ κ are independent of m. For any 
polynomial q (a typical polynomial of q1, · · · , q�), we have q(mν + r) = q′(m)ν + r′ where r′ = q(r) mod ν (0 ≤ r′ ≤ ν − 1) 
is independent of m too, and q′ ∈ Z[z] is a polynomial having the same degree as q. It follows from (6) that

W q(mν+r)x = W q′(m)ν+r′
x =

κ∑
j=0

(
q′(m)

j

)
N j yr′, j . (7)

This holds for m sufficiently large so that q′(m) ≥ κ . Apply (7) to each q := qs (1 ≤ s ≤ �). Then

φs(W qs(mν+r)) =
κ∏

j=0

φs(N j yr′
s, j)

(q′
s(m)

j

)

Let ts,r, j be the argument of the complex number φs(N j yr′
s, j). Then we get

�∏
s=1

φs(W qs(mν+r)) = e2πiP (m)

where P ∈ R[x] is the real polynomial

P (x) =
�∑

s=1

κ∑
j=0

ts,r, j

(
q′

s(m)

j

)
.

By Theorem 4, for any 0 ≤ r < ν , we get

lim
M→∞

1

M

M∑
m=1

wmν+r

�∏
s=1

φs(W qs(mν+r)x) = lim
M→∞

1

M

M∑
m=1

wmν+re2πiP (m) = 0.

Finally

lim
N→∞

1

N

N−1∑
n=0

wn

�∏
s=1

φs(W qs(n)x) = 0.

Addendum. The oscillation of order d is strongly related to the control of the (d + 1)-th Gowers uniformity norm (see 
[22], [16]). We can use Gowers uniformity norms to study oscillating properties.
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[1] E.H. El Abdalaoui, M. Lemańczyk, T. de la Rue, Automorphisms with quasi-discrete spectrum, multiplicative functions and average orthogonality along 
short intervals, Int. Math. Res. Not. 2017 (14) (2017) 4350–4368.
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