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We establish a new connection between metric Diophantine approximation and the para-
metric geometry of numbers by proving a variational principle facilitating the computation 
of the Hausdorff and packing dimensions of many sets of interest in Diophantine approx-
imation. In particular, we show that the Hausdorff and packing dimensions of the set of 
singular m ×n matrices are both equal to mn

(
1 − 1

m+n

)
, thus proving a conjecture of Kady-

rov, Kleinbock, Lindenstrauss, and Margulis as well as answering a question of Bugeaud, 
Cheung, and Chevallier. Other applications include computing the dimensions of the sets 
of points witnessing conjectures of Starkov and Schmidt.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous établissons un nouveau lien entre la théorie métrique de l’approximation diophan-
tienne et la géométrie paramétrique des nombres, en démontrant un principe variation-
nel permettant le calcul des dimensions de Hausdorff et d’entassement de nombreux 
ensembles d’intérêt en approximation diophantienne. Comme cas particulier, nous dé-
montrons que les dimensions de Hausdorff et d’entassement de l’ensemble des matrices 
singulières de dimensions m × n sont toutes deux égales à mn

(
1 − 1

m+n

)
, démontrant ainsi 

une conjecture de Kadyrov, Kleinbock, Lindenstrauss et Margulis, et répondant par là même 
à une question soulevée par Bugeaud, Cheung et Chevallier. D’autres exemples d’applica-
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tion incluent le calcul des dimensions des ensembles de points satisfaisant des conjectures 
énoncées par Starkov et Schmidt.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Main results

The notion of singularity (in the sense of Diophantine approximation) was introduced by Khintchine, first in 1937 in the 
setting of simultaneous approximation [11], and later in 1948 in the more general setting of matrix approximation [12].1

Since then this notion has been studied within Diophantine approximation and allied fields, see Moshchevitin’s 2010 survey 
[13]. An m × n matrix A is called singular if for all ε > 0, there exists Q ε such that for all Q ≥ Q ε , there exist integer 
vectors p ∈ �m and q ∈ �n such that

‖Aq + p‖ ≤ εQ −n/m and 0 < ‖q‖ ≤ Q .

Here ‖ · ‖ denotes an arbitrary norm on �m or �n . We denote the set of singular m × n matrices by Sing(m, n). For 1 × 1
matrices (i.e. numbers), being singular is equivalent to being rational, and in general any matrix A which satisfies an 
equation of the form Aq = p, with p, q integral and q nonzero, is singular. However, Khintchine proved that there exist 
singular 2 × 1 matrices whose entries are linearly independent over � [10, Satz II], and his argument generalizes to the 
setting of m ×n matrices for all (m, n) �= (1, 1). The name singular derives from the fact that Sing(m, n) is a Lebesgue nullset 
for all m, n, see e.g. [11, p. 431] or [2, Chapter 5, §7]. Note that singularity is a strengthening of the property of Dirichlet 
improvability introduced by Davenport and Schmidt [6].

In contrast to the measure zero result mentioned above, the computation of the Hausdorff dimension of Sing(m, n) has 
been a challenge that so far only met with partial progress. The first breakthrough was made in 2011 by Cheung [3], who 
proved that the Hausdorff dimension of Sing(2, 1) is 4/3; this was extended in 2016 by Cheung and Chevallier [4], who 
proved that the Hausdorff dimension of Sing(m, 1) is m2/(m + 1) for all m ≥ 2; while most recently Kadyrov, Kleinbock, 
Lindenstrauss, and Margulis [8] proved that the Hausdorff dimension of Sing(m, n) is at most δm,n := mn

(
1 − 1

m+n

)
, and 

went on to conjecture that their upper bound is sharp for all (m, n) �= (1, 1) (see also [1, Problem 1]).
In this paper, we announce a proof that their conjecture is correct. We will also show that the packing dimension 

of Sing(m, n) is the same as its Hausdorff dimension, thus answering a question of Bugeaud, Cheung, and Chevallier [1, 
Problem 7]. To summarize:

Theorem 1.1. For all (m, n) �= (1, 1), we have

dimH (Sing(m,n)) = dimP (Sing(m,n)) = δm,n
def= mn

(
1 − 1

m+n

)
,

where dimH (S) and dimP (S) denote the Hausdorff and packing dimensions of a set S, respectively.

1.1. Dani correspondence

The set of singular matrices is linked to homogeneous dynamics via the Dani correspondence principle. For each t ∈ � and 
for each matrix A, let

gt
def=

[
et/mIm

e−t/nIn

]
, u A

def=
[

Im A
In

]
,

where Ik denotes the k-dimensional identity matrix. Finally, let d = m +n, and for each j = 1, . . . , d, let λ j(�) denote the jth 
successive minimum of a lattice � ⊂ �d (with respect to some fixed norm on �d), i.e. the infimum of λ such that the set 
{r ∈ � : ‖r‖ ≤ λ} contains j linearly independent vectors. Then the Dani correspondence principle is a dictionary between 
the Diophantine properties of a matrix A on the one hand, and the dynamical properties of the orbit (gt u A�d)t≥0 on the 
other. A particular example is the following result:

Theorem 1.2 ([5, Theorem 2.14]). An m × n matrix A is singular if and only if the trajectory (gt u A�d)t≥0 is divergent in the space of 
unimodular lattices in �d, or equivalently if

lim
t→∞λ1(gt u A�d) = 0.

1 Although Khintchine’s 1926 paper [10] includes a proof of the existence of 2 × 1 and 1 × 2 matrices possessing a certain property which implies that 
they are singular, it does not include a definition of singularity nor discuss any property equivalent to singularity.
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It is natural to ask about the set of matrices such that the above limit occurs at a prescribed rate, such as the set 
of matrices such that − log λ1(gt u A�d) grows linearly with respect to t . This question is closely linked with the concept of 
uniform exponents of irrationality. The uniform exponent of irrationality of an m ×n matrix A, denoted ω̂(A), is the supremum 
of ω such that for all Q sufficiently large, there exist integer vectors p ∈ �m and q ∈ �n such that

‖Aq + p‖ ≤ Q −ω and 0 < ‖q‖ ≤ Q .

By Dirichlet’s theorem, every m × n matrix A satisfies ω̂(A) ≥ n
m . Moreover, it is immediate from the definitions that any 

matrix A satisfying ω̂(A) > n
m is singular. We call a matrix very singular if it satisfies the inequality ω̂(A) > n

m , in analogy 
with the set of very well approximable matrices, which satisfy a similar inequality for the regular (non-uniform) exponent of 
irrationality (see (1.2)). We denote the set of very singular m ×n matrices by VSing(m, n). The relationship between uniform 
exponents of irrationality and very singular matrices on the one hand, and homogeneous dynamics on the other, is given as 
follows:

Theorem 1.3. A matrix A is very singular if and only ̂τ(A) > 0, where

τ̂ (A)
def= lim inf

t→∞
−1

t
logλ1(gt u A�d).

Moreover, the quantities τ = τ̂ (A) and ω = ω̂(A) are related by the formula

τ = 1

n

ω − n
m

ω + 1
· (1.1)

This theorem is a straightforward example of the Dani correspondence principle and is probably well-known, but we 
have not been able to find a reference.

1.2. Dimensions of very singular matrices

Perhaps unsurprisingly, the set of very singular matrices has the same dimension properties as the set of singular matri-
ces.

Theorem 1.4. For all (m, n) �= (1, 1), we have

dimH (VSing(m,n)) = dimP (VSing(m,n)) = δm,n.

One can also ask for more precise results regarding the function ω̂. Specifically, for each ω > n
m we can consider the 

levelset2

Singm,n(ω)
def= {A : ω̂(A) = ω} = {A : τ̂ (A) = τ },

where τ is given by (1.1). It would be desirable to give precise formulas for the Hausdorff and packing dimensions of 
Singm,n(ω) in terms of ω, m, and n, see e.g. [1, Problem 2]. However, this appears quite challenging at the present juncture, 
though we have made significant progress towards this question which we will describe in the next section. Thus, instead of 
precise formulas we will give asymptotic formulas of two types: estimates valid when ω is small and estimates valid when 
ω is large. Note that while the minimum value of ω̂ is always n

m (corresponding to τ̂ = 0), the maximum value depends on 
whether or not n is at least 2. If n ≥ 2, then the maximum value of ω̂ is ∞ (corresponding to τ̂ = 1

n ), while if n = 1, then 
the maximum value of ω̂ (excluding rational points) is 1 (corresponding to τ̂ = m−1

2m ). Consequently, we have two different 
asymptotic estimates of the dimensions of Singm,n(ω) when ω is large corresponding to these two cases.

Recall that �(x) denotes any number such that x/C ≤ �(x) ≤ Cx for some uniform constant C . In all of the formulas 
below, τ is given by (1.1).

Theorem 1.5. Suppose that (m, n) �= (1, 1). Then for all ω > n
m sufficiently close to n

m , we have

dimH (Singm,n(ω)) = δm,n − �

(√
ω − n

m

)
dimP (Singm,n(ω)) = δm,n − �

(
ω − n

m

)
= δm,n − �

(√
τ

) = δm,n − �(τ)

2 For results considering the superlevelset, see Theorem 2.9.
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unless m = n = 2, in which case

dimH (Singm,n(ω)) = δm,n − �
(
ω − n

m

)
dimP (Singm,n(ω)) = δm,n − �

(
ω − n

m

)
= δm,n − �(τ) = δm,n − �(τ) .

Theorem 1.6. Suppose that n ≥ 2. Then for all ω < ∞ sufficiently large, we have

dimH (Singm,n(ω)) = mn − 2m + �
(

1
ω

)
dimP (Singm,n(ω)) = mn − m.

= mn − 2m + �
(

1
n − τ

)
Theorem 1.7. Suppose that n = 1 and m ≥ 2. Then for all ω < 1 sufficiently close to 1, we have

dimH (Singm,n(ω)) = �(1 − ω) dimP (Singm,n(ω)) = 1.

= �
(

m−1
2m − τ

)
Remark 1.8. Call a matrix A trivially singular if there exists j = 1, . . . , d − 1 such that

logλ j+1(gt u A�d) − logλ j(gt u A�d) → ∞ as t → ∞.

Then all of the above formulas remain true if Singm,n(ω) is replaced by the set

Sing∗
m,n(ω) = {A ∈ Singm,n(ω) : A is not trivially singular}.

Moreover, for n ≥ 2 we have

dimH (Sing∗
m,n(∞)) = mn − 2m dimP (Sing∗

m,n(∞)) = mn − m

and for n = 1, m ≥ 2 we have

dimH (Sing∗
m,n(1)) = 0 dimP (Sing∗

m,n(1)) = 1.

Note that the class of trivially singular matrices is smaller than the class of matrices with degenerate trajectories in the 
sense of [5, Definition 2.8], but larger than the class considered in [1, p. 2] consisting of matrices A such that the group 
A�n + �m does not have full rank. A d × 1 or 1 × d matrix is trivially singular if and only if it is contained in a rational 
hyperplane of �d .

1.3. 1 × 2 and 2 × 1 matrices

Although we cannot give precise formulas for the Hausdorff and packing dimensions of Singm,n(ω) for all pairs (m, n), 
the special cases (m, n) = (1, 2) and (m, n) = (2, 1) are easier to handle.

Theorem 1.9. For all ω ∈ (1/2, 1) we have

dimH (Sing1,2(ω)) =
{

4
3 − 4

3

√
τ − 6τ 3 + 4τ 4 − 2τ + 8

3τ 2 if τ ≤ τ0
def= 3

√
2−2

14
1−2τ
1+τ if τ ≥ τ0

dimP (Sing1,2(ω)) =
{

4−8τ
3 if τ ≤ τ1

def= 1
8

1 if τ ≥ τ1

(cf. Fig. 1).
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Fig. 1. The functions f0(τ ) = dimH (Sing1,2(ω)) and f1(τ ) = dimP (Sing1,2(ω)). The function f0 is real-analytic on the intervals [0, τ0] and [τ0, 1/2], where 
τ0 = 3

√
2−2

14 ∼ 0.1602, while f1 is linear on the intervals [0, 1/8] and [1/8, 1/2].

Remark. By Jarník’s identity [7], for all ω ∈ [2, ∞] we have

Sing1,2(ω) = Sing2,1(ω
′)

where ω′ = 1 − 1
ω . Thus by applying an appropriate substitution to the above formulas, it is possible to get explicit formulas 

for dimH (Sing2,1(ω
′)) and dimP (Sing2,1(ω

′)), either in terms of ω′ or in terms of τ ′ = ω′− 1
2

ω′+1 = τ
1+2τ . However, the resulting 

formulas are not very elegant so we omit them.

Remark. The transition point τ0 = 3
√

2−2
14 in the above formula for Hausdorff dimension corresponds to ω0 = 2 + √

2, 
ω′

0 =
√

2
2 , τ ′

0 = 4−3
√

2
2 , and dimH (Sing1,2(ω0)) = 2 − √

2. The transition point τ1 = 1
8 for packing dimension corresponds to 

ω1 = 3, ω′
1 = 2

3 , τ ′
1 = 1

10 , and dimP (Sing1,2(ω1)) = 1.

Remark. Theorem 1.9 implies that dimH (Sing1,2(ω)) < dimP (Sing1,2(ω)) for all ω ∈ (1/2, 1). This answers the first part of 
[1, Problem 7] in the affirmative.

Remark. There has been a lot of partial progress towards the Hausdorff dimension part of Theorem 1.9. In particular, the 
≥ direction follows from [1, Corollary 2 and Theorem 3]. For τ ≥ τ0 the upper bound follows from [1, Corollary 2] and for 
τ < τ0, a non-optimal upper bound is given in [1, Theorem 1]. We refer to [1] for a detailed history of the prior results.

1.4. Singularity on average

A different way of quantifying the notion of singularity is the notion of singularity on average introduced in [8]. Given a 
matrix A, we define the proportion of time spent in the cusp to be the number

P(A) = lim
ε→0

lim inf
T →∞

1

T
λ
({

t ∈ [0, T ] : λ1(gt u A�d) ≤ ε
}) ∈ [0,1],

where λ denotes Lebesgue measure. The matrix A is said to be singular on average if P(A) = 1. Clearly, every singular matrix 
is singular on average.

Theorem 1.10. For all p ∈ [0, 1], we have

dimH ({A : P(A) = p}) = dimP ({A : P(A) = p}) = pδm,n + (1 − p)mn.

In particular, the dimension of the set of matrices singular on average is δm,n.

Note that the fact that the Hausdorff dimension of the set of matrices singular on average is ≤ δm,n was proven in [8], 
while the fact that this number is ≥ δm,n follows from Theorem 1.1.

1.5. Starkov’s conjecture

In [22, p. 213], Starkov asked whether there exists a singular vector (i.e. m × 1 singular matrix) which is not very well 
approximable. Here, we recall that a matrix A is called very well approximable if for some ω > n

m , there exist infinitely many 
pairs (p, q) ∈ �m × �n such that
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‖Aq + p‖ ≤ ‖q‖−ω, (1.2)

or equivalently in terms of the Dani correspondence principle, a matrix A is very well approximable if
lim supt→∞ − 1

t log λ1(gt u A�d) > 0. This question was answered affirmatively by Cheung [3, Theorem 1.4] in the case m = 2. 
In fact, Cheung showed that if ψ is any function such that q1/2ψ(q) → 0 as q → ∞, then there exists a 2 × 1 singular vector 
which is not ψ-approximable. Here, a matrix A is called ψ-approximable if there exist infinitely many pairs (p, q) ∈ �m × �n

such that q �= 0 and

‖Aq + p‖ ≤ ψ(‖q‖).
The following theorem improves on Cheung’s result both by generalizing it to the case of arbitrary m, n, and also by com-
puting the dimension of the set of matrices with the given property:

Theorem 1.11. If ψ is any function such that qn/mψ(q) → 0 as q → ∞, then the set of m × n singular matrices that are not 
ψ-approximable has Hausdorff dimension δm,n. Equivalently, if φ is any function such that φ(t) → ∞ as t → ∞, then the set of 
m × n singular matrices A such that − logλ1(gt u A�d) ≤ φ(t) for all t sufficiently large has Hausdorff dimension δm,n. The same is 
true for the packing dimension.

Note that this theorem is optimal in the sense that if ψ(q) ≥ cq−n/m for some constant c, then it is easy to check that 
every singular m × n matrix is ψ-approximable.

1.6. Schmidt’s conjecture

In [19, p. 273], Schmidt conjectured that for all 2 ≤ k ≤ m, there exists an m × 1 matrix A such that

λk−1(gt u A�d) → 0 and λk+1(gt u A�d) → ∞ as t → ∞. (1.3)

(Note that any matrix satisfying (1.3) is singular by Theorem 1.2.) This conjecture was proven by Moshchevitin [14], who 
constructed an m × 1 matrix A satisfying (1.3) and not contained in any rational hyperplane of �m (see also [9,17]). We will 
improve Moshchevitin’s result by computing the Hausdorff and packing dimensions of the set of matrices witnessing this 
conjecture:

Theorem 1.12. For all (m, n) �= (1, 1) and for all 2 ≤ k ≤ m + n − 1, the Hausdorff and packing dimensions of the set of matrices A
that satisfy (1.3) are both equal to

max( fm,n(k), fm,n(k − 1))

where

fm,n(k) = mn − kmn

m + n

(
1 − k

m + n

)
−

{
km

m + n

}{
kn

m + n

}
. (1.4)

Here {x} denotes the fractional part of a real number x. The same formulas are valid for the set of matrices A that satisfy (1.3) and are 
not trivially singular.

Remark 1.13. The function fm,n satisfies fm,n(m + n − k) = fm,n(k) and fm,n(1) = fm,n(m + n − 1) = δm,n . Moreover, for all 
1 ≤ k ≤ m + n − 1 we have fm,n(k) ≤ δm,n . It follows that when k = 2 or m + n − 1, the Hausdorff and packing dimensions 
of the set of matrices A that satisfy (1.3) are both equal to δm,n .

Remark 1.14. When m = 1 or n = 1, the fractional parts appearing in (1.4) can be computed explicitly, leading to the formula

fm,n(k) = mn − k(m + n − k)

m + n
·

However, this formula is not valid when m, n ≥ 2.

2. The variational principle

All the theorems in the previous section (with the exception of Theorems 1.2 and 1.3) are consequences of a single 
variational principle in the parametric geometry of numbers. This variational principle is a quantitative analogue of theo-
rems due to Schmidt and Summerer [21, §2] and Roy [15, Theorem 1.3]. However, we will state their results in language 
somewhat different from the language used in their papers, due to the fact that the fundamental object we consider is 
the one-parameter family of unimodular lattices (gt u A�d)t≥0 used by the Dani correspondence principle, rather than a 
one-parameter family of (non-unimodular) convex bodies as is done in [21,15]. We leave it to the reader to verify that the 
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theorems we attribute below to [21] and [15] are indeed faithful translations of their results to our setting. We note that 
these papers, unlike ours, do not consider the case of matrices.

The fundamental question of our version of the parametric geometry of numbers will be as follows: given a matrix A, 
what does the function h = hA = (h1, . . . , hd) : [0,∞) → �d defined by the formula

hi(t)
def= logλi(gt u A�d) (2.1)

look like? The function hA will be called the successive minima function of the matrix A. The Dani correspondence principle 
shows that many interesting Diophantine questions about the matrix A are equivalent to questions about its successive 
minima function.

The main restriction on the successive minima function comes from an application of Minkowski’s second theorem 
on successive minima to certain subgroups of gt u A�d . Specifically, fix j = 1, . . . , d − 1 and let I be an interval such that 
h j(t) < h j+1(t) for all t ∈ I . For each t ∈ I , let Vt ⊂ �d be the linear span of the set

{r ∈ �d : ‖gt u Ar‖ ≤ λ j(gt u A�d)}.
Then a continuity argument shows that the map t �→ Vt is constant on I , see [20, Lemma 2.1] for the case of simultaneous 
approximation. Write Vt = V . By Minkowski’s second theorem, we have∑

i≤ j

hi(t) �+ F j,I (t)
def= log ‖gt u A(V ∩ �d)‖,

where ‖�‖ denotes the covolume of a discrete group � ⊂ �d , and A �+ B means that there exists a constant C such that 
|B − A| ≤ C . Now an argument based on the exterior product formula for covolume and the definition of gt shows that 
F j,I �+ G j,I for some convex, piecewise linear function G j,I whose slopes are in the set

Z( j)
def=

{
L+
m − L−

n : L± ∈ [0,d±]�, L+ + L− = j
}

, (2.2)

where for convenience we write d+ = m, d− = n, and [a, b]� = [a, b] ∩ �. This suggests that h can be approximated by a 
piecewise linear function f such that whenever f j < f j+1 on an interval I , the function F j = ∑

i≤ j f i is convex on I with 
slopes in Z( j). Moreover, it is obvious that h1 ≤ · · · ≤ hd , and the formula for gt implies that for all i, we have − 1

n ≤ h′
i ≤ 1

m
wherever hi is differentiable. We therefore make the following definition:

Definition 2.1. An m × n template is a piecewise linear map f : [t0, ∞) → �d with the following properties:

(I) f1 ≤ · · · ≤ fd .
(II) − 1

n ≤ f ′
i ≤ 1

m for all i.
(III) For all j = 1, . . . , d and for every interval I such that f j < f j+1 on I , the function F j := ∑

i≤ j f i is convex on I with 
slopes in Z( j). Here we use the convention that f0 = −∞ and fd+1 = +∞.

When m = 1, templates are a slight generalization of reparameterized versions of the rigid systems of [15]. We denote the 
space of m × n templates by Tm,n .

The fundamental relation between templates and successive minima functions is given as follows:

Theorem 2.2.

(i) For every m × n matrix A, there exists an m × n template f such that hA �+ f.
(ii) For every m × n template f, there exists an m × n matrix A such that hA �+ f.

In the case m = 1, part (i) of Theorem 2.2 is due to Schmidt and Summerer [21, §2] and part (ii) is due to Roy ([15, 
Theorem 1.3] and [16, Corollary 4.7]).

Theorem 2.2(ii) asserts that for every template f, the set

M(f)
def= {A : hA �+ f}

is nonempty. It is natural to ask how big this set is in terms of Hausdorff and packing dimension. Moreover, given a 
collection of templates F , we can ask the same question about the set

M(F) =
⋃
f∈F

M(f).

It turns out to be easier to answer the second question than the first, assuming that the collection of templates F is closed 
under finite perturbations. Here, F is said to be closed under finite perturbations if whenever g �+ f ∈F , we have g ∈F .
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Theorem 2.3 (Variational principle, version 1). Let F be a collection of templates closed under finite perturbations. Then

dimH (M(F)) = sup
f∈F

δ(f), dimP (M(F)) = sup
f∈F

δ(f) (2.3)

where the functions δ, δ : Tm,n → [0, mn] are as in Definition 2.5 below.

Corollary 2.4. With F as above, we have

dimH (M(F)) = sup
f∈F

dimH (M(f)), dimP (M(F)) = sup
f∈F

dimP (M(f)). (2.4)

However, note that Theorem 2.3 does not imply that dimH (M(f)) = δ(f) for an individual template f, since the family 
{f} is not closed under finite perturbations. And indeed, since the function δ is sensitive to finite perturbations, the formula 
dimH (M(f)) = δ(f) cannot hold for all f ∈ Tm,n .

Definition 2.5. We define the lower and upper average contraction rate of a template f as follows. Let I be an open interval 
on which f is linear. For each q = 1, . . . , d such that fq < fq+1 on I , let L± = L±(f, I, q) ∈ [0, d±]� be chosen to satisfy 
L+ + L− = q and

F ′
q =

q∑
i=1

f ′
i = L+

m
− L−

n
on I, (2.5)

as guaranteed by (III) of Definition 2.1. An interval of equality for f on I is an interval (p, q]� , where 0 ≤ p < q ≤ d satisfy

f p < f p+1 = · · · = fq < fq+1 on I. (2.6)

Note that the collection of intervals of equality forms a partition of [1, d]� . If (p, q]� is an interval of equality for f on I , 
then we let M±(p, q) = M±(f, I, p, q), where

M±(f, I, p,q) = L±(f, I,q) − L±(f, I, p), (2.7)

and we let

S+(f, I) =
⋃

(p,q]�

(
p, p + M+(p,q)

]
�

(2.8)

S−(f, I) =
⋃

(p,q]�

(
p + M+(p,q),q

]
�

(2.9)

where the unions are taken over all intervals of equality for f on I . Note that M±(p, q) ≥ 0 by (II) of Definition 2.1, and 
further that S+ and S− are disjoint and satisfy S+ ∪ S− = [1, d]� , and that #(S+) = m and #(S−) = n. Next, let

δ(f, I) = #{(i+, i−) ∈ S+ × S− : i+ < i−} ∈ [0,mn]�, (2.10)

and note that

mn − δ(f, I) = #{(i+, i−) ∈ S+ × S− : i+ > i−}. (2.11)

The lower and upper average contraction rates of f are the numbers

δ(f)
def= lim inf

T →∞ �(f, T ), δ(f)
def= lim sup

T →∞
�(f, T ), (2.12)

where

�(f, T )
def= 1

T

T∫
0

δ(f, t) dt.

Here we abuse notation by writing δ(f, t) = δ(f, I) for all t ∈ I .

Definition 2.5 can be understood intuitively in terms of a simple version of one-dimensional physics with sticky collisions 
and conservation of momentum. Suppose that we observe particles P1, . . . , Pd travelling along trajectories f1, . . . , fd during 
a time interval I along which f is linear, and we want to infer the velocities of these particles before they collided, based 
on the following background information: before the collision m of the particles were travelling upwards at a speed of 1

m , 
and n of the particles were travelling downwards at a speed of 1

n . When particles collide (that is, when the velocities of the 
particles of lower index are more upwards than the velocities of the particles of higher index at the same location), they 
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join forces to move as a unit, and their new velocity is determined by conservation of momentum. However, we can still 
think of the group as being composed of a certain number of “upwards” particles and a certain number of “downwards” 
particles.

The equations (2.8) and (2.9) can be understood as suggesting a particular solution to this problem of inference: assume 
that within each group, all of the upwards-travelling particles started out below all of the downwards-travelling particles. 
This is not the only possible solution, but it is the nicest one for certain purposes. Specifically, we can imagine a force 
of “gravity” attempting to bring all of the particles together, which acts between any two particles by imposing a fixed 
energy cost if the two particles are travelling away from each other.3 The total energy cost is then the codimension mn −
δ(f, I) defined by (2.11). The equations (2.8) and (2.9) can then be thought of as giving the solution that minimizes this 
cost.

The idea of codimension as an energy cost is also useful for computing the suprema (2.3) in certain circumstances, since 
it suggests principles like the conservation of energy. However, one needs to be careful since the stickiness of collisions 
means that some naive formulations of conservation of energy are violated.

In most cases of interest, the collection F in Theorem 2.3 is defined by some Diophantine condition. In this case, 
generally rather than M(F) the set we are really interested in is the set of all matrices whose corresponding successive 
minima functions satisfy the same Diophantine condition. Although these two sets are a priori different, Theorem 2.2(i) 
implies that they are the same and thus Theorem 2.3 is equivalent modulo Theorem 2.2(i) to the following:

Theorem 2.6 (Variational principle, version 2). Let S be a collection of functions from [0,∞) to �d which is closed under finite 
perturbations, and let

M(S) = {A : hA ∈ S}.
Then

dimH (M(S)) = sup
f∈S∩Tm,n

δ(f), dimP (M(S)) = sup
f∈S∩Tm,n

δ(f). (2.13)

Proof of equivalence. Theorem 2.6 implies Theorem 2.3 since we can take S = {g : g �+ f ∈ F}. Conversely, Theorem 2.3
implies Theorem 2.6 modulo Theorem 2.2(i) since we can take F = S ∩ Tm,n . �

Theorem 2.6 can be thought of as a quantitative analogue of Theorem 2.2, as shown by the following equivalent formu-
lation:

Theorem 2.7 (Variational principle, version 3).

(i) Let S be a set of m × n matrices of Hausdorff (resp. packing) dimension > δ. Then there exists a matrix A ∈ S and a template 
f �+ hA whose lower (resp. upper) average contraction rate is > δ.

(ii) Let f be a template whose lower (resp. upper) average contraction rate is > δ. Then there exists a set S of m × n matrices of 
Hausdorff (resp. packing) dimension > δ, such that hA �+ f for all A ∈ S.

Proof of equivalence. Part (i) is equivalent to the ≤ direction of (2.13), and part (ii) to the ≥ direction. For the first 
equivalence, for the forwards direction take S = {A : hA ∈ S}, and for the backwards direction take S = {g : g �+ hA, A ∈ S}. 
For the second equivalence, for the backwards direction take S =M(f) and S = {g : g �+ f}. �

It is worth stating the special case of Theorem 2.6 that occurs when the collection S is defined by the Diophantine 
conditions defining Singm,n(ω) and Sing∗

m,n(ω) for some ω ≥ n
m . Thus, we define the uniform dynamical exponent of a map 

f : [0,∞) → �d to be the number

τ̂ (f) = lim inf
t→∞

−1

t
f1(t).

Similarly, f is said to be trivially singular if f j+1(t) − f j(t) → ∞ as t → ∞ for some j = 1, . . . , d −1. Letting S = {f : τ̂ (f) = τ }
or S = {f : τ̂ (f) = τ , f not trivially singular} in Theorem 2.6 yields the following result:

Theorem 2.8 (Special case of variational principle). For all ω ≥ n
m , we have

dimH (Singm,n(ω)) = sup{δ(f) : f ∈ Tm,n, τ̂ (f) = τ }
dimP (Singm,n(ω)) = sup{δ(f) : f ∈ Tm,n, τ̂ (f) = τ }

3 This is of course unlike real gravity, which imposes an energy cost variable with respect to distance.
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dimH (Sing∗
m,n(ω)) = sup{δ(f) : f ∈ Tm,n, τ̂ (f) = τ , f not trivially singular}

dimP (Sing∗
m,n(ω)) = sup{δ(f) : f ∈ Tm,n, τ̂ (f) = τ , f not trivially singular},

where τ is as in (1.1).

Theorem 2.6 can also be used to compute the dimensions of the set

S̃ing
∗
m,n(ω) = {A : ω̂(A) ≥ ω, A not trivially singular} =

⋃
ω′≥ω

Sing∗
m,n(ω

′).

Theorem 2.9 (Special case of variational principle). For all ω ≥ n
m , we have

dimH (S̃ing
∗
m,n(ω)) = sup

ω′≥ω
dimH (Sing∗

m,n(ω
′))

dimP (S̃ing
∗
m,n(ω)) = sup

ω′≥ω
dimP (Sing∗

m,n(ω
′)).

(Theorem 2.9 is also true with the stars removed, but in that case it is not as interesting because dimH (Singm,n(∞)) is 
“too large”, whereas dimH (Sing∗

m,n(∞)) is the “correct” size according to Remark 1.8.)
It is natural to expect that the map ω �→ dimH (Sing∗

m,n(ω)) is monotonically decreasing, in which case Theorem 2.9
would imply that

dimH (S̃ing
∗
(ω)) = dimH (Sing∗

m,n(ω)).

Conjecture 2.10. The functions

ω �→ dimH (Sing∗
m,n(ω)), ω �→ dimP (Sing∗

m,n(ω))

are decreasing and continuous, and furthermore are computable in the sense of [23].

The main difficulty in proving this conjecture is the rigidity of templates – one would like to show that every template 
can be perturbed into a new template whose uniform dynamical exponent is either slightly larger, or much smaller, than 
that of the original template, and whose average contraction rates are not too much smaller than those of the original 
template. However, it is not at all clear how one would perform such a perturbation except in a few special cases.

3. A characterization of Hausdorff and packing dimensions using games

The proof of the variational principle is based on a new variant of Schmidt’s game which is in principle capable of com-
puting the Hausdorff and packing dimensions of any set. In Schmidt’s game [18], players take turns choosing a descending 
sequence of balls and compete to determine whether or not the intersection point of these balls is in a certain target set. 
The key feature of our new variant is that instead of requiring the rate at which the players’ moves contribute information 
to the game to be constant, the new variant allows the rate of information transfer to be variable, with the first player, 
Alice, getting to choose the rate of information transfer. However, Alice is penalized if she exerts too much control over the 
game over long periods of time without giving her opponent Bob a chance to exert control over the game.

Definition 3.1. Given 0 < β < 1, Alice and Bob play the δ-dimensional Hausdorff (resp. packing) β-game as follows:

• the turn order is alternating, with Alice playing first. Thus, Bob’s kth turn occurs after Alice’s kth turn and before Alice’s 
(k + 1)st turn;

• Alice begins by choosing a starting radius ρ0 > 0;
• on the kth turn, Alice chooses a nonempty 3ρk-separated set Ak ⊂ �d , and Bob responds by choosing a ball Bk =

B(xk, ρk), where xk ∈ Ak and ρk = βkρ0;
• on the first (0th) turn, Alice’s choice A0 can be any finite set, but on subsequent turns she must choose it to satisfy

Ak+1 ⊂ B(xk, (1 − β)ρk). (3.1)

Note that this condition guarantees that

B0 ⊃ B1 ⊃ B2 ⊃ · · · .
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After infinitely many turns have passed, the point

x∞ = lim
k→∞

xk ∈
∞⋂

k=0

Bk

is computed (note that the right-hand side is always a singleton). It is called the outcome of the game. Also, we let A =
(Ak)k∈� , and we compute the numbers

δ(A)
def= lim inf

k→∞
1

k

k∑
i=0

log #(Ai)

− log(β)
(3.2)

and

δ(A)
def= lim sup

k→∞
1

k

k∑
i=0

log #(Ai)

− log(β)
(3.3)

which are called Alice’s lower and upper scores, respectively. Alice’s goal will be to ensure that the outcome is in a certain 
set S , called the target set, and simultaneously to maximize her score while doing so.

To be precise, a set S ⊂ �d is said to be δ-dimensionally Hausdorff (resp. packing) β-winning if Alice has a strategy to 
simultaneously ensure that the outcome x∞ is in S , and that her lower (resp. upper) score is at least δ. It is said to be 
δ-dimensionally Hausdorff (resp. packing) winning if it is δ-dimensionally Hausdorff (resp. packing) β-winning for all suffi-
ciently small β > 0. The reader may contrast the definition of our game with that of Cheung’s self-similar coverings in [3, 
Section 3].

The following result is one of the key ingredients in the proof of the variational principle:

Theorem 3.2. The Hausdorff (resp. packing) dimension of a Borel set S is the supremum of δ such that S is δ-dimensionally Hausdorff 
(resp. packing) winning.
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