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addresses recent conjectures of C. Monical-N. Tokcan-A. Yong and of A. Fink-K. Mészaros—
A. St. Dizier in this special case.
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RESUME

Les polyndmes symétriques de Grothendieck sont des versions inhomogénes des poly-
nomes de Schur qui apparaissent dans la K-théorie combinatoire. Un polyndme a un poly-
tope de Newton saturé (SNP) si chaque point entier dans le polytope est un vecteur d’ex-
posant. Nous montrons que les polytopes de Newton de ces polyndmes de Grothendieck
et leurs composants homogénes ont un SNP. En outre, le polytope de Newton de chaque
composant homogéne est un permutoédre. Cela concerne les récentes conjectures de
C. Monical-N. Tokcan-A. Yong et de A. Fink-K. Mészaros-A. St. Dizier dans ce cas spécial.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Let s, (x1,...,X;) be the Schur polynomial, which is the generating series for semistandard Young tableaux of shape A
with entries in [n] :={1,2,...,n}. By the work of C. Lenart [3, Theorem 2.2], the symmetric Grothendieck polynomial is
given by

GrlXt, - Xn) = ) GpSp (X, Xa). (1
w

The sum is over partitions w (identified with their Young diagrams in English notation) with < n rows. The quantity
(=D#I=*g; , counts the number of rows and columns strictly increasing skew tableaux of shape w/A with entries in
[n] such that the entries in row r are weakly less than r — 1.
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Fig. 1. The Newton polytope of G, (x1, X2, x3) for A = (3, 1,0). Each color indicates the degree.
Fig. 1. Le polytope de Newton de G, (X1, X2, X3) pour A = (3, 1,0). Chaque couleur indique le degré.

By (1), Gy (x1,...,%,) is an inhomogeneous deformation of s, (x1,...,xp) and is itself symmetric. For example, if n =3
and A =(3,1,0),

Gy (x1,X%2,X3) =53,1) — (253,1,1) +53,2,0)) +253,2,1) —53.2.2)-

These polynomials appear in the study of the K-theoretic Schubert calculus; we refer the reader to [3,1] and the references
therein for additional discussion.

More generally, A. Lascoux-M.-P. Schiitzenberger [2] recursively defined (possibly nonsymmetric) Grothendieck polyno-
mials associated with any permutation w € &,. We mention that A. Buch [1] discovered the set-valued tableaux formula

for G, (x1,...,%,); this formula is often taken as a definition in the literature. (Recently, C. Monical [6] found a bijection
between the aforementioned rules of C. Lenart and of A. Buch.)
The Newton polytope of a polynomial f = ZueZ”o ceX¥ € C[Xq,...,xpn] is the convex hull of its exponent vectors, i.e.

Newton(f) = conv({a : cq # 0}) CR™. In [7], f is said to have saturated Newton polytope (SNP) if ¢, # 0 whenever « €
Newton(f). A study of SNP and algebraic combinatorics was given in [7].

If A=(Q1>A2>...> Ay >0), the permutahedron 7, C R" is the convex hull of the &;,-orbit of A. This theorem
extends the old fact that Newton(s; (x1, ..., X)) = Pa:

Theorem 0.1. G, (X1, ..., xp) has SNP. In addition, each homogeneous component has SNP with Newton polytope (see Fig. 1) being a
permutahedron (as specified below in (3)).

The first assertion addresses [7, Conjecture 5.5] for the case when the permutation w is Grassmannian at position n;
that is w(i) < w(i + 1) unless i = n. The second assertion responds, in this case, to a conjecture of A. Fink-K. Mészaros-
A. St. Dizier [5, Conjecture 5.1]. In [5], these conjectures were proved for the case when w = 1w’, where w’ is a dominant
permutation, i.e., w’ is 132-avoiding.

Proof of the Theorem: Let ;@ := . For 1 <k <n define u® to be u*~1 with a box added in the northmost row r such
that /Lﬁkil) — uﬁo) <r—1 and the addition of the box gives a Young diagram. Stop when no such r exists or k =n. Suppose
we obtain N such partitions.

Recall that the dominance order on partitions of a fixed size is defined by 6 <p § if 23:1 0j < 25-21 §jfort>1.
Claim A 1. 1™ is the <p-maximum among all shapes w of size | x| + k such that a0 #0.

Proof of Claim A: The skew shape ®) /) consists of the k boxes added to A. We can inductively define a skew tableau
Ty of this shape by adding the minimum possible label to Ty_; (in the box u® /u®*=1) that maintains row and column
strictness. It is straightforward that this tableau exists and witnesses a, wto 7 0.

Let u be a shape such that a, ;, # 0. Then p; < A; + (i — 1) for all i. Suppose that p £p 1% and let r(> 1) be the first

row such that g1 +---+ ur > Mgk) +- ,uﬁk). Then

ot e <+ ) and p > .

This contradicts the construction of u® because by u — 1 < pr — u'® <r—1 ® must have another box in row r. O

R. Rado’s theorem [8] states that for two partitions 6, § of the same size,
Py CPs <= 6 <pd. (2)
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The Theorem’s second assertion is immediate from (2) and Claim A. In fact, if G,[k] denotes the degree k homogeneous
component of G, (x1,...,Xy), then

Newton(Gy [k]) = P (3)

Let v € Pﬂ(m. Thus v® is a nonnegative vector (being a convex combination of nonnegative vectors). Rado’s theorem

implies that v® is majorized by u®. That is, the rearrangement (v(®){ of the components of v% into decreasing order
satisfies

v <p u®. (4)
Suppose
N N
v= Z cxv®  where Z cg=1and ¢, >0
k=0 k=0

is a convex combination of the vectors v®,
Claim B 1. v is majorized by [t := Y"p_o ot ®.

Proof of Claim B: Let v* := Y ¢ ¢, (v®)}. By (4), for any t > 1 we have ¢, Zs-:l(v(k))} <ci ZS»:] /L;-k). By summing both
sides over all k and interchanging the order of summation, we conclude v* is majorized by . It is a standard property
of majorization that a + b is majorized by a* + bt [4, Proposition A.1.b]. Thus v is majorized by v*. Now use that this
majorization (being a preorder) is transitive. O

Claim C 1. Suppose x| — | Q| = K, then & is majorized by 1.

Proof of Claim C: Let ry := row on which k-th box gets added to u® (so u® = u© +e, +---+ey,, where e; is a standard
basis vector).

Lemma 0.2. For any (row) r

— — 0 0
Tt = e

where € is the largest i such thatr; =r.

142004+ leg+ -+ Le,

Proof: Suppose we added boxes a,a+1,...,a+b to row r of 1© in order to obtain u™,
We write

_ 0 -1 b b+1 N
T = cot” + -+ Cact iV capt® + -+ capti ™+ capprittTY 4oy

@ @ ®

(a—1)
r ’

) _ .
o _

Next, u SO

D= (co +"'+Ca—1)Mz(’0)-

Since 9" = 1@ 4 (i+1) fori=0,...,b, then

@ =(Cat-+Carp)it® + (ca+2cay1 4+ b+ )capp).

Finally, p(? = @40 — .. — ™ 5o

0
@ = Catbr1 + -+ U + Catprt +- + )b +1).
Therefore, we conclude that 1z, = /Lﬁo) +ca+2cq41+--+ b+ Decgypp + -+ (b+1)cy. The lemma then follows by a simple

induction. O

The following is immediate from the definitions.

Lemma 0.3. Let by = uN) — 1%, i.e. by is the number of extra boxes ™) has in row r. For any r < rg

(k) (k) 0 (0)

My ety =@y e+ iy (b by
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Let ¢ be the largest i such that r; =r. We consider two cases.

Case 1 (r < rg): Observe that
Cl+202+ 4L+ +Len=(C1+ - +CN) + (24 4N+ +(Ce+-+oy) <L

Since by + --- + by equals the number of boxes placed from rows 1 through r and the £-th box is the last box placed in
row r, then ¢ =bq + --- + b,. Combining this equality with the inequality just derived, we see

c1+2c+---+Llcg+---+Llcy <by+---+by. (5)
By (5) together with Lemmas 0.2 and 0.3,

— — K K
Bt T <y e

Case 2 (r > rg): Here, we notice that

i+ =+ K ©

Observe that
c14+2c2+--+Lleg+---+ ey <c1+2c2+ -+ Ney =K, (7)

where the equality follows from Lemma 0.2. Apply Lemma 0.2 to the left-hand side of (7) and use (6) to replace K on the
right-hand side, to conclude that 7t; +--- + &, < pLgK) + 4 ,uﬁK). Hence, in either case, & <p n®, as required. O

Let wq,..., wy be any exponent vectors of G (x1,...,X;). SNPness means that if w € conv{wq,..., wy} is a lattice
point, then [x"]G,(x1,...,X;)) # 0. Suppose that |w| = K. Without loss of generality, M = N, and there is a unique
vector wy with |wy| = k. Then by Claim B, w is majorized by . Claim C says 7t is majorized by ™ and hence
wt <p u. By (2) we conclude w € P, which by (3) completes the proof of the Theorem. Indeed, we have shown

that Newton(Gy (X1, ..., X)) = U,C’zo Puw. O
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