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RESUME

Dans cette Note, nous étudions le systéme de chimiotaxie suivant :

u=V-(¢EVvVu — xuvv), xeQ,t>0,
Ve=AvV —uv, xeQ, t>0,

sous des conditions de Neumann homogénes au bord, supposé lisse, d'un domaine borné
QCR" n>1.Ic, & et x sont des constantes positives.
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Nous montrons que les solutions classiques du systéme ci-dessus sont uniformément
bornées en temps, pourvu que :

§ a=&€ /2m+1) :
2(n+1)[n+2arctan<T /T)] si0<é& <1,

Ivoli~@ <y y72mD /727;”1)? sié =1,

1 & ¢E-1) /2mn+D) :
Yw/m[n—Zarctan(T‘/T)], sié>1.

Dans le cas & = 1, des résultats récents montrent que les solutions classiques sont
globales et bornées dés que 0 < |[vgllL>(Q) < Comme SIDX < yvaeD ou, plus

= 400, ces résultats se déduisent des notres.
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précisément, lim,_,

1. Introduction

In this paper, we study the following initial boundary value problem:

=V (Vu—xuVv), xeQ,t>0,

t=Av—uv, xeQ,t>0, (1)
) F) .
ﬁ_ag_o XxedQ, t>0,

u(x,0)=ug, v(x,0)=vo, xe,

where @ CR",n > 1, is a bounded domain with smooth boundary, and v denotes the unit outward normal vector to 9<2.
Also, & and x are some positive constants and ug and vy are non-negative initial functions. Here, u = u(x, t) denotes the
bacteria density and v = v(x, t) is the concentration of oxygen.

If the second equation of problem (1.1) is replaced with vi = Av — v + u, then this problem is the classical chemotaxis
system that was proposed by Keller and Segel in 1970 [3]. For this model, it is known that for n = 1, all solutions are global
and bounded [7]. Also, for n = 2, the same result is true provided that |[ugll;1(q) < 47 [6], whereas for [uo||;1q) > 4, blow
up occurs either in finite or infinite time [2]. For n > 3, under some suitable conditions on initial data and |[ugll;1(g) > 0,
there exist radial solutions that become unbounded in finite time [11]. While if for each q > % and p > n, there exists € > 0
such that for € < €, |luollia@) <€ and [|Vvo|ir(q) <€, then the classical solutions become global and bounded [10].

Problem (1.1) with & =1 is studied by Tao and Winkler in bounded convex domains with smooth boundary [9]. In the
two-dimensional case, they proved that the classical solutions for this problem are global and bounded and satisfy the
following convergence properties:

u(.,t) — g ::llﬁlfguo(x) inL®(Q) as t—> oo, (12)
v(,t)—0 in L®(Q) as t— oo. ’

Besides, in the three-dimensional case, they showed that bounded weak solutions exist for arbitrarily large initial data,
and these solutions satisfy the convergence properties (1 2). Also, for n > 3, the classical solutions for this problem are
global and bounded provided that 0 < [|vgllre(@) < W and satisfy the convergence properties (1.2) [8,13]. In the
presence of a logistic source, Zheng and Mu [14] studied problem (1.1) when the first equation is replaced with u; =
V.- (@Vu—- x(WuVv) + f (u) where f is the logistic function and y measures the chemotactic sensitivity. They proved

that if x satisfies x(s) < (1+ots)" with Xo >0, o > 0 and k > 0, then the classical solutions for this problem are global and

bounded provided that [[vo|li=(q) < m Recently, in the presence of a logistic source f(s) = as — bs? for s > 0 with
a € R and b > 0, Lankeit and Wang proved that classical solutions are global and bounded when b is sufficiently large,
whereas the weak solutions exist for every b > 0 [4]. In the case of logistic source, see also [1].

When the chemotaxis system is with rotational flux terms, the first equation (1.1) is written as u; =V - (Vu —
uS(x,u, v)Vv), where S € C2(Q x [0, 00)2; R™™) is a matrix-valued function. If |S(x, u, v)| < (Sf’g")g, where Sg is some
non-decreasing function and 6 > 0, then for n =1 and 6 > 0, the classical solutions are global and bounded [12]. Also, for

n>2 and 6 =0, the same result is true provided that So(||voll>@)lIVolli>@) < m whereas, for n > 2 and 6 > 0,

the classical solutions are global and bounded without any restriction on the initial data [12]. The results obtained in [12]
extend the recent results obtained in [5], which assert that solutions are global and bounded in two dimensions with 6 =0
and |[vollre(q) sufficiently small.
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In the present paper, we will study problem (1.1) and prove that this problem admits a unique classical solution, which
is global and bounded provided that:

%JZ(HLm[n—i—Zarctan((];—é),/@)], ifo<é&<1,

T 1 —
IvollLo@) < {1 xv2mtD)’ if§ =1,

%Jﬁ[n—Zarctan (@,/@)] ife > 1.

This result extends the results obtained in [8], which assert that the classical solutions for this problem with & =1 are

global and bounded provided that 0 < [|[vq||i~ (@) < m.

2. Global existence

The following lemma, which is the standard well-posedness and classical solvability, is proven in [8, Lemma 2.1].

Lemma 2.1. Let the non-negative functions ug and vy satisfy (ug, vo) € (W14(2))? for some q > n. Then problem (1.1) has a unique
local in time classical solution

(. v) & (C(10. Tma): W@ N> (2% (0, Tmax)))2,
where Tmax denotes the maximal existence time. Moreover, u and v satisfy the following inequalities:
u>0, 0<v<l|volre in K x (0, Tmax). (2.1)
In addition, if there exists a constant ¢ > 0 such that
I, v =) <c,
then Tmax = +00. Also, the total mass of u satisfies the following identity:

lu®lp @) = ol forall te (0, Tmax).
Our key idea is stated in the following lemma.

Lemma 2.2. Let ¢ be a twice-differentiable increasing function that is defined for 0 < s < ||vo||1~(q) and bounded from below by c,
where c is some positive constant. Also, assume that p > 1 and %(p” — X ¢’ > 0. Then, the solution to (1.1) satisfies the following
estimate:

%/upgo(v) dxsp/d>(v)up_l|Vu||Vv|dx (2.2)
Q Q

with @(v) =[x (p = De(v) = € + 19/ V)| =2,/6(p = DE() (5" () — x¢' (V).
Proof. We use from (1.1) and integration by parts to obtain

1d 1
oar uPo(v) dx=/up_1go(v) Uy dx—i—E/u” @' (V)ve dx
Q Q Q

=—&(p— 1)/up_2<p(v) [Vu|? dx — (¢ —i—l)/up—1 @' (vV)Vu - Vv dx
Q Q
+x(p—1)/up—1go(v) Vu-Vv dx+x/up<p’(v)|Vv|2 dx
Q Q

1 1
- E/UP<P”(V)|VV|2 dx — E/Vgu’(v)u”“dx.
Q Q

Because of ¢’ > 0, we have
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S S [wom = - 1) / WP=2p(v) |Vul? dx - / (07 (v) = xg/ )P |9v]2 dx

p Q Q Q p

+f!x(p—1)<p(V)—(S+1)¢’(V)|up‘1|VuIIVVIdX- (2.3)
Q

The main idea of our proof is based on the identity —(a? +b?) = —(a —b)? — 2ab. Note that we can apply the above identity
to the first and second terms on the right-hand side of (2.3). Thus, we add and subtract the term:

1
2[/&@ — e (59" ) = 10/ )ur [ Vull Vi dx
Q

on the right-hand side of (2.3) to obtain

1d 1

e p _ _ p—2 2 _ P _ / p 2

D dr uPp(vydx < —£(p 1)/u @(v) [Vu|” dx /(pw (v) xgo(v))u Vv~ dx
Q Q Q

1
+z/\/s<p—1>so<v>(5¢”(v> — X9/ )uP ™! |Vul|Vv] dx
Q

+[ X (P = Do) — (€ + )¢’ (V) [uP~"|Vu||Vv]| dx
Q

1
—2f\/s<p =) (@) = /() JuP ™! VUl VY dx
Q

2
1
= —/ <\/$(p “ D)y ut ! |vu| - ‘/E“’”(” — X9 (V) u‘2’|Vv|> dx

Q

1
+/ [‘x(p — Do) —E + 1)<p/(v)‘ - 2\/5(19 - 1)<p(v)(5<p”(v) - Xfﬂ/(v))}upl [Vu||Vv| dx.
Q

This inequality implies that

a uPo(v) dxgp/d>(v)uP*1|Vu||vV| dx

dt
Q Q

with ®(v) = |x(p — De(v) — (€ + D¢/ (V)| — 2\/E(p — 1)(p(v)(%g0“(v) — X' (v)). Thus, the desired result is obtained. O
In the following lemma, we provide a smooth function ¢ that fulfills our requirements.

Lemma 2.3. Assume that ¢(s) = e*®), where z(s) for 0 <s < ||vg Il (g is defined as:

7 B V4AD — B2 ~4AD — B2 /1 K
z(s) =/ - —+ tan (— —) dr
2A 2A 2

T
C A
0
with

E(p—1)
T)

4 Ep—1)
A=(E+1)7?- AL
((S ) ’

4 2 2
B=2x(p-1DE -1, C= . D=x"(p -1,

2A B
arctan (2.4)
V4AD — B? <V4AD—BZ>

and p > 1. Also, assume that ||vg|| =) satisfies the following condition:

lvollie (@) < %\/%[n—Zarctan((g’:;])\/g)}. (2.5)

Then, the function z is well defined and ¢ is an increasing function as well as ¢” — px ¢’ > 0.
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Proof. At first, we show that the function z is well defined. In order to show this, we consider the values A, B and D and
compute

44D - 57 =4((e + 12 = TED) 20 - 12— ax2p - 1026 - 17
IR ,_4(—1 .
=4 - DAE+ 1’ - == - - 1)
_ 2(p _ 1)2
a1 - @D 1601 26)
p p

and

K=Larctan< B ): (p(§—1)2+4$) arctan<(5_1)\/§).

VA4AD — B2 VAAD — B2 2x(p—1/pE 2
We also have
V4AD — B2 /1 K /4AD — B2 B XD -1 |p
f( —) = Ts+arctan(m) = 2 VE S +arctan< 5 \/g) (2.7)

Now, the condition (2.5) along with 0 <s < ||vollf~(g) implies that

C+A

~4AD — B2 /1 K b8
0 ——— (75 + *) =
2 C A 2
Thus the function z is well defined. From the definition of z, for 0 <s < ||[vo||;>~(g), we can write

B 4AD — B? on («/4AD — B2 (1 5))

/ —_— e
Z(s) = + > c +A

2A 2A

Hence,

fan «/4AD—BZ<1S K) _ 2AZ'(s) + B
2 C A/]  VaAaD —B?
Then, we have

_ R2 _ R2
- M0 (ST )]

4AC 2 A

The above equality along with (2.6) says that z”’(s) > 0 for all 0 <s < ||vg|lr>(g). Thus, Z’ is an increasing function. We now
obtain

g2l / _ B2
z”(s)=74AD B 11 4 tan? <74AD B (1 5)):|

4AC 2 C

Tt
- 2
_4AD-B%| L (2476 +B
4AC | /4AD — B2

_ 4AD — B? '1 N 4A%(Z (5))% + 4ABZ (s) + 32}

4AC 4AD — B2

4AC 4AD — B2

_ 4AD — B2 [ 4A%(Z/(5))* + 4ABZ (5) +4AD:|
—A@@f;Bﬂw+D (2.9)
T C C c’ ’
where we have used from (2.8) in the second equality. We also have
@) =72, ¢"(5)= (2”(5) + (Z’(S))z)w(S).

We now show that ¢’(s) > 0 for all 0 <s < ||vg||r(q). In order to prove this, we use from (2.4) and (2.7) to write
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B +4AD — B2 o («/4AD — B2 (1 5>>

/ —_— —
z2() = 2A+ 2A 2 CS+A

b 17 i e 17 e | g e (

This equality implies z’(0) = 0. Now, from the fact that z’ is an increasing function, we conclude that z'(s) > z/(0) = 0 for
all 0 <s < ||vollre(g)- Thus, ¢’ > 0. Finally, we prove that %(p” — x¢' > 0. In order to do this, we write

P =DE-1 | 20~ DVPE (Xf (5—1) )

() = x9/(5) = (z”(s)+(z )?)¢(s) — X2 ()
1
=¢(S)[E< @) + Z(s)+ +(Z() )-XZ/(S)i|
—pxC D
——90(5)[ C@e?+2 C Z(S)+E}

1
= 5¢(s) [(A +O)(Z()*+ (B—pxO)Z(s) + D:|

1
= 6‘”(”[@ + D2 () =2x(p - DE+DZ () + x*(p — 1)2}

4&(p-1)

where we have used from (2.9) in the second equality. Thus, we obtain the desired result. O

2
1
= 7&0(5)((5 +1Z'(s) — x(p — 1)) >0, (2.10)

We now can obtain our main result.

Lemma 2.4. Assume that ||vo| () satisfies the condition (2.5). Then, there exists a constant ¢ > 0 such that the first component of
solution to problem (1.1) satisfies

luC, Oll2min ) <¢,  forallt € (0, Tmax)- (211)

Proof. We consider the function ¢ which is defined in Lemma 2.3 and use (2.10). Thus, we can write

1
D)= |x(p— Do) — &+ 1)<p’(v)‘ - 2\/5(13 - 1)90(v)(5¢”(v) —XP'(V)

1 2
=[x(p-1-E+DZW)|pWv) - 2\/1902(\/)((5 +1DZ'(v) — x(p - 1))

= </>(V)(|X(P - -E+DZW)| - |E+DZW) —x(p - 1)|) =0.
The above equality along with the inequality (2.2) gives

o uPp(v)dx <0.
Q

By integration of the last inequality from 0 to t, we obtain [, uP@(v) dx < c with c = |, ugga(vo) dx. Since ¢ is an increasing

function, thus ¢(s) > ¢(0) =e*® =1 for all 0 <5 < ||vg]|oo(). We set p=2(n+ 1) and use the fact that ¢ > 1 and obtain
the desired result (2.11). O

Lemma 2.5. Assume that the condition (2.5) holds. Then there exists a constant ¢ > 0 such that the first component of solution to
problem (1.1) satisfies

lu(., Hllre@) <c forallt € (0, Tmax).

This Lemma is proven in [8, Lemma 3.2].
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Theorem 2.6. Assume that the non-negative functions ug and v satisfy (ug, vo) € (W9(Q))2 for some q > n. Also, assume that the
condition (2.5) holds. Then the solution of (u, v) to problem (1.1) is global and bounded.

Proof. By considering the extensibility criterion provided by Lemma 2.1, the proof is a consequence of (2.1) and
Lemma 2.5. O

Remark 2.7. The condition (2.5) can be written as follows:

%,/ﬁ[n—iﬂarctan((]zﬁ 2“’;”)], ifo<é&<1,

T
Vol <\ yv2meD°

1 5 ¢E-1D [2(+1) i
+ /m[n—Zarctan(T,/T)], if§ > 1.

s
Because of ~——-— < —%__ or more precisely, limp_, oo 22" — 4+ 00, we can conclude that the above condition extends
6(n+1)x X/2(n+T) B Ea AT

the condition 0 < [[vo|l1=(g) which is obtained by Tao for £ =1 in [8].
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