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In this note, we discuss the global dynamics of an integrable nonlocal NLS on R, which 
has been the object of a recent investigation by integrable systems methods. We prove 
two results that are in striking contrast with the case of the local cubic focusing NLS. 
First, finite-time blow-up solutions exist with arbitrarily small initial data in Hs(R), for 
any s � 0. On the other hand, the solitons of the local NLS, which are also solutions to the 
nonlocal equation, are unstable by blow-up for the latter.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous discutons dans cette note la dynamique globale d’une équation NLS intégrable non 
locale sur R, qui a été étudiée récemment par des méthodes de systèmes intégrables. Nous 
démontrons deux résultats qui contrastent fortement avec le cas de l’équation NLS foca-
lisante cubique locale. Premièrement, il existe des solutions qui explosent en temps fini, 
avec condition initiale arbitrairement petite dans Hs(R), pour tout s � 0. Par ailleurs, les 
solitons de l’équation NLS locale, qui sont aussi solutions de l’équation non locale, sont 
instables par explosion pour cette dernière.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The nonlocal nonlinear Schrödinger equation

iut(t, x) + uxx(t, x) + u2(t, x)u(t,−x) = 0, u(t, x) :R×R→C, (1.1)

has recently been shown to be a completely integrable system, with infinitely many conservation laws [1,2]. The equation 
is related to two different areas of physics: gain/loss systems in optics and so-called P T -symmetric quantum mechanics, 
see [3–6] and references therein. Mathematically, the feature connecting (1.1) to these areas is the P T -symmetry of the 
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‘nonlinear potential’ u(t, x)u(t, −x). Namely, this quantity is invariant under the joint transformation x → −x and i → −i
(parity and time reversal).

The inverse-scattering transform was applied in [1,2] to produce a variety of solutions to (1.1). In particular, a ‘one-soliton 
solution’ is obtained, which blows up in finite time (actually, up to rescaling, at all times t = 2m + 1, m ∈ Z). The purpose 
of this note is to use this peculiar solution to prove some results about the global dynamics of (1.1), which are in striking 
contrast with the case of the local focusing cubic equation

iut(t, x) + uxx(t, x) + |u(t, x)|2u(t, x) = 0, u(t, x) : R×R →C. (1.2)

We will first show that (1.1) is locally well posed (in H1(R)), but then we prove that there exist solutions that blow up 
in finite time (in L∞(R)), with arbitrarily small initial data in H s(R), for any s � 0. This shows in particular that the trivial 
solution, u ≡ 0, is unstable by blow-up.

Let us now observe that (1.1) reduces to (1.2) provided the discussion is restricted to even solutions. Hence, the well-
known solitons uω(t, x) = eiωtϕω(x) of (1.2), where

ϕω(x) = 2
√

2ω

e
√

wx + e−√
wx

, ω > 0, (1.3)

are also solutions to (1.1). These standing waves are orbitally stable with respect to (1.2), but we show that they are unstable 
by blow-up with respect to (1.1).

The rest of the paper is organized as follows. In Section 2, we prove the local well-posedness and the blow-up instability 
of the zero solution. In Section 3 we prove the blow-up instability of the solitons (1.3). We conclude in Section 4 with some 
remarks on the ‘defocusing’ equation

iut(t, x) + uxx(t, x) − u2(t, x)u(t,−x) = 0, u(t, x) :R×R→C. (1.4)

Notation

For non-negative quantities A, B , we write A � B if A � C B for some constant C > 0, whose exact value is not essential 
to the analysis.

2. Instability of the trivial solution

We start with a local well-posedness result.

Theorem 1. Given any initial data u0 ∈ H1(R), there exists a unique maximal solution u ∈ C
([0, Tmax), H1(R)

)
of (1.1) such that 

u(0, ·) = u0 , where Tmax = Tmax(‖u0‖H1(R)).

Proof. The theorem is proved by a fixed point argument, similar to the case of the local equation (1.2). However, some 
calculations are different due to the nonlocal nonlinearity, so we give the proof here for completeness.

Fix u0 ∈ H1(R), define F (u)(x) = u2(x)u(−x) and a map τ : XT → XT by

τ (u)(t) = S(t)u0 + i

t∫

0

S(t − s)F (u)(s)ds,

where XT = L∞(
(0, T ); H1(R)

)
for some T > 0 and S(t) is the free Schrödinger group. We shall prove the existence of a 

unique fixed point of τ in the ball

B R = {u ∈ XT : ‖u‖XT
< R},

for suitable values of T , R > 0. That this fixed point can be extended to a maximal solution u ∈ C
([0, Tmax), H1(R)

)
of (1.1)

then follows by standard arguments.
First observe that, for any p � 2, the Sobolev embedding theorem yields

‖F (u)‖p
L p =

∫

R

|u(x)|2p|u(−x)|p dx

�
{∫

R

|u(x)|2pr dx
}1/r{∫

R

|u(−x)|ps dx
}1/s

= ‖u‖2p
L2pr ‖u‖p

L ps � ‖u‖3p
H1 ,

where r, s � 1 are arbitrary Hölder conjugate exponents. It follows that
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‖F (u)‖L p � ‖u‖3
H1 for any p � 2, (2.1)

and a similar estimate yields

‖F (u)x‖L p � ‖u‖3
H1 for any p � 2, (2.2)

where

F (u)x = [
u2(x)u(−x)

]
x = 2u(x)ux(x)u(−x) − u2(x)ux(−x). (2.3)

By Strichartz’s estimate and (2.1)–(2.2) with p = 2, we see in particular that τ indeed maps XT into XT . Furthermore, there 
exist constants C1, C2 > 0 such that

‖τ (u)‖XT
� C1 ‖u0‖H1 + T ‖F (u)‖L∞(0,T ;H1)

� C1 ‖u0‖H1 + T C2 ‖u‖3
XT

.

Choosing R = 2C1 ‖u0‖H1 and T > 0 such that C1T R2 = 1/2, it follows that, for any u ∈ B R ,

‖τ (u)‖XT
� R

2
+ T C1 ‖u‖2

XT
‖u‖XT

� R

2
+ 1

2
‖u‖XT

< R.

Hence, for these values of T , R > 0, τ maps the ball B R into itself.
We now show that, if T > 0 is small enough, then τ is a contraction in B R . We have

‖τ (u) − τ (v)‖XT
� T ‖F (u) − F (v)‖L∞(0,T ;H1) , u, v ∈ XT . (2.4)

Writing |F (u) − F (v)| = | ∫ 1
0

d
dθ

F (θu + (1 − θ)v) dθ |, we obtain

|F (u) − F (v)| � |u(x) + v(x)||u(x) − v(x)||u(−x) + v(−x)| + |u(x) + v(x)|2|u(−x) − v(−x)|
and it follows that

‖F (u) − F (v)‖L2 �
(‖u‖2

H1 + ‖v‖2
H1

)‖u − v‖L2 . (2.5)

On the other hand, in view of (2.3), letting

G(u)(x) = 2u(x)ux(x)u(−x) and H(u)(x) = u2(x)ux(−x)

we have

|[F (u) − F (v)]x| � |G(u) − G(v)| + |H(u) − H(v)|,
where

|G(u) − G(v)| � |u(x) − v(x)||ux(x) + vx(x)||u(−x) + v(−x)|
+ |u(x) + v(x)||ux(x) − vx(x)||u(−x) + v(−x)|
+ |u(x) + v(x)||ux(x) + vx(x)||u(−x) − v(−x)|

and

|H(u) − H(v)| � |u(x) + v(x)||u(x) − v(x)||ux(−x) + vx(−x)|
+ |u(x) + v(x)|2|ux(−x) + vx(−x)|.

It follows that

‖[F (u) − F (v)]x‖L2 �
(‖u‖2

H1 + ‖v‖2
H1

)‖u − v‖H1 . (2.6)

By (2.4), (2.5) and (2.6), there is a constant C > 0 such that

‖τ (u) − τ (v)‖XT
� C T

(‖u‖2
XT

+ ‖v‖2
XT

)‖u − v‖XT
.

Hence, if u, v ∈ B R we have

‖τ (u) − τ (v)‖XT
� 2C T R2 ‖u − v‖XT

,

showing that τ is a contraction in B R provided T < (2C R2)−1. The contraction mapping principle now yields a unique fixed 
point of τ in B R , which concludes the proof. �

For the local equation (1.2), the next chapter of the story is well known. One proves that, for any u0 ∈ H1(R), the 
maximal solution is global, i.e. that Tmax = ∞. This is usually done by means of the energy and charge functionals
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E(u) = 1

2

∫

R

|ux|2 dx − 1

4

∫

R

|u|4 dx, Q (u) = 1

2

∫

R

|u|2 dx.

Using the conservation of these quantities along the flow and the Gagliardo–Nirenberg inequality, one shows that the first 
term in E is controlled by the second one, and must remain bounded. Hence, global existence in H1(R) is ensured by the 
blow-up alternative.

The corresponding conservation laws for (1.1) are [1,2]

E(u) = 1

2

∫

R

ux(x)ux(−x)dx − 1

4

∫

R

u2(x)u2(−x)dx and Q (u) = 1

2

∫

R

u(x)u(−x)dx.

Even though each of these integrals is real, in general none of the three terms has a definite sign, unless u is even (or 
odd), in which case we recover the energy and charge of the local equation (1.2). This predicament wipes away any hope of 
proving a global well-posedness result for (1.1), even for small initial data. In fact, we have the following result.

Theorem 2. For any 0 < α < 1, there exists a solution uα(t, x) to (1.1), defined on [0, Tα) ×R, where Tα = π/3α2 , with the following 
properties:

(i) uα blows up in L∞(R) as t → Tα , with limt→Tα |uα(t, 0)| = ∞;
(ii) uα

0 = uα(0, ·) satisfies 
∥∥uα

0

∥∥
Hk(R)

� α1/2 , for all k ∈N.

Proof. The result is obtained from the explicit solution

uα,β(t, x) = 2
√

2(α + β)

e−4iα2te2αx + e−4iβ2te−2βx
. (2.7)

For any α, β > 0, α �= β , this function blows up at all times

Tm = (2m + 1)π
4(α2 − β2)

, m ∈ Z,

with limt→Tm |uα,β(t, 0)| = ∞, and is a solution to (1.1) in the sense of Theorem 1 between these times, i.e. uα,β ∈
C
(
(Tm, Tm+1), H1(R)

)
, m ∈ Z. To simplify the analysis, we choose β = α/2, so that uα,β reduces to

uα(t, x) = 3
√

2α

e−4iα2te2αx + e−4iβ2te−αx
, (2.8)

and the first blow-up time to the right of t = 0 becomes

Tα = π
3α2

.

For the initial condition uα
0 = uα(0, ·), direct calculations then show that

∥∥uα
0

∥∥2
L2 = 4πα

3
,

∥∥(uα
0 )x

∥∥2
L2 = 8πα3

3
√

3
,

∥∥(uα
0 )xx

∥∥2
L2 = 8πα5

√
3

. (2.9)

Upon inspection of the integrals involved, one easily sees that, for all k ∈ N, there is a constant Ck > 0, independent of α, 
such that

∥∥∥∥∥
dkuα

0

dxk

∥∥∥∥∥
2

L2

= Ckα
2k+1. (2.10)

For α ∈ (0, 1), this completes the proof. �
Remark 1. (a) If α = β = √

ω/2, then uα,β(t, x) reduces to the usual soliton eiωtϕω(x), with ϕω defined in (1.3).
(b) A direct verification shows that the solution uα,β(t, x) only blows up at x = 0, i.e. the denominator in (2.7) never 

vanishes if x �= 0.
(c) The particular choice β = α/2 enables one to compute explicitly the norms in (2.9). In fact, the relations (2.10) are 

easily derived by choosing β = γα with, say, γ ∈ (0, 1), and using the change of variables y = αx in the integrals.
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3. Instability of the solitons

The blow-up instability of the solitons (1.3) is now a consequence of Remark 1(a). More precisely, fixing α = √
ω/2 and 

letting β = √
ω + δ/2 with 0 < δ 	 1, we obtain finite-time blow-up solutions uα,β as close as we want to eiωtϕω(x).

Theorem 3. Fix ω > 0. For any ε > 0, there exists qω,ε ∈ H1(R) such that∥∥ϕω − qω,ε

∥∥
H1(R)

< ε

and the solution with initial data u(0, ·) = qω,ε blows up in finite time.

Proof. Define qω,δ(x) as uα,β(0, x), with α = √
ω/2 and β = √

ω + δ/2, δ > 0, namely

qω,δ(x) =
√

2(
√

ω + √
ω + δ )

e
√

wx + e−√
w+δx

.

We only need to check that∥∥ϕω − qω,δ

∥∥
H1 → 0 as δ → 0. (3.1)

To show that∫

R

|ϕω(x) − qω,δ(x)|2 dx → 0 as δ → 0, (3.2)

we first observe that |ϕω(x) − qω,δ(x)| → 0 as δ → 0 for all x ∈R. Furthermore, if 0 < δ < 1, we have, for −∞ < x � 0,
√

2(
√

ω + √
ω + δ )

e
√

wx + e−√
w+δx

�
√

2(
√

ω + √
ω + 1 )

e
√

wx + e−√
wx

,

while, for 0 < x < ∞,
√

2(
√

ω + √
ω + δ )

e
√

wx + e−√
w+δx

�
√

2(
√

ω + √
ω + 1 )

e
√

wx + e−√
w+1x

,

and so (3.2) follows by dominated convergence. Applying similar estimates to the derivative

(qω,δ)x(x) = √
2(

√
ω + √

ω + δ )

√
w + δ e−√

w+δx − √
w e

√
wx

(e
√

wx + e−√
w+δx)2

and using again dominated convergence, we also have∫

R

|(ϕω)x(x) − (qω,δ)x(x)|2 dx → 0 as δ → 0,

from which the conclusion follows. �
4. Remarks on the defocusing case

The ‘defocusing’ equation (1.4) has also been considered in [1,2]. Our local well-posedness result, Theorem 1, carries over 
to (1.4), with an identical proof. On the other hand, it is shown in [2, p. 936] that ‘one-soliton’ solutions of the type (2.7)
are not available in the defocusing case. Global well-posedness for (1.4) seems to be an open problem.
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