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The Chan–Robbins–Yuen polytope can be thought of as the flow polytope of the complete 
graph with netflow vector (1, 0, . . . , 0, −1). The normalized volume of the Chan–Robbins–
Yuen polytope equals the product of consecutive Catalan numbers, yet there is no 
combinatorial proof of this fact. We consider a natural generalization of this polytope, 
namely, the flow polytope of the complete graph with netflow vector (1, 1, 0, . . . , 0, −2). 
We show that the volume of this polytope is a certain power of 2 times the product 
of consecutive Catalan numbers. Our proof uses constant-term identities and further 
deepens the combinatorial mystery of why these numbers appear. In addition, we 
introduce two more families of flow polytopes whose volumes are given by product 
formulas.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Le polytope de Chan–Robbins–Yuen peut être considéré comme le polytope de flot du 
graphe complet avec vecteur de flot (1, 0, . . . , 0, −1). Le volume normalisé du polytope 
de Chan–Robbins–Yuen est égal au produit de nombres de Catalan consécutifs, mais 
il n’existe pas de preuve combinatoire de ce fait. Nous considérons une extension 
naturelle de ce polytope, à savoir le polytope de flot du graphe complet avec vecteur 
de flot (1, 1, 0, . . . , 0, −2). Nous montrons que le volume de ce polytope est une certaine 
puissance de 2 fois le produit de nombres de Catalan consécutifs. Notre preuve utilise 
des identités de termes constants et approfondit encore le mystère combinatoire de la 
raison pour laquelle ces nombres apparaissent. De plus, nous introduisons deux familles de 
polytopes de flot dont les volumes sont donnés par des formules produits.
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Fig. 1. The flow polytope FK5 (a1, a2, a3, a4, − ∑4
i=1 ai) consists of all points (a, b, c, d, e, f , g, h, i, j) ∈R

10 satisfying the inequalities and equations displayed 
to the right of K5.

1. Introduction

We underscore the wealth of flow polytopes with product formulas for volumes. The natural question arising from 
our study and previous works [1–3,8,10,11,13,14] is: is there a unified (combinatorial?) explanation for these beautiful 
product formulas? All current results relating to these volumes show these formulas as a result of various computations 
that surprisingly yield products. Our hope is that by identifying three more distinguished families of flow polytopes with 
beautiful product formulas for their volumes, we inch closer with uncovering an illuminating explanation for these formulas.

The flow polytope FG(a) is associated with a graph G on the vertex set {1, . . . , n} with edges directed from smaller to 
larger vertices and netflow vector a = (a1, . . . , an) ∈ Z

n . The points of FG(a) are nonnegative flows on the edges of G so that 
the is conserved at each vertex; see Fig. 1 (Section 2 has precise definition). Flow polytopes are closely related to Kostant 
partition functions [1,10], Grothendieck polynomials [4,5,9], and the space of diagonal harmonics [7,11], among others.

Perhaps the most famous flow polytope is FKn+1 (1, 0, . . . , 0, −1), the flow polytope of the complete graph, also re-
ferred to as the Chan–Robbins–Yuen polytope (C RYn) [3]. Chan, Robbins and Yuen defined C RYn as the convex hull of 
the set of n × n permutation matrices π with πi j = 0 if j ≥ i + 2, which can be shown to be integrally equivalent to 
FKn+1(1, 0, . . . , 0, −1). (Thus, C RYn and FKn+1(1, 0, . . . , 0, −1) are combinatorially equivalent, and have the same volume 
and Ehrhart polynomial.) The polytope C RYn is a face of the Birkhoff polytope, the polytope of all doubly stochastic ma-
trices, prominent in combinatorial optimization. Remarkably, the volume of the C RYn polytope is the product of the first 
n −2 Catalan numbers, as conjectured by Chan, Robbins and Yuen in [3] and proved by Zeilberger analytically in [13]. Under 
“volume” we mean in this paper the normalized volume of a polytope. The normalized volume of a d-dimensional polytope 
P ⊂ R

n , denoted by vol P , is the volume form that assigns a volume of one to the smallest d-dimensional integer simplex 
in the affine span of P .

Several generalizations of C RYn are introduced and studied in [8,10,11]. The volume formulas of the aforementioned 
polytopes are akin to of C RYn . In this paper, we identify three new families of flow polytopes generalizing C RYn . In partic-
ular, we study the flow polytope of the complete graph with netflow vector (1, 1, 0, . . . , 0, −2) and show that its volume is 
a power of 2 times the product of consecutive Catalan numbers. Furthermore, if we take the complete graph with various 
multiple edges and consider the corresponding flow polytope with netflow vectors (1, 0, . . . , 0, −1) or (1, . . . , 1, −n), we 
still obtain product formulas for their volumes, as a result of the generalized Lidskii formulas [1] and the Morris (and the 
like) constant term identity [12]. Combinatorial proofs remain elusive, but all the more enticing.

Now we state our results regarding the three new families of polytopes we study in this paper. For definitions and 
background, see Section 2.

Theorem 1.1. The normalized volume of the flow polytope FKn+1(1, 1, 0, . . . , 0, −2) is

volFKn+1(1,1,0, . . . ,0,−2) = 2
(n

2

)−1
n−2∏
i=1

Cat(i),

where Cat(i) = 1
i+1

(2i
i

)
is the ith Catalan number.

Let �(·) denote the Gamma function. In particular, �( j) = ( j − 1)! when j ∈N.

Theorem 1.2. Denote by K a,b,m
n+1 the graph on the vertex set [n + 1] with each edge (1, i), i ∈ [2, n], appearing a times, edge (i, n + 1), 

i ∈ [2, n], appearing b times, and (i, j), 1 < i < j < n + 1 appearing m times. Then we have that

volF
K a,b,m

n+1
(1,0, . . . ,0,−1) = 1

(n − 1)!
n−2∏
j=0

�(a − 1 + b + (n − 2 + j)m
2 )�(m

2 )

�(a + j m
2 )�(b + j m

2 )�(m
2 + j m

2 )
.
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Theorem 1.3. Denote by K a,b
n+1 the graph on the vertex set [n + 1] with edges (i, j), 1 ≤ i < j ≤ n, appearing with multiplicity a and 

the edges (i, n + 1), i ∈ [n], appearing with multiplicity b. For n ≥ 2 and nonnegative integers a, b, we have that 

volF
K a,b

n+1
(1,1, . . . ,1,−n) = (

(b − 1)n + a
(n

2

))!n−1∏
i=0

�(1 + a/2)

�(1 + (i + 1)a/2)�(b + ia/2)
.

The polytope FKn+1(1, 0, . . . , 0, −1) (integrally equivalent to C RYn) belongs to the polytope family in Theorem 1.2. In-
deed, Zeilberger [13] proved the C RYn volume formula by specializing the Morris identity (stated in Lemma 4.1), while 
Theorem 1.2 uses the whole strength of the Morris identity. Similarly, we make use of the Morris-type identity proved 
in [11] to prove Theorem 1.3. It is Theorem 1.1 that makes us work significantly: neither the Morris, nor the Morris-type 
identities mentioned above work; rather we prove a new constant term identity to tackle it.

The outline of the paper is as follows. In Section 2, we give the necessary definitions on flow polytopes. In Section 3, we 
prove Theorem 1.1. In Section 4, we prove Theorems 1.2, and in Section 5, we prove Theorem 1.3. Finally, in Section 6, we 
enumerate the vertices of the polytopes FKn+1 (1, 1, 0, . . . , 0, −2) appearing in Theorem 1.1.

2. Flow polytopes FG(a) and Kostant partition functions

The exposition of this section follows that of [10]; see [10] for more details.
Let G be a (loopless) graph on the vertex set [n + 1] with N edges. With each edge (i, j), i < j, of G , associate the 

positive type An root v(i, j) = ei − e j , where ei is the ith standard basis vector in Rn+1. Let SG := {{v1, . . . , vN }} be the 
multiset of roots corresponding to the multiset of edges of G . Let MG be the (n + 1) × N matrix whose columns are the 
vectors in SG . Fix an integer vector a = (a1, . . . , an+1) ∈ Z

n+1 which we call the netflow and for which we require that 
an+1 = − 

∑n
i=1 ai . An a-flow fG on G is a vector fG = (bk)k∈[N] , bk ∈ R≥0 such that MG fG = a. That is, for all 1 ≤ i ≤ n + 1, 

we have: ∑
e=(g<i)∈E(G)

b(e) + ai =
∑

e=(i< j)∈E(G)

b(e) (1)

Define the flow polytope FG(a) associated with a graph G on the vertex set [n + 1] and the integer vector a =
(a1, . . . , an+1) as the set of all a-flows fG on G , i.e., FG = {fG ∈ R

N≥0 | MG fG = a}. The flow polytope FG(a) then natu-

rally lives in RN , where N is the number of edges of G . The vertices of the flow polytope FG(a) are the a-flows whose 
supports are acyclic subgraphs of G [6, Lemma 2.1].

Recall that the Kostant partition function KG evaluated at the vector b ∈ Z
n+1 is defined as 

KG(b) = #
{
(ck)k∈[N]

∣∣∣ ∑
k∈[N]

ckvk = b and ck ∈ Z≥0

}
, (2)

where [N] = {1, 2, . . . , N}.
The generating series of the Kostant partition function is ∑

b∈Zn+1

KG(b)xb =
∏

(i, j)∈E(G)

(1 − xi x
−1
j )−1, (3)

where xb = xb1
1 xb2

2 · · · x
bn+1
n+1 . In particular, 

K Kn+1(b) = [xb]
∏

1≤i< j≤n+1

(1 − xi x
−1
j )−1. (4)

Assume that a = (a1, a2, . . . , an) satisfies ai ≥ 0 for i = 1, . . . , n. Let a′ = (a1, a2, . . . , an, − 
∑n

i=1 ai). The generalized Lid-
skii formulas of Baldoni and Vergne state that for a graph G on the vertex set [n + 1] with N edges we have the following 
theorem.

Theorem 2.1. [1, Theorem 38]

volFG(a′) =
∑

i

(
N − n

i1, i2, . . . , in

)
ai1

1 · · ·ain
n · KG ′(i1 − tG

1 , i2 − tG
2 , . . . , in − tG

n ), (5)

and 

KG(a′) =
∑

i

(
a1 + tG

1

i1

)(
a2 + tG

2

i2

)
· · ·

(
an + tG

n

in

)
· KG ′(i1 − tG

1 , i2 − tG
2 , . . . , in − tG

n ), (6)

where both sums are over weak compositions i = (i1, i2, . . . , in) of N −n with n parts that we denote as i |= N −n, �(i) = n. The graph 
G ′ is the restriction of G to the vertex set [n]. The notation tG , i ∈ [n], stands for the outdegree of vertex i in G minus 1.
i
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The next three sections utilize the generalized Lidskii formulas.

3. A new Catalan polytope

In this section, we prove Theorem 1.1. Our methods rely on (5) and constant-term identities.
For a Laurent series f (x) in x, we denote the constant term by CTx f (x). We will also use the notation 

CTxn,...,x1 = CTxn · · ·CTx1 .

We refer to the polytope of Theorem 1.1 as the “Catalan polytope”, since its volume involves Catalan numbers. Our proof 
rests on the following two lemmas, whose proofs we provide after:

Lemma 3.1. 

vol(FKn+1(1,1,0, . . . ,0,−2)) = CTxn,...,x1

(xn + xn−1)
(n

2

)
∏

1≤i< j≤n(x j − xi)
.

Lemma 3.2. 

CTxn,...,x1

(xn + xn−1)
(n

2

)
∏

1≤i< j≤n(x j − xi)
= 2

(n
2

)−1
n−2∏
k=1

Cat(k).

Recall Theorem 1.1:

Theorem 1.1. The normalized volume of the flow polytope FKn+1(1, 1, 0, . . . , 0, −2) is

volFKn+1(1,1,0, . . . ,0,−2) = 2
(n

2

)−1
n−2∏
k=1

Cat(k).

Proof. Immediate from Lemmas 3.1 and 3.2. �
3.1. Proving Lemma 3.1

We now show how to express the volume as a constant-term identity.

Proof of Lemma 3.1. First note that 

K Kn+1(a1,a2, . . . ,an,−
n∑

i=1

ai) = K Kn+1(

n∑
i=1

ai,−an, . . . ,−a2,−a1). (7)

By (5) and (7), we have that

volFKn+1(1,1,0, . . . ,0,−2)

=
∑

i|=(n
2

)
,i=(i1,i2,0,...,0)

( (n
2

)
i1, i2

)
· K Kn(i1 − n + 1, i2 − n + 2,−n + 3,−n + 4, . . . ,0)

=
∑

i1+i2=(n
2

)
( (n

2

)
i1, i2

)
· K Kn(0,1,2, . . . ,n − 4,n − 3,n − 2 − i2,n − 1 − i1).

We use (4) to rewrite this as 

volFKn+1(1,1,0, . . . ,0,−2) =
∑

i1+i2=(n
2

)
( (n

2

)
i1, i2

)
[xδn x−i2

n−1x−i1
n ]

∏
1≤i< j≤n

(1 − xi x
−1
j )−1,

where δn = (0, 1, 2, . . . , n − 1). Since [xa] f = CTxn,...,x1 x−a f , we have

volFKn+1(1,1,0, . . . ,0,−2) = CTxn,...,x1

∑
i +i =(n) x−δn xi2

n−1xi1
n

( (n
2

)
i1, i2

) ∏
1≤i< j≤n

(1 − xi x
−1
j )−1.
1 2 2
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Using 
∏

1≤i< j≤n

(1 − xi x
−1
j )−1 = xδn

∏
1≤i< j≤n

(x j − xi)
−1 we get 

volFKn+1(1,1,0, . . . ,0,−2) = CTxn,...,x1

∏
1≤i< j≤n

(x j − xi)
−1

∑
i1+i2=(n

2

)
( (n

2

)
i1, i2

)
xi2

n−1xi1
n .

An application of the binomial theorem yields the desired result. �
3.2. Proof of Lemma 3.2

We need a few results before the proof Lemma 3.2. The following identity was used in [13] to prove the volume formula 
for C RYn: 

CTxn−2,...,x1

n−2∏
j=1

(1 − x j)
−2

∏
1≤ j<k≤n−2

(xk − x j)
−1 =

n−2∏
k=1

Cat(k). (8)

Equation (8) is a special case of the Morris identity stated in Lemma 4.1. We relate the constant term in Lemma 3.2 to 
that in (8). To this end, we give a combinatorial meaning to the constant terms using matrices.

Let Matn×m denote the set of n × m matrices with nonnegative integer entries. We say that A ∈ Matn×m is upper tri-
angular if Ai, j = 0 whenever i > j. We denote by Mat∗n×m the set of upper triangular matrices A ∈ Matn×m with diagonal 
entries given by Ai,i = i − 1 for i = 1, 2, . . . , min(n, m).

For A ∈ Matn×m and an integer k ≥ 1, we define the kth row sum

rk(A) =
m∑

i=1

Ak,i

and the kth hook sum

hk(A) =
m∑

i=k+1

Ak,i −
k∑

j=1

A j,k.

For example, if m = n = 4, let A be the matrix 

A =

⎛
⎜⎜⎝

4 2 5 7
0 1 2 3
0 0 1 8
0 0 0 3

⎞
⎟⎟⎠ .

This gives r2(A) = 0 + 1 + 2 + 3 = 6, h2(A) = 2 + 3 − 1 − 2 = 3, r3(A) = 9 and h3(A) = 0.
For two variables xi and x j with i < j, we regard 1/(x j − xi) as the Laurent series in xi and x j given by 

1

x j − xi
= 1

x j(1 − xi/x j)
= x−1

j

∞∑
k=0

xk
i x−k

j .

Lemma 3.3. For nonnegative integers b and m, we have 
n∏

i=1

(1 − xi)
−b

∏
1≤i< j≤n

(x j − xi)
−m =

∑
A(1),...,A(m)∈Mat∗n×n

B∈Matn×m

n∏
i=1

x
∑m

j=1 hi(A(i))+ri(B)

i .

In particular, when m = 1, we have 
n∏

i=1

(1 − xi)
−b

∏
1≤i< j≤n

(x j − xi)
−1 =

∑
A∈Mat∗n×(n+m)

xh1(A)
1 . . . xhn(A)

n .

Proof. This follows immediately from the expansions 
n∏

i=1

(1 − xi)
−b =

∑
A∈Mat

xr1(A)
1 . . . xrn(A)

n ,
n×b
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∏
1≤i< j≤n

1

x j − xi
=

∑
A∈Mat∗n×n

xh1(A)
1 . . . xhn(A)

n . �

The following is the main lemma in this subsection.

Lemma 3.4. Suppose that n is a nonnegative integer and a, a1, . . . , an are any integers with a1 + a2 + · · · + an = a. Then

CTxn,...,x1(xn−1 + xn)
(n

2

)−a(x
an−1
n−1 xan

n + xan
n−1x

an−1
n )

n−2∏
i=1

xai
i

∏
1≤i< j≤n

(x j − xi)
−1

= 2
(n

2

)−aCTxn−2,...,x1

n−2∏
i=1

xai
i (1 − xi)

−2
∏

1≤i< j≤n−2

(x j − xi)
−1.

Proof. Let L be the left-hand side. Then

L = CTxn CTxn−1(xn−1 + xn)
(n

2

)−a(x
an−1
n−1 xan

n + xan
n−1x

an−1
n )CTxn−2,...,x1

n−2∏
i=1

xai
i

∏
1≤i< j≤n

(x j − xi)
−1.

By Lemma 3.3, 

CTxn−2,...,x1

n−2∏
i=1

xai
i

∏
1≤i< j≤n

(x j − xi)
−1 =

∑
A∈T

x
hn−1(A)

n−1 xhn(A)
n ,

where 

T = {A ∈ Mat∗n×n : hi(A) = −ai for i = 1,2, . . . ,n − 2}.
Thus

L = CTxn CTxn−1

(n
2

)−a∑
t=0

((n
2

) − a

t

)
xt

n−1x
(n

2

)−a−t
n (x

an−1
n−1 xan

n + xan
n−1x

an−1
n )

∑
A∈T

x
hn−1(A)

n−1 xhn(A)
n ,

and we get 

L =
(n

2

)−a∑
t=0

((n
2

) − a

t

)
(|Xt | + |X ′

t |), (9)

where Xt (respectively X ′
t ) is the set of matrices A ∈ Mat∗n×n such that hi(A) = −ai for i = 1, 2, . . . , n − 2, and t + an−1 +

hn−1(A) = 0 and 
(n

2

) − a − t + an + hn(A) = 0 (respectively t + an + hn−1(A) = 0 and 
(n

2

) − a − t + an−1 + hn(A) = 0). Since 
every matrix A ∈ Mat∗n×n satisfies h1(A) +· · ·+hn(A) = −(n

2

)
, we can omit the condition on hn(A). Therefore we can rewrite 

Xt and X ′
t as

Xt = {A ∈ Mat∗n×n : hi(A) = −ai for i = 1,2, . . . ,n − 2,hn−1(A) = −an−1 − t},
X ′

t = {A ∈ Mat∗n×n : hi(A) = −ai for i = 1,2, . . . ,n − 2,hn−1(A) = −an − t}.
Putting 

X =
(n

2

)−a⋃
t=0

Xt, X ′ =
(n

2

)−a⋃
t=0

X ′
t,

we can rewrite (9) as follows: 

2L =
∑
A∈X

( (n
2

) − a

−an−1 − hn−1(A)

)
+

∑
A∈X ′

( (n
2

) − a

−an − hn−1(A)

)
(10)

Let 

Y = {B ∈ Mat∗ : hi(A) = −ai for i = 1,2, . . . ,n − 2}.
(n−2)×n
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Then 

|Y | = CTxn−2,...,x1

n−2∏
i=1

xai
i (1 − xi)

−2
∏

1≤i< j≤n−2

(x j − xi)
−1.

We claim that there is a bijection φ : X 	 X ′ → Y × {0, 1, . . . , 
(n

2

) − a} such that if φ(A) = (B, t) for A ∈ X then −an−1 −
hn−1(A) = t or −an−1 − hn−1(A) = (n

2

) − a − t and if φ(A) = (B, t) for A ∈ X ′ then −an − hn−1(A) = t or −an − hn−1(A) =(n
2

) − a − t . Applying this bijection to (10), we get 

2L =
∑

(B,t)∈Y ×{0,1,...,
(n

2

)−a}

((n
2

) − a

t

)
,

which is equal to 2
(n

2

)−a|Y |. Thus it is now sufficient to find such a bijection.
We define the map φ : X 	 X ′ → Y × {0, 1, . . . , 

(n
2

) − a} by φ(A) = (B, t) for A ∈ X and φ(A) = (B ′, 
(n

2

) − a − t) for A ∈ X ′ , 
where t = −an−1 − hn−1(A), B is the matrix obtained from A by removing the last two rows, and B ′ is the matrix obtained 
from B by exchanging the last two columns.

Let (B, t) ∈ Y × {0, 1, . . . , 
(n

2

) − a}. In order to show that φ is a bijection, we must show that there is a unique element 
A ∈ X 	 X ′ such that φ(A) = (B, t). Let ci be the sum of entries in the ith column of B for i = n − 1, n. Then we have 

h1(B) + · · · + hn−2(B) = −0 − 1 − · · · − (n − 3) + cn−1 + cn = −
n−2∑
i=1

ai .

Thus 

cn−1 + cn =
(

n − 2

2

)
−

n−2∑
i=1

ai . (11)

We now consider the following two cases.
Case 1: There is a matrix A ∈ X such that φ(A) = (B, t). In this case, hn−1(A) = −cn−1 − (n − 2) + An−1,n = −an−1 − t . 

Thus A is uniquely determined by An−1,n = cn−1 + (n − 2) − an−1 − t and such a matrix A exists if and only if 

cn−1 + (n − 2) − an−1 − t ≥ 0. (12)

Case 2: There is a matrix A ∈ X ′ such that φ(A) = (B, t). In this case, hn−1(A) = −cn − (n − 2) + An−1,n = −an−1 − (
(n

2

) −
a − t). Thus A is uniquely determined by An−1,n = cn + (n − 2) − an−1 − (

(n
2

) − a − t) and such a matrix A exists if and only 
if 

cn + (n − 2) − an−1 −
((

n

2

)
− a − t

)
≥ 0.

Using (11), one can check that the above inequality is equivalent to 

cn−1 + (n − 1) − an−1 − t ≤ 0. (13)

For any integers n, a, t , exactly one of (12) and (13) holds. Thus there is a unique element A ∈ X 	 X ′ such that φ(A) =
(B, t). This finishes the proof. �

We now have all ingredients to prove Lemma 3.2.

Proof of Lemma 3.2. If ai = 0 for all i = 1, 2, . . . , n in Lemma 3.4, we have

CTxn,...,x1(xn−1 + xn)
(n

2

)
· 2 ·

n−2∏
i=1

∏
1≤i< j≤n

(x j − xi)
−1 = 2

(n
2

)
CTxn−2,...,x1

n−2∏
i=1

(1 − xi)
−2

∏
1≤i< j≤n−2

(x j − xi)
−1.

By (8), we obtain the desired identity. �
4. Morris polytopes

We refer to the polytopes of Theorem 1.2 as the “Morris polytopes”, as their volume formulas are byproducts of the 
Morris identity. This section is devoted to proving Theorem 1.2, which we achieve in a sequence of lemmas.
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Lemma 4.1 (Morris Identity [13]). For positive integers n, a, and b, and m, let 

C(n,a,b,m) = CTxn,...,x1

n∏
i=1

x−a
i (1 − xi)

−b
∏

1≤i< j≤n

(x j − xi)
−m.

Then 

C(n,a,b,m) = 1

n!
n−1∏
j=0

�(a + b + (n − 1 + j)m/2)�(m/2)

�(b + jm/2)�(m/2 + jm/2)�(a + jm/2 + 1)
. (14)

Recall that K a,b,m
n+1 is the graph on the vertex set [n + 1] with each edge (1, i), i ∈ [2, n], appearing a times, edge (i, n + 1), 

i ∈ [2, n], appearing b times, and (i, j), 1 < i < j < n + 1 appearing m times. We apply the following unpublished result of 
Postnikov and Stanley to F

K a,b,m
n+1

(1, 0, . . . , 0, −1). We note that their theorem can be seen as a special case of a version of 
the generalized Lidskii formulas.

Theorem 4.2. [1,10] For a graph G on the vertex set [n], with di = (indegree of i) − 1, we have 

vol (FG(1,0, . . . ,0,−1)) = KG(0,d2, . . . ,dn−1,−
n−1∑
i=2

di).

Lemma 4.3. For positive integers n, a, and b, and m, we have

volF
K a,b,m

n+1
(1,0, . . . ,0,−1) = CTxn CTxn−1 · · ·CTx1

n−1∏
i=1

x−a+1
i (1 − xi)

−b
∏

1≤i< j≤n−1

(x j − xi)
−m.

Proof. Denote by K m,b
n the restriction of K a,b,m

n+1 to the vertex set [2, n + 1]. Let

v =
(

0,a − 1,a − 1 + m,a − 1 + 2m, . . . ,a − 1 + (n − 2)m,−(n − 1)(a − 1) −
(

n − 1

2

)
m

)
and

w =
(

a − 1,a − 1 + m,a − 1 + 2m, . . . ,a − 1 + (n − 2)m,−(n − 1)(a − 1) −
(

n − 1

2

)
m

)
.

Also let 

xw = xa−1
1 xa−1+m

2 · · · xa−1+(n−2)m
n−1 x

−(n−1)(a−1)−(n−1
2

)
m

n

and 

x̃w̃ = xa−1
1 xa−1+m

2 · · · xa−1+(n−2)m
n−1

Then, by Theorem 4.2, we have that

volF
K a,b,m

n+1
(1,0, . . . ,0,−1) = K

K a,b,m
n+1

(v) = K
K b,m

n
(w)

= [xw]
n−1∏
i=1

(1 − xi xn
−1)−b

∏
1≤i< j≤n−1

(1 − xi x j
−1)−m

= [x̃w̃]
n−1∏
i=1

(1 − xi)
−bx(i−1)m

i

∏
1≤i< j≤n−1

(x j − xi)
−m

= CTxn−1 · · · CTx1

n−1∏
i=1

(1 − xi)
−bx−a+1

i

∏
1≤i< j≤n−1

(x j − xi)
−m. �

Theorem 1.2 states that

volF
K a,b,m

n+1
(1,0, . . . ,0,−1) = 1

(n − 1)!
n−2∏
j=0

�(a − 1 + b + (n − 2 + j)m
2 )�(m

2 )

�(a + j m
2 )�(b + j m

2 )�(m
2 + j m

2 )
.

Its proof is immediate from Lemmas 4.1 and 4.3.
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5. Generalizations of the Tesler polytope

In this section we study generalizations of the Tesler polytope FKn+1 (1, . . . , 1, −n) which was introduced and studied in 
[11]. It is proved in [11] that normalized volume of FKn+1 (1, . . . , 1, −n) equals

volFKn+1(1, . . . ,1,−n) =
(n

2

)! · 2
(n

2

)
∏n

i=1 i! = |SYT(n−1,n−2,...,1) | ·
n−1∏
i=0

Cat(i), (15)

where Cat(i) = 1
i+1

(2i
i

)
is the ith Catalan number and | SYT(n−1,n−2,...,1) | is the number of Standard Young Tableaux of 

staircase shape (n − 1, n − 2, . . . , 1).
Denote by K a,b

n+1 the graph on the vertex set [n + 1] with edges (i, j), 1 ≤ i < j ≤ n, appearing with multiplicity a
and the edges (i, n + 1), i ∈ [n], appearing with multiplicity b. Our objective in this section is to calculate the volumes of 
F

K a,b
n+1

(1, 1, . . . , 1, −n). The Tesler polytope is a special case when we set a = b = 1.

Lemma 5.1. For n ≥ 2, and nonnegative integers a, and b,

volF
K a,b

n+1
(1,1, . . . ,1,−n) = CTxn,...,x1(x1 + · · · + xn)

(n
2

)
a+n(b−1)

n∏
i=1

x−b+1
i

∏
1≤i< j≤n

(x j − xi)
−a.

Proof. We apply (5) to F
K a,b

n+1
(1, 1, . . . , 1, −n). Denote by K a

n the restriction of K a,b
n+1 to the vertex set [n]. Note that K a

n is 

the complete graph on the vertex set [n] with each edge appearing with multiplicity a. For K a,b
n+1 we have N = (n

2

)
a +nb and 

r = n in (5). Moreover, t1 = (n − 1)a + b − 1, t2 = (n − 2)a + b − 1, t3 = (n − 3)a + b − 1, . . . , tn−1 = a + b − 1, tn = b − 1. By 
(5), we obtain

volF
K a,b

n+1
(1,1, . . . ,1,−n)

=
∑

i|=N−n,�(i)=n

(
N − n

i1, i2, . . . , in

)
K K a

n
(i1 − t1, i2 − t2, . . . , in − tn),

=
∑

i|=N−n,�(i)=n

(
N − n

i1, i2, . . . , in

)
K K a

n
(tn − in, tn−1 − in−1, . . . , t1 − i1).

We use (4) to rewrite this as 

volF
K a,b

n+1
(1,1, . . . ,1,−n) =

∑
i|=N−n,�(i)=n

(
N − n

i1, i2, . . . , in

)
[xt−i]

∏
1≤i< j≤n

(1 − xix
−1
j )−a,

where t = (tn, . . . , t1) and i = (in, . . . , i1). Since [xa] f = CTxn · · ·CTx1 x−a f then

volF
K a,b

n+1
(1,1, . . . ,1,−n) = CTxn · · ·CTx1

∑
i|=N−n,�(i)=n

(
N − n

i1, i2, . . . , in

)
xi−t

∏
1≤i< j≤n

(1 − xix
−1
j )−a.

Note that t = aδn + (b − 1, . . . , b − 1, b − 1), where δn = (0, 1, 2 . . . , n − 1).
Using 

∏
1≤i< j≤n

(1 − xi x
−1
j )−a = xaδn

∏
1≤i< j≤n

(x j − xi)
−a we get

volF
K a,b

n+1
(1,1, . . . ,1,−n) = CTxn · · ·CTx1

∑
i|=N−n,�(i)=n

(
N − n

i1, i2, . . . , in

)
xi−(b−1,...,b−1)

∏
1≤i< j≤n

(x j − xi)
−a.

An application of the multinomial theorem yields the desired result. �
Lemma 5.2. [11, Lemma 3.5] For n ≥ 2 and nonnegative integers a, b we have that

CTxn · · · CTx1 (x1 + · · · + xn)
(b−1)n+a

(n
2

) n∏
i=1

x−b+1
i

∏
1≤i< j≤n

(xi − x j)
−a =

= (
(b − 1)n + a

(n
2

))! n−1∏
i=0

�(1 + a/2)

�(1 + (i + 1)a/2)�(b + ia/2)
.
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Now we are ready to prove Theorem 1.3.

Theorem 1.3. For n ≥ 2 and nonnegative integers a, b, we have that 

volF
K a,b

n+1
(1,1, . . . ,1,−n) = (

(b − 1)n + a
(n

2

))!n−1∏
i=0

�(1 + a/2)

�(1 + (i + 1)a/2)�(b + ia/2)
.

Proof. Immediate from Lemmas 5.1 and 5.2. �
6. The faces of the Catalan polytope

The face structure of all flow polytopes of the complete graph was studied in [11]. Here we specialize these results 
in order to enumerate the vertices of FKn+1(1, 1, 0, . . . , 0, −2). The first part of this section follows the exposition of [11, 
Section 2].

Let rstcn denote the shifted staircase of size n. We use the matrix coordinates {(i, j) : 1 ≤ i ≤ j ≤ n} to describe the cells 
of rstcn . An a-Tesler tableau T (defined in [11]) is a (0, 1)-filling of rstcn , which satisfies the following three conditions:

(1) for 1 ≤ i ≤ n, if ai > 0, there is at least one 1 in row i of T ,
(2) for 1 ≤ i < j ≤ n, if T (i, j) = 1, then there is at least one 1 in row j of T , and
(3) for 1 ≤ j ≤ n, if a j = 0 and T (i, j) = 0 for all 1 ≤ i < j, then T ( j, k) = 0 for all j ≤ k ≤ n.

For example, if n = 4 and a = (7, 0, 3, 0), then three a-Tesler tableaux are shown below. We write the entries of å in a 
column to the left of a given a-Tesler tableau. 

7 0 1 1 1

0 0 0 1

3 1 1

0 1

7 1 0 1 0

0 0 0 0

3 0 1

0 1

7 1 1 1 0

0 1 1 0

3 1 0

0 0

The dimension dim(T ) of an a-Tesler tableau T is 
∑n

i=1(ri − 1), where

ri =
{

the number of 1’s in row i of T if row i of T is nonzero,

1 if row i of T is zero.

In other words, dim(T ) is the number of 1’s minus the number of nonzero rows. From left to right, the dimensions of the 
tableaux shown above are 3, 1, and 3.

Given two a-Tesler tableaux T1 and T2, we write T1 ≤ T2 to mean that for all 1 ≤ i ≤ j ≤ n we have T1(i, j) ≤ T2(i, j). 
It is shown in [11] that the a-Tesler tableaux partially ordered by ≤ with a unique minimal element adjoint form a poset 
graded by dimension of the Tesler tableaux plus one. We refer to the poset as the a-Tesler tableaux poset.

Theorem 6.1. [11] Let a = (a1, . . . , an) ∈ (Z≥0)
n and a′ = (a1, . . . , an, − 

∑n
i=1 ai). The face poset of FKn+1(a′) is isomorphic to the 

a-Tesler tableaux poset. In particular, the vertices of FKn+1(a′) are in bijection with the a-Tesler tableaux of dimension 0.

We need some definitions in order to compute the number of vertices of FKn+1 (a).
A decreasing forest on a subset V ⊆ [n] is a rooted forest such that if u is a child of v , then u < v . For a decreasing 

forest F , a root is a vertex with no parent and a leaf is a vertex with no child. For example, the decreasing forest in 
Fig. 2 has roots 9, 2, 10 and leaves 1, 3, 8, 2, 5. Note that an isolated vertex is both a root and a leaf. Note also that every 
connected component of F has a unique root, which is the largest vertex in that component.

We introduce another definition, which is essentially the same as that of a decreasing forest. A directed decreasing 
forest is a directed graph obtained from a decreasing forest by orienting each edge {i, j} with i < j by (i, j) and adding a 
loop (r, r) for each root r. Note that there is a unique way to construct a directed decreasing forest from a decreasing forest 
and vice versa. For example, the directed decreasing forest in Fig. 3 corresponds to the decreasing forest in Fig. 2.

Now we show that the number of a-Tesler tableaux of dimension 0 is equal to the number of certain decreasing forests.

Lemma 6.2. Let a ∈ (Z≥0)
n whose nonzero entries are exactly in positions s1, s2, . . . , sk. Then the number of a-Tesler tableaux of 

dimension 0 is equal to the number of decreasing forests on V with {s1, . . . , sk} ⊆ V ⊆ [n], in which the leaves are contained in 
{s1, s2, . . . , sk}.
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Fig. 2. A decreasing forest.

Fig. 3. A directed decreasing forest.

Fig. 4. The Tesler tableau corresponding to the directed decreasing forest in Fig. 3. Here, for readability, the row numbers and column numbers are indicated.

Proof. It is sufficient to construct a bijection between the set T of a-Tesler tableaux of dimension 0 and the set D of 
directed decreasing forest on V with {s1, . . . , sk} ⊆ V ⊆ [n] in which the leaves are contained in {s1, s2, . . . , sk}.

For T ∈ T , we construct the directed graph DT = (V T , ET ) as follows. The vertex set V T is the set of integers i such that 
row i of T is nonzero. There is a directed edge (i, j) ∈ E T if and only if T (i, j) = 1. For example, if T is the Tesler tableau in 
Fig. 4, then DT is the directed decreasing forest in Fig. 3.

We need to check DT ∈ D. Since dim(T ) = 0, the number of 1’s equals the number of nonzero rows in T . This is 
equivalent to the condition that in DT the number of vertices equals the number of edges. Consider a connected component 
C of DT . Here, we assume that two vertices are connected if there is a path from one vertex to another ignoring the 
orientations of the edges in the path. By the second condition (2) of the definition of a-Tesler tableau, for every vertex i
of DT , there is an edge (i, j) with i ≤ j. Thus, the vertex with largest label in C has a loop. Since C is connected, if C
has k vertices, then C must have at least k − 1 except loops. Together with the loop at the largest vertex, C has at least k
edges. If C has exactly k edges, then C must be a directed tree with a loop attached at the largest vertex. Moreover, C is a 
directed decreasing tree for the following reason. If we follow a directed path, by the second condition (2) of the definition 
of a-Tesler tableau, we can always find a loop at the end. If C is not a directed decreasing tree then there is a vertex of 
out-degree at least 2, which implies that there are at least two loops. This is a contradiction to the fact that C has k edges.

Thus we have DT ∈D. It is easy to see that the map T �→ DT is a desired bijection. �
Using the previous lemma, we can compute the number of vertices of FKn+1 (a) when a has two nonzero elements.

Theorem 6.3. Let n = r + s + 2 and 

a = (1,

r︷ ︸︸ ︷
0, . . . ,0,1,

s︷ ︸︸ ︷
0, . . . ,0,−2).

Then the number of vertices of FKn+1(a) is 2r+13s .

Proof. By Theorem 6.1 and Lemma 6.2, the number of vertices of FKn+1 (a) is equal to the number of decreasing forests 
on V such that {1, r + 2} ⊆ V ⊆ [r + s + 2] and the leaves are contained in {1, r + 2}. Suppose that F is such a decreasing 
forest. Since every tree in F has at least one leaf, F has at most 2 trees. We will count how many ways to construct F in 
the following two cases.
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Case 1: F has two trees T1 and T2, where T1 has only one leaf 1 and T2 has only one leaf r + 2. Since F is a decreasing 
forest and each tree has only one leaf, each tree is determined by its vertices. For 2 ≤ i ≤ r + 1, we have two possibilities: 
i is a vertex of T1 or not. For r + 3 ≤ j ≤ s + r + 2, we have three possibilities: j is a vertex of T1, a vertex of T2 or not a 
vertex of them. Thus there are 2r3s ways to construct such F .

Case 2: F has only one tree. Then F has two leaves, which are 1 and r + 2 or only one leaf which is 1. Note that r + s + 2
is the unique root in F . Let A (resp. B) be the set of vertices in the unique path from 1 (resp. r + 2) to r + s + 2. Then F
is uniquely determined by A and B . Let m = min(A ∩ B). Observe that r + 2 ≤ m ≤ r + s + 2 and we have m = r + 2 if and 
only if F has only one leaf. We define two sets X and Y as follows. 

X = A − {1,m}, Y = {i ∈ B : r + 2 < i ≤ m}.
Then X and Y satisfy

(1) X ∩ Y = ∅,
(2) X ⊆ {2, 3, . . . , r + 1, r + 3, r + 4, . . . , r + s + 2},
(3) Y ⊆ {r + 3, r + 4, . . . , r + s + 2}.

The two sets A and B can be reconstructed from X and Y by

A = X ∪ {1,max(Y ∪ {r + 2})},
B = (Y ∪ {r + 2}) ∪ {i ∈ A : i > max(Y ∪ {r + 2})}.

Thus, X and Y determine F . Moreover, any two sets X and Y satisfying the above three conditions will make a decreasing 
forest F considered in this case. Thus the number of F s in this case is equal to the number of two sets X and Y , which is 
2r3s .

By the above two cases, we obtain the theorem. �
As a corollary we obtain the number of vertices of our main flow polytopes.

Corollary 6.4. The number of vertices of FKn+1(1, 1, 0, . . . , 0, −2) is equal to 2 · 3n−2 .
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