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We use the formalism of the Rényi entropies to establish the symmetry range of extremal 
functions in a family of subcritical Caffarelli–Kohn–Nirenberg inequalities. By extremal 
functions we mean functions that realize the equality case in the inequalities, written with 
optimal constants. The method extends recent results on critical Caffarelli–Kohn–Nirenberg 
inequalities. Using heuristics given by a nonlinear diffusion equation, we give a variational 
proof of a symmetry result, by establishing a rigidity theorem: in the symmetry region, all 
positive critical points have radial symmetry and are therefore equal to the unique positive, 
radial critical point, up to scalings and multiplications. This result is sharp. The condition 
on the parameters is indeed complementary of the condition that determines the region in 
which symmetry breaking holds as a consequence of the linear instability of radial optimal 
functions. Compared to the critical case, the subcritical range requires new tools. The Fisher 
information has to be replaced by Rényi entropy powers, and since some invariances are 
lost, the estimates based on the Emden–Fowler transformation have to be modified.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Nous utilisons le formalisme des entropies de Rényi pour établir le domaine de symétrie 
des fonctions extrémales dans une famille d’inégalités de Caffarelli–Kohn–Nirenberg sous-
critiques. Par fonctions extrémales, il faut comprendre des fonctions qui réalisent le cas 
d’égalité dans les inégalités écrites avec des constantes optimales. La méthode étend des 
résultats récents sur les inégalités de Caffarelli–Kohn–Nirenberg critiques. En utilisant une 
heuristique donnée par une équation de diffusion non linéaire, nous donnons une preuve 
variationnelle d’un résultat de symétrie, grâce à un théorème de rigidité : dans la région de 
symétrie, tous les points critiques positifs sont à symétrie radiale et sont par conséquent 
égaux à l’unique point critique radial, positif, à une multiplication par une constante et 
à un changement d’échelle près. Ce résultat est optimal. La condition sur les paramètres 
est en effet complémentaire de celle qui définit la région dans laquelle il y a brisure de 
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symétrie du fait de l’instabilité linéaire des fonctions radiales optimales. Comparé au cas 
critique, le domaine sous-critique nécessite de nouveaux outils. L’information de Fisher doit 
être remplacée par l’entropie de Rényi, et comme certaines invariances sont perdues, les 
estimations basées sur la transformation d’Emden–Fowler doivent être modifiées.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. A family of subcritical Caffarelli–Kohn–Nirenberg interpolation inequalities

With the norms

‖w‖Lq,γ (Rd) :=
⎛⎜⎝ ∫

Rd

|w|q |x|−γ dx

⎞⎟⎠
1/q

, ‖w‖Lq(Rd) := ‖w‖Lq,0(Rd) ,

let us define Lq,γ (Rd) as the space of all measurable functions w such that ‖w‖Lq,γ (Rd) is finite. Our functional framework 
is a space Hp

β,γ (Rd) of functions w ∈ Lp+1,γ (Rd) such that ∇w ∈ L2,β (Rd), which is defined as the completion of the 
space D(Rd \ {0}) of the smooth functions on Rd with compact support in R

d \ {0}, with respect to the norm given by 
‖w‖2 := (p� − p) ‖w‖2

Lp+1,γ (Rd)
+ ‖∇w‖2

L2,β (Rd)
.

Now consider the family of Caffarelli–Kohn–Nirenberg interpolation inequalities given by

‖w‖L2p,γ (Rd) ≤ Cβ,γ ,p ‖∇w‖ϑ
L2,β (Rd)

‖w‖1−ϑ

Lp+1,γ (Rd)
∀ w ∈ Hp

β,γ (Rd) . (1)

Here the parameters β , γ and p are subject to the restrictions

d ≥ 2 , γ − 2 < β <
d − 2

d
γ , γ ∈ (−∞,d) , p ∈ (1, p�] with p� := d − γ

d − β − 2
(2)

and the exponent ϑ is determined by the scaling invariance, i.e.,

ϑ = (d − γ ) (p − 1)

p
(
d + β + 2 − 2γ − p (d − β − 2)

) .

These inequalities have been introduced, among others, by L. Caffarelli, R. Kohn and L. Nirenberg in [5]. We observe that 
ϑ = 1 if p = p� , a case that has been dealt with in [14], and we shall focus on the sub-critical case p < p� . Throughout this 
paper, Cβ,γ ,p denotes the optimal constant in (1). We shall say that a function w ∈ Hp

β,γ (Rd) is an extremal function for (1)
if equality holds in the inequality.

Symmetry in (1) means that the equality case is achieved by Aubin–Talenti-type functions

w�(x) =
(

1 + |x|2+β−γ
)−1/(p−1) ∀ x ∈R

d .

On the contrary, there is symmetry breaking if this is not the case, because the equality case is then achieved by a non-radial 
extremal function. It has been proved in [4] that symmetry breaking holds in (1) if

γ < 0 and βFS(γ ) < β <
d − 2

d
γ , (3)

where

βFS(γ ) := d − 2 −
√

(γ − d)2 − 4 (d − 1) .

For completeness, we will give a short proof of this result in Section 2. Our main result shows that, under Condition (2), 
symmetry holds in the complement of the set defined by (3), which means that (3) is the sharp condition for symmetry 
breaking. See Fig. 1.

Theorem 1.1. Assume that (2) holds and that

β ≤ βFS(γ ) if γ < 0 . (4)

Then the extremal functions for (1) are radially symmetric and, up to a scaling and a multiplication by a constant, equal to w�.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1. In dimension d = 4, with p = 1.2, the grey area corresponds to the cone determined by d − 2 + (γ − d)/p ≤ β < (d − 2) γ /d and γ ∈ (−∞, d) in (2). 
The light grey area is the region of symmetry, while the dark grey area is the region of symmetry breaking. The threshold is determined by the hyperbola 
(d − γ )2 − (β − d + 2)2 − 4 (d − 1) = 0 or, equivalently β = βFS(γ ). Notice that the condition p ≤ p� induces the restriction β ≥ d − 2 + (γ − d)/p, so that 
the region of symmetry is bounded. The largest possible cone is achieved as p → 1 and is limited from below by the condition β > γ − 2.

The above result is slightly stronger than just characterizing the range of (β, γ ) for which equality in (1) is achieved 
by radial functions. Actually our method of proof allows us to analyze the symmetry properties not only of extremal func-
tions of (1), but also of all positive solutions in Hp

β,γ (Rd) of the corresponding Euler–Lagrange equations, that is, up to a 
multiplication by a constant and a dilation, of

−div
(|x|−β ∇w

) = |x|−γ
(

w2p−1 − w p) in R
d \ {0} . (5)

Theorem 1.2. Assume that (2) and (4) hold. Then all positive solutions to (5) in Hp
β,γ (Rd) are radially symmetric and, up to a scaling 

and a multiplication by a constant, equal to w�.

Up to a multiplication by a constant, we know that all non-trivial extremal functions for (1) are non-negative solu-
tions to (5). Non-negative solutions to (5) are actually positive by the standard Strong Maximum principle. Theorem 1.1 is 
therefore a consequence of Theorem 1.2. In the particular case when β = 0, the condition (2) amounts to d ≥ 2, γ ∈ (0, 2), 
p ∈ (

1, (d − γ )/(d − 2)
]
, and (1) can be written as

‖w‖L2p,γ (Rd) ≤ C0,γ ,p ‖∇w‖ϑ
L2(Rd)

‖w‖1−ϑ

Lp+1,γ (Rd)
∀ w ∈ Hp

0,γ (Rd) .

In this case, we deduce from Theorem 1.1 that symmetry always holds. This is consistent with a previous result (β = 0 and 
γ > 0, close to 0) obtained in [17]. A few other cases were already known. The Caffarelli–Kohn–Nirenberg inequalities that 
were discussed in [14] correspond to the critical case θ = 1, p = p� or, equivalently β = d − 2 + (γ − d)/p. Here by critical
we simply mean that ‖w‖L2p,γ (Rd) scales like ‖∇w‖L2,β (Rd) . The limit case β = γ −2 and p = 1, which is an endpoint for (2), 
corresponds to Hardy-type inequalities: there is no extremal function, but optimality is achieved among radial functions: 
see [16]. The other endpoint is β = (d − 2) γ /d, in which case p� = d/(d − 2). The results of Theorem 1.1 also hold in that 
case with p = p� = d/(d − 2), up to existence issues: according to [9], either γ ≥ 0, symmetry holds and there exists a 
symmetric extremal function, or γ < 0, and then symmetry is broken, but there is no optimal function.

Inequality (1) can be rewritten as an interpolation inequality with same weights on both sides using a change of vari-
ables. Here we follow the computations in [4] (also see [14,15]). Written in spherical coordinates for a function

w̃(r,ω) = w(x) , with r = |x| and ω = x

|x| ,

inequality (1) becomes⎛⎜⎝ ∞∫
0

∫
Sd−1

|w̃|2p rd−γ −1 dr dω

⎞⎟⎠
1

2p

≤ Cβ,γ ,p

⎛⎜⎝ ∞∫
0

∫
Sd−1

|∇ w̃|2 rd−β−1 dr dω

⎞⎟⎠
ϑ
2
⎛⎜⎝ ∞∫

0

∫
Sd−1

|w̃|p+1 rd−γ −1 dr dω

⎞⎟⎠
1−ϑ
p+1

,

where |∇ w̃|2 = ∣∣ ∂ w̃
∂r

∣∣2 + 1
r2 |∇ω w̃|2 and ∇ω w̃ denotes the gradient of w̃ with respect to the angular variable ω ∈ S

d−1. Next 
we consider the change of variables r �→ s = rα ,

w̃(r,ω) = v(s,ω) ∀ (r,ω) ∈R
+ × S

d−1, (6)
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where α and n are two parameters such that

n = d − β − 2

α
+ 2 = d − γ

α
.

Our inequality can therefore be rewritten as⎛⎜⎝ ∞∫
0

∫
Sd−1

|v|2p sn−1 ds dω

⎞⎟⎠
1

2p

≤ Kα,n,p

⎛⎜⎝ ∞∫
0

∫
Sd−1

(
α2

∣∣ ∂v
∂s

∣∣2 + 1
s2 |∇ωv|2

)
sn−1 ds dω

⎞⎟⎠
ϑ
2
⎛⎜⎝ ∞∫

0

∫
Sd−1

|v|p+1 sn−1 ds dω

⎞⎟⎠
1−ϑ
p+1

,

with

Cβ,γ ,p = αζ Kα,n,p and ζ := ϑ

2
+ 1 − ϑ

p + 1
− 1

2 p
= (β + 2 − γ ) (p − 1)

2 p
(
d + β + 2 − 2γ − p (d − β − 2)

) .

Using the notation

Dα v =
(
α

∂v

∂s
,

1

s
∇ωv

)
,

with

α = 1 + β − γ

2
and n = 2

d − γ

β + 2 − γ
,

Inequality (1) is equivalent to a Gagliardo–Nirenberg type inequality corresponding to an artificial dimension n or, to be 
precise, to a Caffarelli–Kohn–Nirenberg inequality with weight |x|n−d in all terms. Notice that

p� = n

n − 2
.

Corollary 1.3. Assume that α, n and p are such that

d ≥ 2 , α > 0 , n > d and p ∈ (1, p�] .

Then the inequality

‖v‖L2p,d−n(Rd) ≤ Kα,n,p ‖Dα v‖ϑ
L2,d−n(Rd)

‖v‖1−ϑ

Lp+1,d−n(Rd)
∀ v ∈ Hp

d−n,d−n(Rd) , (7)

holds with optimal constant Kα,n,p = α−ζ Cβ,γ ,p as above and optimality is achieved among radial functions if and only if

α ≤ αFS with αFS :=
√

d − 1

n − 1
. (8)

When symmetry holds, optimal functions are equal, up to a scaling and a multiplication by a constant, to

v�(x) :=
(

1 + |x|2
)−1/(p−1) ∀ x ∈R

d .

We may notice that neither αFS nor βFS depend on p and that the curve α = αFS determines the same threshold for 
the symmetry-breaking region as in the critical case p = p� . In the case p = p� , this curve was found by V. Felli and 
M. Schneider, who proved in [19] the linear instability of all radial critical points if α > αFS. When p = p� , symmetry holds 
under Condition (8) as was proved in [14]. Our goal is to extend this last result to the subcritical regime p ∈ (1, p�).

The change of variables s = rα is an important intermediate step, because it allows one to recast the problem as a more 
standard interpolation inequality in which the dimension n is, however, not necessarily an integer. Actually n plays the role 
of a dimension in view of the scaling properties of the inequalities and, with respect to this dimension, they are critical 
if p = p� and sub-critical otherwise. The critical case p = p� has been studied in [14] using tools of entropy methods, 
a critical fast diffusion flow and, in particular, a reformulation in terms of a generalized Fisher information. In the subcritical 
range, we shall replace the entropy by a Rényi entropy power as in [21,18], and make use of the corresponding fast diffusion 
flow. As in [14], the flow is used only at the heuristic level in order to produce a well-adapted test function. The core of 
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the method is based on the Bakry–Emery computation, also known as the carré du champ method, which is well adapted 
to optimal interpolation inequalities: see for instance [2] for a general exposition of the method and [12,13] for its use in 
the presence of nonlinear flows. Also see [6] for earlier considerations on the Bakry–Emery method applied to nonlinear 
flows and related functional inequalities in unbounded domains. However, in non-compact manifolds and in the presence 
of weights, integrations by parts have to be justified. In the critical case, one can rely on an additional invariance to use 
an Emden–Fowler transformation and rewrite the problem as an autonomous equation on a cylinder, which simplifies the 
estimates a lot. In the subcritical regime, estimates have to be adapted, since after the Emden–Fowler transformation, the 
problem in the cylinder is no longer autonomous.

This paper is organized as follows. We recall the computations that characterize the linear instability of radially symmet-
ric minimizers in Section 2. In Section 3, we expose the strategy for proving symmetry in the subcritical regime when there 
are no weights. Section 4 is devoted to the Bakry–Emery computation applied to Rényi entropy powers, in the presence of 
weights. This provides a proof of our main results, if we admit that no boundary term appears in the integrations by parts 
in Section 4. To prove this last result, regularity and decay estimates of positive solutions to (5) are established in Section 5, 
which indeed show that no boundary term has to be taken into account (see Proposition 5.1).

2. Symmetry breaking

For completeness, we summarize known results on symmetry breaking for (1). Details can be found in [4]. With the 
notations of Corollary 1.3, let us define the functional

J [v] := ϑ log
(‖Dα v‖L2,d−n(Rd)

)+ (1 − ϑ) log
(‖v‖Lp+1,d−n(Rd)

)+ log Kα,n,p − log
(‖v‖L2p,d−n(Rd)

)
obtained by taking the difference of the logarithm of the two terms in (7). Let us define dμδ := μδ(x) dx, where

μδ(x) := 1

(1 + |x|2)δ .

Since v� as defined in Corollary 1.3 is a critical point of J , a Taylor expansion at order ε2 shows that

‖Dα v�‖2
L2,d−n(Rd)

J
[
v� + εμδ/2 f

] = 1
2 ε2 ϑ Q[ f ] + o(ε2)

with δ = 2 p
p−1 and

Q[ f ] =
∫
Rd

|Dα f |2 |x|n−d dμδ − 4 p α2

p − 1

∫
Rd

| f |2 |x|n−d dμδ+1 .

The following Hardy–Poincaré inequality has been established in [4].

Proposition 2.1. Let d ≥ 2, α ∈ (0, +∞), n > d and δ ≥ n. Then∫
Rd

|Dα f |2 |x|n−d dμδ ≥ 


∫
Rd

| f |2 |x|n−d dμδ+1 (9)

holds for any f ∈ L2(Rd, |x|n−d dμδ+1), with Dα f ∈ L2(Rd, |x|n−d dμδ), such that 
∫
Rd f |x|n−d dμδ+1 = 0, with an optimal constant 


 given by


 =
⎧⎨⎩ 2α2 (2 δ − n) if 0 < α2 ≤ (d−1) δ2

n (2 δ−n) (δ−1)
,

2α2 δ η if α2 >
(d−1) δ2

n (2 δ−n) (δ−1)
,

where η is the unique positive solution to

η (η + n − 2) = d − 1

α2
.

Moreover, 
 is achieved by a non-trivial eigenfunction corresponding to the equality in (9). If α2 >
(d−1) δ2

n (2 δ−n) (δ−1)
, the eigenspace 

is generated by ϕi(s, ω) = sη ωi , with i = 1, 2,. . . d and the eigenfunctions are not radially symmetric, while in the other case the 
eigenspace is generated by the radially symmetric eigenfunction ϕ0(s, ω) = s2 − n

2 δ−n .

As a consequence, Q is a nonnegative quadratic form if and only if 4 p α2

p−1 ≤ 
. Otherwise, Q takes negative values, and 
a careful analysis shows that symmetry breaking occurs in (1) if

2α2 δ η <
4 p α2

⇐⇒ η < 1 ,

p − 1
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which means

d − 1

α2
= η (η + n − 2) < n − 1 ,

and this is equivalent to α > αFS.

3. The strategy for proving symmetry without weights

Before going into the details of the proof, we explain the strategy for the case of the Gagliardo–Nirenberg inequalities 
without weights. There are several ways to compute the optimizers, and the relevant papers are [11,7,8,6,2,18] (also see 
additional references therein). The inequality is of the form

‖w‖L2p(Rd) ≤ C0,0,p ‖∇w‖ϑ
L2(Rd)

‖w‖1−ϑ

Lp+1(Rd)
with 1 < p <

d

d − 2
(10)

and

ϑ = d (p − 1)

p
(
d + 2 − p (d − 2)

) .

It is known through the work in [11] that the optimizers of this inequality are, up to multiplications by a constant, 
scalings and translations, given by

w�(x) =
(

1 + |x|2
)− 1

p−1 ∀ x ∈R
d .

In our perspective, the idea is to use a version of the carré du champ or Bakry–Emery method introduced in [1]: by differen-
tiating a relevant quantity along the flow, we recover the inequality in a form that turns out to be sharp. The version of the 
carré du champ we shall use is based on the Rényi entropy powers whose concavity as a function of t has been studied by 
M. Costa in [10] in the case of linear diffusions (see [21] and references therein for more recent papers). In [23], C. Villani 
observed that the carré du champ method gives a proof of the logarithmic Sobolev inequality in the Blachman–Stam form, 
also known as the Weissler form: see [3,24]. G. Savaré and G. Toscani observed in [21] that the concavity also holds in the 
nonlinear case, which has been used in [18] to give an alternative proof of the Gagliardo–Nirenberg inequalities, that we 
are now going to sketch.

The first step consists in reformulating the inequality in new variables. We set

u = w2p ,

which is equivalent to w = um−1/2, and consider the flow given by

∂u

∂t
= �um , (11)

where m is related to p by

p = 1

2 m − 1
.

The inequalities 1 < p < d
d−2 imply that

1 − 1

d
< m < 1 . (12)

For some positive constant κ > 0, one easily finds that the so-called Barenblatt–Pattle functions

u�(t, x) = κd t− d
d m−d+2 w2p

�

(
κ t− 1

d m−d+2 x
)

=
(

a + b |x|2
)− 1

1−m

are self-similar solutions to (11), where a = a(t) and b = b(t) are explicit. Thus, we see that w� = um−1/2
� is an optimizer 

for (10) for all t and it makes sense to rewrite (10) in terms of the function u. Straightforward computations show that (10)
can be brought into the form⎛⎜⎝ ∫

d

u dx

⎞⎟⎠
(σ+1) m−1

≤ C E σ−1 I where σ = 2

d (1 − m)
− 1 (13)
R
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for some constant C which does not depend on u, where

E :=
∫
Rd

um dx

is a generalized Ralston–Newman entropy, also known in the literature as Tsallis entropy, and

I :=
∫
Rd

u |∇P|2 dx

is the corresponding generalized Fisher information. Here we have introduced the pressure variable

P = m

1 − m
um−1 .

The Rényi entropy power is defined by

F := E σ

as in [21,18]. With the above choice of σ , F is an affine function of t if u = u� . For an arbitrary solution to (11), we aim 
at proving that it is a concave function of t and that it is affine if and only if u = u� . For further references on related 
issues, see [11,22]. Note that one of the motivations for choosing the variable P is that it has a particular simple form for 
the self-similar solutions, namely

P� = m

1 − m

(
a + b |x|2

)
.

Differentiating E along the flow (11) yields

E ′ = (1 − m)I ,

so that

F ′ = σ (1 − m)G with G := E σ−1I .

More complicated is the derivative for the Fisher information:

I ′ = −2
∫
Rd

um
[

Tr

((
Hess P − 1

d �P Id
)2

)
+

(
m − 1 + 1

d

)
(�P)2

]
dx .

Here Hess P and Id are respectively the Hessian of P and the (d × d) identity matrix. The computation can be found in [18]. 
Next we compute the second derivative of the Rényi entropy power F with respect to t:

(F )′′

σ E σ
= (σ − 1)

E ′ 2

E 2
+ E ′′

E
= (σ − 1) (1 − m)2 I 2

E 2
+ (1 − m)

I ′

E
=: (1 − m)H .

With σ = 2
d

1
1−m − 1, we obtain

H = −2

〈
Tr

((
Hess P − 1

d �P Id
)2

)〉
+ (1 − m) (1 − σ)

〈
(�P − 〈�P〉)2

〉
, (14)

where we have used the notation

〈A〉 :=
∫
Rd um A dx∫
Rd um dx

.

Note that by (12), we have that σ > 1 and hence we find that F ′′ = (E σ )′′ ≤ 0, which also means that G = E σ−1 I is a 
non-increasing function. In fact it is strictly decreasing unless P is a polynomial function of order two in x and it is easy to 
see that the expression (14) vanishes precisely when P is of the form a + b |x − x0|2, where a, b ∈ R, x0 ∈ R

d are constants 
(but a and b may still depend on t).

Thus, while the left side of (13) stays constant along the flow, the right side decreases. In [18] it was shown that the 
right side decreases towards the value given by the self-similar solutions u� and hence proves (10) in the sharp form. In 
our work we pursue a different tactic. The variational equation for the optimizers of (10) is given by

−�w = a w2 p−1 − b w p .

A straightforward computation shows that this can be written in the form

2 m um−2 div
(
u ∇P

)+ |∇P|2 + c1 um−1 = c2
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for some constants c1, c2 whose precise values are explicit. This equation can also be interpreted as the variational equation 
for the sharp constant in (13). Hence, multiplying the above equation by �um and integrating yields∫

Rd

[
2 m um−2 div

(
u ∇P

)+ |∇P|2
]

�um dx + c1

∫
Rd

um−1 �um dx = c2

∫
Rd

�um dx = 0 .

We recover the fact that, in the flow picture, H is, up to a positive factor, the derivative of G and hence vanishes. From 
the observations made above, we conclude that P must be a polynomial function of order two in x. In this fashion, one 
obtains more than just the optimizers, namely a classification of all positive solutions to the variational equation. The main 
technical problem with this method is the justification of the integrations by parts, which in the case at hand, without 
any weight, does not offer great difficulties: see, for instance, [6]. This strategy can also be used to treat the problem with 
weights, which will be explained next. Dealing with weights, however, requires some special care, as we shall see.

4. The Bakry–Emery computation and Rényi entropy powers in the weighted case

Let us adapt the above strategy to the case where there are weights in all integrals entering into the inequality, that 
is, let us deal with inequality (7) instead of inequality (10). In order to define a new, well-adapted fast diffusion flow, we 
introduce the diffusion operator Lα := − D∗

α Dα , which is given in spherical coordinates by

Lαu = α2
(

u′′ + n − 1

s
u′
)

+ 1

s2
�ω u,

where �ω denotes the Laplace–Betrami operator acting on the (d − 1)-dimensional sphere Sd−1 of the angular variables, 
and ′ denotes here the derivative with respect to s. Consider the fast diffusion equation

∂u

∂t
= Lαum (15)

in the subcritical range 1 − 1
n < m = 1 − 1

ν < 1. The exponents m in (15) and p in (7) are related as in Section 3 by

p = 1

2 m − 1
⇐⇒ m = p + 1

2 p

and ν is defined by

ν := 1

1 − m
.

We consider the Fisher information defined as

I [P] :=
∫
Rd

u |DαP|2 dμ with P = m

1 − m
um−1 and dμ = sn−1 ds dω = sn−d dx .

Here P is the pressure variable. Our goal is to prove that P takes the form a + b s2, as in Section 3. It is useful to observe 
that (15) can be rewritten as

∂u

∂t
= D∗

α (u DαP)

and, in order to compute dI
dt , we will also use the fact that P solves

∂P

∂t
= (1 − m)PLαP − |DαP|2 . (16)

4.1. First step: computation of dI
dt

Let us define

K [P] := A [P] − (1 − m) (LαP)2 where A [P] := 1
Lα |DαP|2 − DαP · DαLαP
2
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and, on the boundary of the centered ball Bs of radius s, the boundary term

b(s) :=
∫

∂ Bs

(
∂
∂s

(
P

m
m−1 |DαP|2

)
− 2 (1 − m)P

m
m−1 P′ LαP

)
dς

= sn−1

⎛⎜⎝ ∫
Sd−1

(
∂
∂s

(
P

m
m−1 |DαP|2

)
− 2 (1 − m)P

m
m−1 P′ LαP

)
dω

⎞⎟⎠ (s) , (17)

where by dς = sn−1 dω we denote the standard Hausdorff measure on ∂ Bs .

Lemma 4.1. If u solves (15) and if

lim
s→0+

b(s) = lim
S→+∞ b(S) = 0 , (18)

then,

d

dt
I [P] = −2

∫
Rd

K [P] um dμ. (19)

Proof. For 0 < s < S < +∞, let us consider the set A(s,S) := {
x ∈ R

d : s < |x| < S
}

, so that ∂ A(s,S) = ∂ Bs ∪ ∂ B S . Using (15)
and (16), we can compute

d

dt

∫
A(s,S)

u |DαP|2 dμ

=
∫

A(s,S)

∂u

∂t
|DαP|2 dμ + 2

∫
A(s,S)

u DαP · Dα
∂P

∂t
dμ

=
∫

A(s,S)

Lα(um) |DαP|2 dμ + 2
∫

A(s,S)

u DαP · Dα

(
(1 − m)PLαP − |DαP|2

)
dμ

=
∫

A(s,S)

um Lα |DαP|2 dμ + 2 (1 − m)

∫
A(s,S)

u P DαP · DαLαP dμ

+ 2 (1 − m)

∫
A(s,S)

u DαP · DαPLαP dμ − 2
∫

A(s,S)

u DαP · Dα |DαP|2 dμ

+ α2
∫

∂ B S

(
(um)′ |DαP|2 − um ∂

∂s (|DαP|2)
)

dς − α2
∫

∂ Bs

(
(um)′ |DαP|2 − um ∂

∂s (|DαP|2)
)

dς

= −
∫

A(s,S)

um Lα |DαP|2 dμ + 2 (1 − m)

∫
A(s,S)

u P DαP · DαLαP dμ + 2 (1 − m)

∫
A(s,S)

u DαP · DαPLαP dμ

+ α2
∫

∂ B S

(
(um)′ |DαP|2 + um ∂

∂s (|DαP|2)
)

dς − α2
∫

∂ Bs

(
(um)′ |DαP|2 + um ∂

∂s (|DαP|2)
)

dς ,

where the last line is given by an integration by parts, upon exploiting the identity u DαP = −Dα(um):∫
A(s,S)

u DαP · Dα |DαP|2 dμ = −
∫

A(s,S)

Dα(um) · Dα |DαP|2 dμ

=
∫

A(s,S)

um Lα |DαP|2 dμ − α2
∫

∂ B S

um ∂
∂s (|DαP|2)dς + α2

∫
∂ Bs

um ∂
∂s (|DαP|2)dς .

1) Using the definition of A [P], we get that
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−
∫

A(s,S)

um Lα |DαP|2 dμ = −2
∫

A(s,S)

um A [P]dμ − 2
∫

A(s,S)

um DαP · DαLαP dμ. (20)

2) Taking advantage again of u DαP = − Dα(um), an integration by parts gives∫
A(s,S)

u DαP · DαPLαP dμ = −
∫

A(s,S)

Dα(um) · DαPLαP dμ

=
∫

A(s,S)

um (LαP)2 dμ +
∫

A(s,S)

um DαP · DαLαP dμ

− α2
∫

∂ B S

um P′LαP dς + α2
∫

∂ Bs

um P′LαP dς

and, with u P = m
1−m um , we find that

2 (1 − m)

∫
A(s,S)

u P DαP · DαLαP dμ + 2 (1 − m)

∫
A(s,S)

u DαP · DαPLαP dμ

= 2 (1 − m)

∫
A(s,S)

um (LαP)2 dμ + 2
∫

A(s,S)

um DαP · DαLαP dμ

− 2 (1 − m)α2
∫

∂ B S

um P′LαP dς + 2 (1 − m)α2
∫

∂ Bs

um P′LαP dς . (21)

Summing (20) and (21), using (17) and passing to the limits as s → 0+ , S → +∞, establishes (19). �
4.2. Second step: two remarkable identities

Let us define

k[P] := 1
2 �ω |∇ωP|2 − ∇ωP · ∇ω�ω P − 1

n−1 (�ω P)2 − (n − 2)α2 |∇ωP|2
and

R[P] := K [P] −
(

1

n
− (1 − m)

)
(LαP)2 .

We observe that

R[P] = 1

2
Lα |DαP|2 − DαP · DαLαP − 1

n
(LαP)2

is independent of m. We recall the result of [14, Lemma 5.1] and give its proof for completeness.

Lemma 4.2. Let d ∈N, n ∈R such that n > d ≥ 2, and consider a function P ∈ C3(Rd \ {0}). Then,

R[P] = α4
(

1 − 1

n

)[
P′′ − P′

s
− �ω P

α2 (n − 1) s2

]2

+ 2α2

s2

∣∣∣∣∇ωP′ − ∇ωP

s

∣∣∣∣2 + k[P]
s4

.

Proof. By definition of R[P], we have

R[P] = α2

2

[
α2 P′ 2 + |∇ωP|2

s2

]′′
+ α2

2

n − 1

s

[
α2 P′ 2 + |∇ωP|2

s2

]′
+ 1

2 s2
�ω

[
α2 P′ 2 + |∇ωP|2

s2

]
−α2 P′

(
α2 P′′ + α2 n − 1

s
P′ + �ω P

s2

)′
− 1

s2
∇ωP · ∇ω

(
α2 P′′ + α2 n − 1

s
P′ + �ω P

s2

)
− 1

n

(
α2 P′′ + α2 n − 1

s
P′ + �ω P

s2

)2

,

which can be expanded as
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R[P] = α2

2

[
2α2 P′′ 2 + 2α2 P′ P′′′ + 2

|∇ωP′|2 + ∇ωP · ∇ωP′′

s2
− 8

∇ωP · ∇ωP′

s3
+ 6

|∇ωP|2
s4

]
+α2 n − 1

s

[
α2 P′ P′′ + ∇ωP · ∇ωP′

s2
− |∇ωP|2

s3

]
+ 1

s2

[
α2 P′�ω P′ + α2 |∇ωP′|2 + �ω |∇ωP|2

2 s2

]
−α2 P′

(
α2 P′′′ + α2 n − 1

s
P′′ − α2 n − 1

s2
P′ − 2

�ω P

s3
+ �ω P′

s2

)
− 1

s2

(
α2 ∇ωP · ∇ωP′′ + α2 n − 1

s
∇ωP · ∇ωP′ + ∇ωP · ∇ω�ω P

s2

)
− 1

n

[
α4 P′′ 2 + α4 (n − 1)2

s2
P′ 2 + (�ω P)2

s4
+ 2α4 n − 1

s
P′ P′′ + 2α2 P′′�ω P

s2
+ 2α2 n − 1

s3
P′�ω P

]
.

Collecting terms proves the result. �
Now let us study the quantity k[P] which appears in the statement of Lemma 4.2. The following computations are 

adapted from [12] and [14, Section 5]. For completeness, we give a simplified proof in the special case of the sphere 
(Sd−1, g) considered as a Riemannian manifold with standard metric g . We denote by H f the Hessian of f , which is seen as 
a (d − 1) × (d − 1) matrix, identify its trace with the Laplace–Beltrami operator on Sd−1 and use the notation ‖A‖2 := A : A
for the sum of the squares of the coefficients of the matrix A. It is convenient to define the trace free Hessian, the tensor Z f
and its trace free counterpart respectively by

L f := H f − 1

d − 1
(�ω f ) g , Z f := ∇ω f ⊗ ∇ω f

f
and M f := Z f − 1

d − 1

|∇ω f |2
f

g

whenever f �= 0. Elementary computations show that

‖L f ‖2 = ‖H f ‖2 − 1

d − 1
(�ω f )2 and ‖M f ‖2 = ‖Z f ‖2 − 1

d − 1

|∇ω f |4
f 2

= d − 2

d − 1

|∇ω f |4
f 2

. (22)

The Bochner–Lichnerowicz–Weitzenböck formula on Sd−1 takes the simple form

1
2 �ω (|∇ω f |2) = ‖H f ‖2 + ∇ω(�ω f ) · ∇ω f + (d − 2) |∇ω f |2 (23)

where the last term, i.e. Ric(∇ω f , ∇ω f ) = (d − 2) |∇ω f |2, accounts for the Ricci curvature tensor contracted with 
∇ω f ⊗ ∇ω f .

We recall that αFS :=
√

d−1
n−1 and ν = 1/(1 − m). Let us introduce the notations

δ := 1

d − 1
− 1

n − 1

and

B[P] :=
∫

Sd−1

(
1
2 �ω(|∇ωP|2) − ∇ω(�ωP) · ∇ωP − 1

n−1 (�ωP)2
)

P1−ν dω ,

so that∫
Sd−1

k[P]P1−ν dω = B[P] − (n − 2)α2
∫

Sd−1

|∇ωP|2 P1−ν dω .

Lemma 4.3. Assume that d ≥ 2 and 1/(1 − m) = ν > n > d. There exists a positive constant c(n, m, d) such that, for any positive 
function P ∈ C3(Sd−1),∫

Sd−1

k[P]P1−ν dω ≥ (n − 2)
(
α2

FS − α2) ∫
Sd−1

|∇ωP|2 P1−ν dω + c(n,m,d)

∫
Sd−1

|∇ωP|4
P2

P1−ν dω .

Proof. If d = 2, we identify S1 with [0, 2π) � θ and denote by Pθ and Pθθ the first and second derivatives of P with respect 
to θ . As in [14, Lemma 5.3], a direct computation shows that

k[P] = n − 2 |Pθθ |2 − (n − 2)α2 |Pθ |2 = (n − 2)
(
α2

FS |Pθθ |2 − α2 |Pθ |2
)

.

n − 1



144 J. Dolbeault et al. / C. R. Acad. Sci. Paris, Ser. I 355 (2017) 133–154
By the Poincaré inequality, we have∫
S1

∣∣∣∣ ∂

∂θ

(
P

1−ν
2 Pθ

)∣∣∣∣2 dθ ≥
∫
S1

∣∣∣P 1−ν
2 Pθ

∣∣∣2 dθ .

On the other hand, an integration by parts shows that∫
S1

Pθθ

|Pθ |2
P

P1−ν dθ = 1

3

∫
S1

∂

∂θ

(
|Pθ |2 Pθ

)
P−ν dθ = ν

3

∫
S1

|Pθ |4
P2

P1−ν dθ

and, as a consequence, by expanding the square, we obtain∫
S1

∣∣∣∣ ∂

∂θ

(
P

1−ν
2 Pθ

)∣∣∣∣2 dθ =
∫
S1

∣∣∣∣Pθθ + 1 − ν

2

|Pθ |2
P

∣∣∣∣2 P1−ν dθ =
∫
S1

|Pθθ |2 P1−ν dθ − (ν − 1) (ν + 3)

12

∫
S1

|Pθ |4
P2

P1−ν dθ .

The result follows with c(n, m, 2) = n−2
n−1

1
12 (ν − 1) (ν + 3) = n−2

n−1
m (4−3 m)

12 (1−m)2 from∫
S1

|Pθθ |2 P1−ν dθ ≥
∫
S1

|Pθ |2 P1−ν dθ + (ν − 1) (ν + 3)

12

∫
S1

|Pθ |4
P2

P1−ν dθ .

Assume next that d ≥ 3. We follow the method of [14, Lemma 5.2]. Applying (23) with f = P and multiplying by P1−ν

yields, after an integration on Sd−1, that B[P] can also be written as

B[P] =
∫

Sd−1

(
‖HP‖2 + (d − 2) |∇ωP|2 − 1

n−1 (�ωP)2
)

P1−ν dω .

We recall that n > d ≥ 3 and set P = f β with β = 2
3−ν . A straightforward computation shows that H f β = β f β−1

(
H f +

(β − 1) Z f
)

and hence

B[P] = β2
∫

Sd−1

(
‖H f + (β − 1)Z f ‖2 + (d − 2) |∇ω f |2 − 1

n−1

(
Tr (H f + (β − 1)Z f )

)2
)

dω

= β2
∫

Sd−1

(
‖L f + (β − 1)M f ‖2 + (d − 2) |∇ω f |2 + δ

(
Tr (H f + (β − 1)Z f )

)2
)

dω .

Using (22), we deduce from∫
Sd−1

�ω f
|∇ω f |2

f
dω =

∫
Sd−1

|∇ω f |4
f 2

dω − 2
∫

Sd−1

H f : Z f dω

= d − 1

d − 2

∫
Sd−1

‖M f ‖2 dω − 2
∫

Sd−1

L f : Z f dω − 2

d − 1

∫
Sd−1

�ω f
|∇ω f |2

f
dω

that

∫
Sd−1

�ω f
|∇ω f |2

f
dω = d − 1

d + 1

⎡⎢⎣ ∫
Sd−1

d − 1

d − 2
‖M f ‖2 dω − 2

∫
Sd−1

L f : Z f dω

⎤⎥⎦
= d − 1

d + 1

⎡⎢⎣ ∫
Sd−1

d − 1

d − 2
‖M f ‖2 dω − 2

∫
Sd−1

L f : M f dω

⎤⎥⎦
on the one hand, and from (23) integrated on Sd−1 that∫

d−1

(�ω f )2 dω = d − 1

d − 2

∫
d−1

‖L f ‖2 dω + (d − 1)

∫
d−1

|∇ω f |2 dω
S S S
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on the other hand. Hence we find that∫
Sd−1

(
Tr (H f + (β − 1)Z f )

)2
dω =

∫
Sd−1

(
(�ω f )2 + 2 (β − 1)�ω f

|∇ω f |2
f

+ (β − 1)2 |∇ω f |4
f 2

)
dω

= d − 1

d − 2

∫
Sd−1

‖L f ‖2 dω + (d − 1)

∫
Sd−1

|∇ω f |2 dω

+ 2 (β − 1)
d − 1

d + 1

⎡⎢⎣ ∫
Sd−1

d − 1

d − 2
‖M f ‖2 dω − 2

∫
Sd−1

L f : M f dω

⎤⎥⎦
+ (β − 1)2 d − 1

d − 2

∫
Sd−1

‖M f ‖2 dω .

Altogether, we obtain

B[P] = β2
∫

Sd−1

(
a‖L f ‖2 + 2 b L f : M f + c‖M f ‖2

)
dω + β2 (d − 2 + δ (d − 1)

) ∫
Sd−1

|∇ω f |2 dω,

where

a = 1 + δ
d − 1

d − 2
, b = (β − 1)

(
1 − 2 δ

d − 1

d + 1

)
and c = (β − 1)2

(
1 + δ

d − 1

d − 2

)
+ 2 (β − 1)

δ (d − 1)2

(d + 1) (d − 2)
.

A tedious but elementary computation shows that

B[P] = aβ2
∫

Sd−1

∥∥L f + b
a M f

∥∥2
dω + (

c − b2

a

)
β2

∫
Sd−1

‖M f ‖2 dω + β2 (n − 2)α2
FS

∫
Sd−1

|∇ω f |2 dω

can be written in terms of P as

B[P] =
∫

Sd−1

Q[P]P1−ν dω + (n − 2)α2
FS

∫
Sd−1

|∇ωP|2 P1−ν dω,

where

Q[P] := α2
FS

n − 2

d − 2

∥∥∥LP + 3 (ν−1) (n−d)
(d+1) (n−2) (ν−3)

MP
∥∥∥2 + (d−1) (ν−1) (n−d) [((4 d−5) n+d−8) ν+9 (n−d))]

(d−2) (d+1)2 (ν−3)2 (n−2) (n−1)
‖MP‖2

is positive definite. This concludes the proof in the case d ≥ 3 with c(n, m, d) = m (n−d) [4 (d+1) (n−2)−9 m (n−d)]
(d+1)2 (3 m−2)2 (n−2) (n−1)

. �
Let us recall that

K [P] = R[P] +
(

1

n
− (1 − m)

)
(LαP)2 .

We can collect the two results of Lemmas 4.2 and 4.3 as follows.

Corollary 4.4. Let d ∈ N, n ∈ R be such that n > d ≥ 2, and consider a positive function P ∈ C3(Rd \ {0}). If u is related to P by 
P = m

1−m um−1 for some m ∈ (1 − 1
n , 1), then there exists a positive constant c(n, m, d) such that

∫
Rd

R[P] um dμ ≥ α4
(

1 − 1

n

)∫
Rd

[
P′′ − P′

s
− �ω P

α2 (n − 1) s2

]2

um dμ + 2α2
∫
Rd

1

s2

∣∣∣∣∇ωP′ − ∇ωP

s

∣∣∣∣2 um dμ

+ (n − 2)
(
α2

FS − α2)∫
Rd

1

s4
|∇ωP|2 um dμ + c(n,m,d)

∫
Rd

1

s4

|∇ωP|4
P2

um dμ.
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4.3. Third step: concavity of the Rényi entropy powers and consequences

We keep investigating the properties of the flow defined by (15). Let us define the entropy as

E :=
∫
Rd

um dμ

and observe that

E ′ = (1 − m)I

if u solves (15), after integrating by parts. The fact that boundary terms do not contribute, i.e.

lim
s→0+

∫
∂ Bs

um P′ dς = lim
S→+∞

∫
∂ B S

um P′ dς = 0 (24)

will be justified in Section 5: see Proposition 5.1. Note that we use ′ both for derivation w.r.t. t and w.r.t. s, at least when 
this does not create any ambiguity. As in Section 3, we introduce the Rényi entropy power

F := E σ

for some exponent σ to be chosen later, and find that F ′ = σ (1 −m) G where G := E σ−1 I . With H := E −σ G ′ , by using 
Lemma 4.1, we also find that E −σ F ′′ = σ (1 − m) H where

E 2H = E 2−σ G ′ = 1

σ (1 − m)
E 2−σ F ′′ = (1 − m) (σ − 1)

⎛⎜⎝ ∫
Rd

u |DαP|2 dμ

⎞⎟⎠
2

− 2
∫
Rd

um dμ

∫
Rd

K [P] um dμ

= (1 − m) (σ − 1)

⎛⎜⎝ ∫
Rd

u |DαP|2 dμ

⎞⎟⎠
2

− 2

(
1

n
− (1 − m)

)∫
Rd

um dμ

∫
Rd

(LαP)2 um dμ

− 2
∫
Rd

um dμ

∫
Rd

R[P] um dμ

if lims→0+ b(s) = limS→+∞ b(S) = 0. Using u DαP = − Dα(um), we know that∫
Rd

u |DαP|2 dμ = −
∫
Rd

Dα(um) · DαP dμ =
∫
Rd

um LαP dμ

and so, with the choice

σ = 2

n

1

1 − m
− 1 ,

we may argue as in Section 3 and get that

E 2H + (1 − m) (σ − 1)E

∫
Rd

um

∣∣∣∣∣LαP −
∫
Rd u |DαP|2 dμ∫

Rd um dμ

∣∣∣∣∣
2

dμ + 2 E

∫
Rd

R[P] um dμ = 0

if lims→0+ b(s) = limS→+∞ b(S) = 0. So, if α ≤ αFS and P is of class C3, by Corollary 4.4, as a function of t , F is concave, that 
is, G = E σ−1 I is non-increasing in t . Formally, G converges towards a minimum, for which necessarily LαP is a constant 
and R[P] = 0, which proves that P(x) = a +b |x|2 for some real constants a and b, according to Corollary 4.4. Since 2 (1−ϑ)

ϑ (p+1)
=

σ − 1, the minimization of G under the mass constraint 
∫
Rd u dμ = ∫

Rd v2p dμ is equivalent to the Caffarelli–Kohn–Nirenberg 
interpolation inequalities (1), since for some constant κ ,

G = E σ−1I = κ

⎛⎜⎝ ∫
d

v p+1 dμ

⎞⎟⎠
σ−1 ∫

d

|Dα v|2 dμ with v = um−1/2 .
R R
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We emphasize that (15) preserves mass, that is, d
dt

∫
Rd v2p dμ = d

dt

∫
Rd u dμ = ∫

Rd Lαum dμ = 0 because, as we shall see in 
Proposition 5.1, no boundary terms appear when integrating by parts if v is an extremal function associated with (7). In 
particular, for mass conservation we need

lim
s→0+

∫
∂ Bs

u P′ dς = lim
S→+∞

∫
∂ B S

u P′ dς = 0 . (25)

The above remarks on the monotonicity of G and the symmetry properties of its minimizers can in fact be extended to 
the analysis of the symmetry properties of all critical points of G . This is actually the contents of Theorem 1.2.

Proof of Theorem 1.2. Let w be a positive solution to equation (5). As pointed out above, by choosing

w(x) = um−1/2(rα,ω) ,

we know that u is a critical point of G under a mass constraint on 
∫
Rd u dx, so that we can write the corresponding 

Euler–Lagrange equation as dG [u] = C , for some constant C . That is, 
∫
Rd dG [u] · Lαum dμ = C

∫
Rd Lαum dμ = 0 thanks 

to (25). Using Lαum as a test function amounts to apply the flow of (15) to G with initial datum u and compute the 
derivative with respect to t at t = 0. This means

0 =
∫
Rd

dG [u] · Lαum dμ = E σ H

= − (1 − m) (σ − 1)E σ−1
∫
Rd

um

∣∣∣∣∣LαP −
∫
Rd u |DαP|2 dμ∫

Rd um dμ

∣∣∣∣∣
2

dμ − 2 E σ−1
∫
Rd

R[P] um dμ

if lims→0+ b(s) = limS→+∞ b(S) = 0 and (24) holds. Here we have used Lemma 4.1. We emphasize that this proof is purely 
variational and does not rely on the properties of the solutions to (15), although using the flow was very useful to explain 
our strategy. All we need is that no boundary term appears in the integrations by parts. Hence, in order to obtain a complete 
proof, we have to prove that (18), (24) and (25) hold with b defined by (17), whenever u is a critical point of G under 
mass constraint. This will be done in Proposition 5.1. Using Corollary 4.4, we know that R[P] = 0, ∇ωP = 0 a.e. in R

d

and LαP =
∫
Rd u |DαP|2 dμ∫

Rd um dμ
a.e. in R

d , with P = m
1−m um−1. We conclude as in [14, Corollary 5.5] that P is an affine function 

of s2. �
5. Regularity and decay estimates

In this last section, we prove the regularity and decay estimates on w (or on P or u) that are necessary to establish the 
absence of boundary terms in the integrations by parts of Section 4.

Proposition 5.1. Under Condition (2), if w is a positive solution in Hp
β,γ (Rd) of (5), then (18), (24) and (25) hold with b as defined 

by (17), u = v2p and v given by (6).

To prove this result, we split the proof in several steps: we will first establish a uniform bound and a decay rate for w
inspired by [17] in Lemmas 5.2, 5.3, and then follow the methodology of [14, Appendix] in the subsequent Lemma 5.4.

Lemma 5.2. Let β , γ and p satisfy the relations (2). Any positive solution w of (5) such that

‖w‖L2p,γ (Rd) + ‖∇w‖L2,β (Rd) + ‖w‖1−ϑ

Lp+1,γ (Rd)
< +∞ . (26)

is uniformly bounded and tends to 0 at infinity, uniformly in |x|.

Proof. The strategy of the first part of the proof is similar to the one in [17, Lemma 3.1], which was restricted to the case 
β = 0.

Let us set δ0 := 2 (p� − p). For any A > 0, we multiply (5) by (w ∧ A)1+δ0 and integrate by parts (or, equivalently, plug 
it in the weak formulation of (5)): we point out that the latter is indeed an admissible test function since w ∈ Hp

β,γ (Rd). In 
that way, by letting A → +∞, we obtain the identity

4 (1 + δ0)

(2 + δ0)2

∫
d

∣∣∣∇w1+δ0/2
∣∣∣2 |x|−β dx +

∫
d

w p+1+δ0 |x|−γ dx =
∫

d

w2p+δ0 |x|−γ dx .
R R R
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By applying (1) with p = p� (so that ϑ = 1) to the function w = w1+δ0/2, we deduce that

‖w‖2+δ0

L2p+δ1,γ (Rd)
≤ (2 + δ0)

2

4 (1 + δ0)
C2

β,γ ,p�
‖w‖2p+δ0

L2p+δ0,γ (Rd)

with 2 p + δ1 = p� (2 + δ0). Let us define the sequence {δn} by the induction relation δn+1 := p� (2 + δn) − 2 p for any n ∈N, 
that is,

δn = 2 p�−p
p�−1

(
pn+1

� − 1
) ∀n ∈N ,

and take qn = 2 p + δn . If we repeat the above estimates with δ0 replaced by δn and δ1 replaced by δn+1, we get

‖w‖2+δn

Lqn+1,γ (Rd)
≤ (2 + δn)

2

4 (1 + δn)
C2

β,γ ,p�
‖w‖qn

Lqn ,γ (Rd)
.

By iterating this estimate, we obtain the estimate

‖w‖Lqn ,γ (Rd) ≤ Cn ‖w‖ζn

L2p�,γ (Rd)
with ζn := (p� − 1) pn

�

p − 1 + (p� − p) pn
�

,

where the sequence {Cn} is defined by C0 = 1 and

C2+δn
n+1 = (2 + δn)

2

4 (1 + δn)
C2

β,γ ,p�
Cqn

n ∀n ∈N .

The sequence {Cn} converges to a finite limit C∞ . Letting n → ∞ we obtain the uniform bound

‖w‖L∞(Rd) ≤ C∞ ‖w‖ζ∞
L2p�,γ (Rd)

≤ C∞
(
Cβ,γ ,p�

‖∇w‖L2,β (Rd)

)ζ∞ ≤ C∞
(

Cβ,γ ,p�
‖w‖p

L2p,γ (Rd)

)ζ∞
,

where ζ∞ := p�−1
p�−p = limn→∞ ζn .

In order to prove that lim|x|→+∞ w(x) = 0, we can suitably adapt the above strategy. We shall do it as follows: we 
truncate the solution so that the truncated function is supported outside of a ball of radius R0 and apply the iteration 
scheme. Up to an enlargement of the ball, that is, outside of a ball of radius R∞ = a R0 for some fixed numerical constant 
a > 1, we get that ‖w‖L∞(Bc

R∞ ) is bounded by the energy localized in Bc
R0

. The conclusion will hold by letting R0 → +∞. 
Let us give some details.

Let ξ ∈ C∞(R+) be a cut-off function such that 0 ≤ ξ ≤ 1, ξ ≡ 0 in [0, 1) and ξ ≡ 1 in (2, +∞). Given R0 ≥ 1, consider 
the sequence of radii defined by

Rn+1 =
(

1 + 1

n2

)
Rn ∀n ∈N .

By taking logarithms, it is immediate to deduce that {Rn} is monotone increasing and that there exists a > 1 such that

R∞ := lim
n→∞ Rn = a R0 .

Let us then define the sequence of radial cut-off functions {ξn} by

ξn(x) := ξ2
( |x| − Rn

Rn+1 − Rn
+ 1

)
∀ x ∈R

d .

Direct computations show that there exists some constant c > 0, which is independent of n and R0, such that

|∇ξn(x)| ≤ c
n2

Rn
χB Rn+1 \B Rn

,

∣∣∣∇ξ
1/2
n (x)

∣∣∣ ≤ c
n2

Rn
χB Rn+1 \B Rn

, |�ξn(x)| ≤ c
n4

R2
n

χB Rn+1 \B Rn
∀ x ∈ R

d . (27)

From here on we denote by c, c′ , etc. positive constants that are all independent of n and R0. We now introduce the 
analogue of the sequence {δn} above, which we relabel {σn} to avoid confusion. Namely, we set σ0 := 2 p − 2 and σn+1 =
p� (2 + σn) − 2, so that σn = 2 (p pn

� − 1). If we multiply (5) by ξn w1+σn and integrate by parts, we obtain:∫
Rd

∇
(
ξn w1+σn

)
· ∇w |x|−β dx +

∫
Rd

ξn w p+1+σn |x|−γ dx =
∫
Rd

ξn w2p+σn |x|−γ dx ,

whence

4 (1 + σn)

(2 + σn)2

∫
Rd

ξn

∣∣∣∇w1+σn/2
∣∣∣2 |x|−β dx + 1

2 + σn

∫
Rd

∇ξn · ∇w2+σn |x|−β dx ≤
∫

Bc

w2p+σn |x|−γ dx .
Rn
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By integrating by parts the second term in the l.h.s. and combining this estimate with∫
Rd

∣∣∣∇ (
ξ

1/2
n w1+σn/2

)∣∣∣2 |x|−β dx ≤ 2
∫
Rd

ξn

∣∣∣∇w1+σn/2
∣∣∣2 |x|−β dx + 2

∫
Rd

∣∣∣∇ξ
1/2
n

∣∣∣2 w2+σn |x|−β dx ,

we end up with

2 (1 + σn)

(2 + σn)2

∫
Rd

∣∣∣∇ (
ξ

1/2
n w1+σn/2

)∣∣∣2 |x|−β dx − 4 (1 + σn)

(2 + σn)2

∫
Rd

∣∣∣∇ξ
1/2
n

∣∣∣2 w2+σn |x|−β dx

− 1

2 + σn

∫
Rd

(
|x|−β�ξn − β |x|−β−2x · ∇ξn

)
w2+σn dx ≤

∫
Bc

Rn

w2p+σn |x|−γ dx .

Thanks to (27), we can deduce that∫
Rd

∣∣∣∇ (
ξ

1/2
n w1+σn/2

)∣∣∣2 |x|−β dx ≤
∫

B Rn+1 \B Rn

(
2 c2 + c

R2
n

n4 + β c

Rn
n2 |x|−1

)
w2+σn |x|−β dx

+ (2 + σn)
2

2 (1 + σn)

∫
Bc

Rn

w2p+σn |x|−γ dx .

In particular,∫
Rd

∣∣∣∇ (
ξ

1/2
n w1+σn/2

)∣∣∣2 |x|−β dx ≤ c′n4
∫

Bc
Rn

w2+σn |x|−β−2 dx + (2 + σn)
2

2 (1 + σn)
‖w‖2p−2∞

∫
Bc

Rn

w2+σn |x|−γ dx .

Since (2) implies that β + 2 > γ , by exploiting the explicit expression of σn and applying (1) with p = p� (and ϑ = 1) to 
the function ξ1/2

n w1+σn/2, we can rewrite our estimate as

‖w‖2+σn

L2+σn+1,γ (Bc
Rn+1

)
≤ c′′pn

� ‖w‖2+σn

L2+σn ,γ (Bc
Rn

)
.

After iterating the scheme and letting n → ∞, we end up with

‖w‖L∞(Bc
R∞ ) ≤ c′′′ ‖w‖L2p,γ (Bc

R0
) .

Since w is bounded in L2p,γ (Rd), in order to prove the claim, it is enough to let R0 → +∞. �
Lemma 5.3. Let β , γ and p satisfy the relations (2). Any positive solution w of (5) satisfying (26) is such that w ∈ C∞(Rd \ {0}) and 
there exist two positive constants, C1 and C2 with C1 < C2 , such that for |x| large enough,

C1 |x|(γ −2−β)/(p−1) ≤ w(x) ≤ C2 |x|(γ −2−β)/(p−1) .

Proof. By Lemma 5.2 and elliptic bootstrapping methods we know that w ∈ C∞(Rd \ {0}). Let us now consider the function 
h(x) := C |x|(γ −2−β)/(p−1) , which satisfies the differential inequality

−div
(|x|−β ∇h

)+ (1 − ε) |x|−γ hp ≥ 0 ∀ x ∈R
d \ {0}

for any ε ∈ (0, 1) and C such that C p−1 >
2−γ +β

1−ε
d−γ −p (d−2−β)

(p−1)2 . On the other hand, by Lemma 5.2, w2p−1 is negligible 
compared to w p as |x| → ∞ and, as a consequence, for any ε > 0 small enough, there is an Rε > 0 such that

−div
(|x|−β ∇w

)+ (1 − ε) |x|−γ w p ≤ 0 if |x| ≥ Rε .

With q := (1 − ε) |x|−γ hp−w p

h−w ≥ 0, it follows that

−div
(|x|−β ∇(h − w)

)+ q (h − w) ≥ 0 if |x| ≥ Rε .

Hence, for C large enough, we know that h(x) ≥ w(x) for any x ∈ R
d such that |x| = Rε , and we also have that 

lim|x|→+∞
(
h(x) − w(x)

) = 0. Using the Maximum Principle, we conclude that 0 ≤ w(x) ≤ h(x) for any x ∈ R
d such that 

|x| ≥ Rε . The lower bound uses a similar comparison argument. Indeed, since
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−div
(|x|−β ∇w

)+ |x|−γ w p ≥ 0 ∀ x ∈R
d \ {0}

and

−div
(|x|−β ∇h

)+ |x|−γ hp ≤ 0 ∀ x ∈R
d \ {0},

if we choose C such that C p−1 ≤ (2 − γ + β) d−γ −p (d−2−β)

(p−1)2 , we easily see that

w(x) ≥
(

min|x|=1
w(x) ∧ C

)
|x|(γ −2−β)/(p−1) ∀x ∈R

d \ B1 .

This concludes the proof. �
Our next goal is to obtain growth and decay estimates, respectively, on the functions P and u as they appear in the proof 

of Theorem 1.2 in Section 4, in order to prove Proposition 5.1. We also need to estimate their derivatives near the origin 
and at infinity. Let us start by reminding the change of variables (6), which in particular, by Lemma 5.3, implies that for 
some positive constants C1 and C2,

C1 s2/(1−p) ≤ v(s,ω) ≤ C2 s2/(1−p) as s → +∞ .

Then we perform the Emden–Fowler transformation

v(s,ω) = sa ϕ(z,ω) with z = − log s , a = 2 − n

2
, (28)

and see that ϕ satisfies the equation

−α2 ϕ′′ − �ω ϕ + a2α2ϕ = e((n−2) p−n) z ϕ2p−1 − e((n−2) p−n−2) z/2 ϕp =: h in C := R× S
d−1 � (z,ω) . (29)

From here on we shall denote by ′ the derivative with respect either to z or to s, depending on the argument. By definition 
of ϕ and using Lemma 5.3, we obtain that

ϕ(z,ω) ∼ e
( 2−n

2 + 2
p−1

)
z as z → −∞ ,

where we say that f (z, ω) ∼ g(z, ω) as z → +∞ (resp. z → −∞) if the ratio f /g is bounded from above and from below 
by positive constants, independently of ω, and for z (resp. −z) large enough. Concerning z → +∞, we first note that 
Lemma 5.2 and (28) show that ϕ(z, ω) ≤ O (ea z). The lower bound can be established by a comparison argument as in [14, 
Proposition A.1], after noticing that |h(z, ω)| ≤ O (e(a−2)z). Hence we obtain that

ϕ(z,ω) ∼ ea z = e
2−n

2 z as z → +∞ .

Moreover, uniformly in ω, we have that

|h(z,ω)| ≤ O
(
e− n+2

2 z) as z → +∞ , |h(z,ω)| ∼ e

(
− n+2

2 + 2 p
p−1

)
z

as z → −∞ ,

which in particular implies

|h(z,ω)| = o
(
ϕ(z,ω)

)
as z → +∞ and |h(z,ω)| ∼ ϕ(z,ω) as z → −∞ .

Finally, using [20, Theorem 8.32, p. 210] on local C1,δ estimates, as |z| → +∞ we see that all first derivatives of ϕ converge 
to 0 at least with the same rate as ϕ . Next, [20, Theorem 8.10, p. 186] provides local Wk+2,2 estimates which, together 
with [20, Corollary 7.11, Theorem 8.10, and Corollary 8.11], up to choosing k large enough, prove that

|ϕ′(z,ω)|, |ϕ′′(z,ω)|, |∇ωϕ(z,ω)|, |∇ωϕ′(z,ω)|, |∇ωϕ′′(z,ω)|, |�ω ϕ(z,ω)| ≤ O (ϕ(z,ω)) , (30)

uniformly in ω. Here we denote by ∇ω the differentiation with respect to ω. As a consequence, we have, uniformly in ω, 
and for � ∈ {0, 1, 2}, t ∈ {0, 1},

|∂�
z ∇t

ωh(z,ω)| ≤ O
(
e− n+2

2 z) as z → +∞ , |∂�
z ∇t

ωh(z,ω)| ≤ O (e

(
− n+2

2 + 2 p
p−1

)
z
) as z → −∞ , (31)

|�ωh(z,ω)| ≤ O
(
e− n+2

2 z) as z → +∞ , |�ωh(z,ω)| ≤ O (e

(
− n+2

2 + 2 p
p−1

)
z
) as z → −∞ . (32)

Lemma 5.4. Let β , γ and p satisfy the relations (2) and assume α ≤ αFS . For any positive solution w of (5) satisfying (26), the pressure 
function P = m

1−m um−1 is such that P′′ , P′/s, P/s2 , ∇ωP′/s, ∇ωP/s2 and LαP are of class C∞ and bounded as s → +∞. On the 
other hand, as s → 0+ we have
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(i)
∫
Sd−1 |P′(s, ω)|2 dω ≤ O (1),

(ii)
∫
Sd−1 |∇ωP(s, ω)|2 dω ≤ O (s2),

(iii)
∫
Sd−1 |P′′(s, ω)|2 dω ≤ O (1/s2),

(iv)
∫
Sd−1

∣∣∣∇ωP′(s,ω) − 1
s ∇ωP(s,ω)

∣∣∣2 dω ≤ O (1),

(v)
∫
Sd−1

∣∣∣ 1
s2 �ωP(s,ω)

∣∣∣2 dω ≤ O (1/s2).

Proof. By using the change of variables (28), we see that

P(s,ω) = p+1
p−1 e− 1

2 (n−2) (p−1) z ϕ1−p(z,ω) , z = − log s .

From (30) we easily deduce that uniformly in ω, P′′ , P′/s, P/s2, ∇ωP′/s, ∇ωP/s2 and LαP are of class C∞ and bounded as 
s → +∞. Moreover, as s → 0+ , we obtain that∣∣P′(s,ω)

∣∣ ≤ O

(
1

s

(
ϕ′(z,ω)

ϕ(z,ω)
− a

))
and

∣∣∣1

s
∇ωP(s,ω)

∣∣∣ ≤ O

(
1

s

(∇ωϕ(z,ω)

ϕ(z,ω)

))
are of order at most 1/s uniformly in ω. Similarly we obtain that

|P′′(s,ω)| ≤ O

(
1

s2

(
ϕ′′(z,ω)

ϕ(z,ω)
− p

|ϕ′(z,ω)|2
|ϕ(z,ω)|2 + (

1 − 2 a (1 − p)
) ϕ′(z,ω)

ϕ(z,ω)
+ a2 (1 − p) − a

))
,∣∣∣∣∇ωP′(s,ω)

s
− a(1 − p)

s2
∇ωP(s,ω)

∣∣∣∣ ≤ O

(
1

s2

(∇ωϕ′(z,ω)

ϕ(z,ω)
− p ϕ′(z,ω)∇ωϕ(z,ω)

|ϕ(z,ω)|2
))

,

1

s2
|�ω P(s,ω)| ≤ O

(
1

s2

(
�ω ϕ(z,ω)

ϕ(z,ω)
− p

|∇ωϕ(z,ω)|2
|ϕ(z,ω)|2

))
,

are at most of order 1/s2 uniformly in ω. This shows that |b(s)| ≤ O (sn−4) as s → 0+ and concludes the proof if 4 ≤ d < n. 
When d = 2 or 3 and n ≤ 4, more detailed estimates are needed. Properties (i)–(v) amount to prove that

(i)
∫
Sd−1

∣∣∣ϕ′(z,ω)
ϕ(z,ω)

− a
∣∣∣2 dω ≤ O (e−2 z),

(ii)
∫
Sd−1

∣∣∣∇ωϕ(z,ω)
ϕ(z,ω)

∣∣∣2 dω ≤ O (e−2 z),

(iii)
∫
Sd−1

∣∣∣ϕ′′(z,ω)
ϕ(z,ω)

− p |ϕ′(z,ω)|2
|ϕ(z,ω)|2 + (

1 − 2 a (1 − p)
)ϕ′(z,ω)

ϕ(z,ω)
+ a2 (1 − p) − a

∣∣∣2 dω ≤ O (e−2 z),

(iv)
∫
Sd−1

∣∣∣∇ωϕ′(z,ω)
ϕ(z,ω)

− p ϕ′(z,ω) ∇ωϕ(z,ω)

|ϕ(z,ω)|2
∣∣∣2 dω ≤ O (e−2 z),

(v)
∫
Sd−1

∣∣∣�ω ϕ(z,ω)
ϕ(z,ω)

− p |∇ωϕ(z,ω)|2
|ϕ(z,ω)|2

∣∣∣2 dω ≤ O (e−2 z),

as z → +∞.

Step 1: Proof of (ii) and (iv). If w is a positive solution to (5), then ϕ is a positive solution to (29). With � ∈ {0, 1, 2}, applying 
the operator ∇ω∂�

z to the equation (29) we obtain:

−α2 (∇ω∂�
z ϕ)′′ − ∇ω �ω ∂�

z ϕ + a2 α2 ∇ω∂�
z ϕ = ∇ω∂�

z h(z,ω) in C .

Define

χ�(z) := 1

2

∫
Sd−1

|∇ω∂�
z ϕ|2 dω ,

which by (30) converges to 0 as z → ±∞. Assume first that χ� is a positive function. After multiplying the above equation 
by ∇ω∂�

z ϕ , integrating over Sd−1, integrating by parts and using

χ ′
� =

∫
Sd−1

∇ω∂�
z ϕ ∇ω∂�

z ϕ
′ dω

and

χ ′′
� =

∫
d−1

∇ω∂�
z ϕ ∇ω∂�

z ϕ
′′ dω +

∫
d−1

|∇ω∂�
z ϕ

′|2 dω ,
S S
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we see that χ� satisfies

−χ ′′
� +

∫
Sd−1

|∇ω∂�
z ϕ

′|2 dω + 1

α2

⎛⎜⎝ ∫
Sd−1

|�ω ∂�
z ϕ|2 dω − λ1

∫
Sd−1

|∇ω∂�
z ϕ|2 dω

⎞⎟⎠+ 2

(
a2 + λ1

α2

)
χ� = h�

α2
,

with h� := ∫
Sd−1 ∇ω∂�

z h ∇ω∂�
z ϕ dω. Then, using 

∫
Sd−1 ∇ω∂�

z ϕ dω = 0, by the Poincaré inequality we deduce∫
Sd−1

|�ω ∂�
z ϕ|2 dω ≥ λ1

∫
Sd−1

|∇ω∂�
z ϕ|2 dω

as e.g. in [12, Lemma 7], where λ1 := d − 1. A Cauchy–Schwarz inequality implies that

−χ ′′
� + |χ ′

�|2
2χ�

+ 2

(
a2 + λ1

α2

)
χ� ≤ |h�|

α2
.

The function ζ� := √
χ� satisfies

− ζ ′′
� +

(
a2 + λ1

α2

)
ζ� ≤ |h�|

2α2 ζ�

.

By the Cauchy–Schwarz inequality and (31) we infer that |h�/ζ�| = O
(
e(a−2) z

)
for z → +∞, and |h�/ζ�| = O

(
e(a+2/(p−1)) z

)
for z → −∞. By a simple comparison argument based on the Maximum Principle, and using the convergence of χ� to 0 at 
±∞, we infer that

ζ�(z) ≤ − e−ν z

2ν α2

z∫
−∞

eν t |h�(t)|
ζ�(z)

dt − eν z

2ν α2

∞∫
z

e−ν t |h�(t)|
ζ�(z)

dt

if ν := √
a2 + λ1/α2. This is enough to deduce that ζ�(z) ≤ O

(
e(a−1)z

)
as z → +∞ after observing that the condition

−ν = −
√

a2 + λ1/α2 ≤ a − 1

is equivalent to the inequality α ≤ αFS. Hence we have shown that if χ� is a positive function, then for α ≤ αFS,

χ�(z) ≤ O
(
e2 (a−1) z) as z → +∞ . (33)

In the case where χ� is equal to 0 at some points of R, it is enough to do the above comparison argument on maximal 
positivity intervals of χ� to deduce the same asymptotic estimate. Finally we observe that ϕ(z, ω) ∼ ea z as z → +∞, which 
ends the proof of (ii) considering the above estimate for χ� when � = 0. Moreover, the same estimate for � = 1 together 
with (ii) and (30) proves (iv).

Step 2: Proof of (v). By applying the operator �ω to (29), we obtain

−α2 (�ω ϕ)′′ − �2
ω ϕ + a2 α2 �ω ϕ = �ω h in C .

We proceed as in Step 1. With similar notations, by defining

χ3(z) := 1

2

∫
Sd−1

|�ω ϕ|2 dω ,

after multiplying the equation by �ω ϕ and using the fact that

−
∫

Sd−1

�ω ϕ �2
ω ϕ dω =

∫
Sd−1

|∇ω�ω ϕ|2 dω ≥ λ1

∫
Sd−1

|�ω ϕ|2 dω ,

we obtain

−χ ′′
3 + |χ ′

3|2
2χ�

+ 2

(
a2 + λ1

α2

)
χ3 ≤ |h3|

α2

with h3 := ∫
Sd−1 �ω h �ω ϕ dω. Again using the same arguments as above, together with (32), we deduce that

χ3(z) ≤ O
(
e2 (a−1) z) as z → +∞ .
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This ends the proof of (v), using (ii), (30) and noticing again that ϕ(z, ω) ∼ ea z as z → +∞.

Step 3: Proof of (i) and (iii). Let us consider a positive solution ϕ to (29) and define on R the function

ϕ0(z) := 1∣∣Sd−1
∣∣
∫

Sd−1

ϕ(z,ω)dω .

By integrating (29) on Sd−1, we know that ϕ0 solves

−ϕ′′
0 + a2 ϕ0 = 1

α2
∣∣Sd−1

∣∣
∫

Sd−1

h(z,ω)dω =: h0(z)

α2
∀ z ∈R ,

with

|h0(z)| ≤ O
(
e− n+2

2 z) as z → +∞ , |h0(z)| ∼ e

(
− n+2

2 + 2 p
p−1

)
z

as z → −∞ .

From the integral representation

ϕ0(z) = − ea z

2 a α2

z∫
−∞

e−at h0(t)dt − e−a z

2 a α2

∞∫
z

eat h0(t)dt ,

we deduce that as z → +∞, ϕ0(z) ∼ ea z and

ϕ′
0(z) − a ϕ0(z)

ϕ(z,ω)
∼ e−2a z

∞∫
z

eat h0(t)dt = O (e−2 z) .

If we define the function ψ(z, ω) := e−a z
(
ϕ(z, ω) − ϕ0(z)

)
, we may observe that it is bounded for z positive and, 

moreover,

ϕ′(z,ω)

ϕ(z,ω)
− a = O (e−2 z) + ψ ′(z,ω)

e−a z ϕ(z,ω)
as z → +∞ .

We recall that e−a z ϕ(z, ω) is bounded away from 0 by a positive constant as z → +∞. Hence we know that∣∣∣ϕ′(z,ω)

ϕ(z,ω)
− a

∣∣∣ ≤ O
(|ψ ′(z,ω)

)+ O (e−2 z) . (34)

By the Poincaré inequality and estimate (33) with � = 0, we have∫
Sd−1

|ψ |2 dω = e−2az
∫

Sd−1

|ϕ − ϕ0|2 dω ≤ e−2az

λ1

∫
Sd−1

|∇ωϕ|2 dω ≤ O (e−2z) .

Moreover, by the estimate (33) with � = 1, we also obtain

e−2az
∫

Sd−1

|ϕ′ − ϕ′
0|2 dω ≤ e−2az

λ1

∫
Sd−1

|∇ωϕ′|2 dω ≤ O (e−2z) .

Hence, since ψ ′ = − a ψ + e−az (ϕ′ − ϕ′
0), the above estimates imply that∫

Sd−1

|ψ |2 dω +
∫

Sd−1

|ψ ′|2 dω ≤ O (e−2z) ,

which together with (34) ends the proof of (i).
To prove (iii), we first check that

ϕ′′

ϕ
− p

|ϕ′|2
|ϕ|2 + (

1 − 2 a (1 − p)
)ϕ′

ϕ
+ a2 (1 − p) − a = O (|ψ ′| + |ψ ′|2 + |ψ ′′|) + O (e−2 z) ,

and so it remains to prove that 
∫
Sd−1 |ψ ′′|2 dω is of order O (e−2 z). Since

ψ ′′ = a2 ψ − 2 a e−az (ϕ′ − ϕ′ ) + e−az (ϕ′′ − ϕ′′) ,
0 0
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using the above estimates, we have only to estimate the term with the second derivatives. This can be done as above by 
the Poincaré inequality,

e−2az
∫

Sd−1

|ϕ′′ − ϕ′′
0 |2 dω ≤ e−2az

λ1

∫
Sd−1

|∇ωϕ′′|2 dω ≤ O (e−2z) ,

based on the estimate (33) with � = 2. This ends the proof of (iii). �
Proof of Proposition 5.1. It is straightforward to verify that the boundedness of P′′ , P′/s, P/s2, ∇ωP′/s, ∇ωP/s2, LαP
as s → +∞ and the integral estimates (i)–(v) as s → 0+ from Lemma 5.4 are enough in order to establish (18), (24)
and (25). �
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