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Inspired by the motivic monodromy conjecture, Halle and Nicaise defined the global 
monodromy property for Calabi–Yau varieties over a discretely valued field. In this note, 
we discuss this property for K 3 surfaces allowing a strict normal crossings model where 
no three components in the special fiber have a common intersection. The main result is 
that the global monodromy property holds for a K 3 surface with a so-called flowerpot 
degeneration. It also holds for K 3 surfaces with a chain degeneration under certain 
conditions.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Inspirés par la conjecture de monodromie motivique, Halle et Nicaise ont défini la propriété 
de monodromie globale pour les variétés de Calabi–Yau définies sur un corps de valuation 
discrète. Dans cette note, nous étudions cette propriété pour les surfaces K 3 ayant un 
modèle sans point triple. Le résultat principal est que la propriété de monodromie globale 
est satisfaite pour les surfaces K 3 ayant une dégénérescence en pot de fleurs. Elle est 
également satisfaite pour les surfaces K 3 ayant une dégénérescence en chaîne sous une 
condition supplémentaire.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

For every non-constant polynomial f ∈ Z[x1, . . . , xn], Igusa’s p-adic monodromy conjecture expresses some properties of 
the p-adic zeta functions that predict in a quantitative way how the singularities of the complex hypersurface f = 0 affect 
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the number of solutions to the congruence f ≡ 0 modulo powers of primes pm for m big. Based on Kontsevich’s theory of 
motivic integration, Denef and Loeser formulated in the nineties in [3, Conjecture 3.4.1] the motivic monodromy conjecture: 
a generalization of the p-adic monodromy conjecture in terms of the motivic zeta functions. We refer to [8] for more details 
about the motivic monodromy conjecture and its relation with the p-adic monodromy conjecture.

In [5], Halle and Nicaise define a motivic zeta function Z X,ω(T ) associated with a Calabi–Yau variety X over a discretely 
valued field and a volume form ω on X and they address, in this context, an analogue of the motivic monodromy conjecture: 
do the poles of the power series Z X,ω(T ) correspond to monodromy eigenvalues on the cohomology of X? Calabi–Yau 
varieties with this property are said to satisfy the global monodromy property (GMP). Halle and Nicaise proved that abelian 
varieties satisfy the GMP and that the motivic zeta function of an abelian variety has exactly one pole.

In this note, we investigate the GMP for K 3 surfaces with a triple-point-free degeneration, i.e. K 3 surfaces allowing a 
strict normal crossings model such that three irreducible components of the special fiber never meet simultaneously. In [2], 
Crauder and Morrison classify such degenerate fibers into two main classes: so-called flowerpot degenerations and chain 
degenerations. This classification is very precise, which allows us to use a combination of geometrical and combinatorial 
arguments to prove the GMP for K 3 surfaces allowing a flowerpot degeneration or allowing a chain degeneration under an 
extra condition. This result constitutes the first example of Calabi–Yau varieties, beyond abelian varieties, that satisfy the 
global monodromy property. We also show that there exist Calabi–Yau varieties with a motivic zeta function with more 
than one pole, in contrast with the abelian case.

This note presents the results, without proof, obtained by the author in her PhD thesis [7].
For the rest of this note, fix the notation K = C( (t) ), k = C and R = C�t �. A variety is a reduced, separated scheme of 

finite type over a field.

2. The global monodromy property for Calabi–Yau varieties

2.1. Calabi–Yau varieties

Definition 2.1. A Calabi–Yau variety is a smooth, proper, geometrically connected variety with trivial canonical sheaf.

A well-known class of examples of Calabi–Yau varieties are the abelian varieties. In this note, we will focus on K 3
surfaces.

Definition 2.2. A K 3 surface X is a 2-dimensional Calabi–Yau variety with H1(X, OX ) = 0.

2.2. The Grothendieck ring of varieties

The Grothendieck group K0(V ark) of k-varieties is the abelian group generated by the isomorphism classes of separated 
k-schemes of finite type, modulo the scissor relations

[X] = [Y ] + [X \ Y ],
for Y a closed subscheme of X and where we use the notation [X] to denote the isomorphism class of the scheme X . This 
group is endowed with a ring structure by considering the formula

[X] · [X ′] = [X ×k X ′]
for every pair (X, X ′) of separated k-schemes of finite type.

We introduce the symbol L, which stands for the class of A1
k . The localisation of K0(V ark) with respect to L is denoted 

by Mk . For more details on the Grothendieck ring, we refer the reader to [10].

2.3. Motivic zeta function for Calabi–Yau varieties

Let X be a Calabi–Yau variety over K and let ω be a volume form on X , i.e. a nowhere-vanishing differential form of 
maximal degree. By analogy with [9, §7], Halle and Nicaise associate with X and ω in [5, Definition 6.1.4] a motivic zeta 
function as follows.

Definition 2.3. The motivic zeta function Z X,ω(T ) of X is defined as

Z X,ω(T ) =
∑

d∈Z>0

⎛
⎜⎝ ∫

X(d)

|ω(d)|
⎞
⎟⎠ T d ∈ Mk �T �,

where X(d) = X ×K C( ( d
√

t) ) and where ω(d) is the pullback of ω to X(d).
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The integral 
∫

X(d)
|ω(d)| is a motivic integral measuring the space of C( ( d

√
t) )-rational points on X .

The motivic zeta function of X can be computed from an snc-model X of X . An snc-model is a regular proper algebraic 
space over R such that X ×R K � X and such that the special fiber Xk = ∑

i∈I Ni Ei is a divisor with strict normal crossings. 
Such a model always exists by Nagata’s compactification theorem and the embedded resolution of singularities. We define 
μi as the order of div(ω) along Ei when ω is viewed as a rational section of the log-relative canonical bundle ωX /R (Xk,red −
Xk), where Xk,red is the divisor

∑
i∈I Ei .

For every non-empty subset J ⊆ I , we define

E J = ∩ j∈ J E j and E◦
J = E J \ (∪i∈I\ J Ei

)
.

In [1, Corollary 4.3.2], Bultot and Nicaise prove the following Denef–Loeser-type formula for X a scheme:

Z X,ω(T ) =
∑

∅�= J⊆I

(L− 1)| J |−1[Ẽ◦
J ]

∏
j∈ J

L−μ j T N j

1 −L−μ j T N j
, (1)

where Ẽ◦
J is a certain finite étale cover of E◦

J . See also [9, Corollary 7.7] for a similar result for formal schemes. This formula 
is easily generalized to the case where X is an algebraic space; see [6].

This formula immediately implies that Z X,ω is a rational function and that all poles of Z X,ω(L−s) are of the form −μi/Ni

for some i ∈ I . Since a normal crossing model is not unique, one cannot expect all ‘candidate poles’ −μi/Ni to be actual 
poles of Z X,ω . But even candidate poles that appear in every model will not always be actual poles. This phenomenon is 
intimately related with the global monodromy property for Calabi–Yau varieties.

2.4. The global monodromy property for Calabi–Yau varieties

Let X be a proper smooth variety over K . For every m ≥ 0, the monodromy transformation Mm for X is the action of the 
canonical topological generator σ of Gal(K alg/K ) on the �-adic cohomology Hm(X ×K K alg, Q�). A monodromy eigenvalue for 
X is an eigenvalue of Mm for some m ≥ 0.

Informally, the global monodromy property (GMP) for Calabi–Yau varieties expresses that the poles of the motivic zeta 
function correspond to monodromy eigenvalues. By subsection 2.3, one can interpret the GMP for a Calabi–Yau variety X as 
a precise relation between its cohomology and the geometry of its snc-models.

Definition 2.4 ([5, Definition 6.4.1]). Let X be a Calabi–Yau variety over K with volume form ω, and let σ be the canonical 
topological generator of the monodromy group Gal(K alg/K ). We say that X satisfies the global monodromy property if there 
exists a finite subset S of Z ×Z>0 such that

Z X,ω(T ) ∈ Mk

[
T ,

1

1 −LμT N

]
(μ,N)∈S

,

and such that for each (μ, N) ∈ S , we have that exp(2πiμ/N) is an eigenvalue of σ on Hm(X ×K K alg, Q�), for every 
embedding of Q� into C.

Remark 1. Whether a Calabi–Yau variety X satisfies the global monodromy property does not depend on the choice of 
volume form ω. Indeed, it follows immediately from the definition that

Z X,u·ω(T ) = Z X,ω(L−ordt (u) T ),

for every unit u ∈ K × . Hence, changing ω amounts to shifting the poles by an integer value.

Halle and Nicaise proved that abelian varieties satisfy the GMP.

Theorem 2.5 ([4, Theorem 8.5]). Let X be an abelian variety over K and let ω be a volume form on X. The motivic zeta function 
Z X,ω(T ) has a unique pole and the global monodromy property holds for X.

Remark 2. For a suitable choice of ω, the unique pole of Z X,ω(T ) coincides with Chai’s base change conductor.

To investigate the GMP in dimension 2, the only remaining case is that of K 3-surfaces, i.e. 2-dimensional Calabi–Yau 
varieties X with H1(X, OX ) = 0. Indeed, if X is a 2-dimensional Calabi–Yau variety with H1(X, OX ) �= 0, then X is an 
abelian surface and hence the GMP holds for X by Theorem 2.5.
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Fig. 1. An example of a flowerpot degeneration with three flowers.

Fig. 1. Un exemple d’une dégénérescence en pot de fleurs avec trois fleurs.

3. The Crauder–Morrison classification

Let X be a proper smooth surface over K with ω⊗m
X/K � OX for some m ≥ 1. Let X be an snc-model of X and write 

the special fiber as Xk = ∑
i∈I Ni Ei . Suppose that X is triple point free; this means that Ei ∩ E j ∩ Ek = ∅ when i, j, k

are pairwise distinct. Assume furthermore that X is relatively minimal for this property, i.e. it is not possible to contract 
components in the special fiber such that the result is still a triple-point-free snc-model.

Let ω be a nowhere vanishing section of ω⊗m
X/K . We can view ω as a rational section of ωX /R(Xk,red −Xk)

⊗m , where 
Xk,red is the divisor 

∑
i∈I Ei . Define μi such that mμi is the multiplicity of div(ω) along Ei . We define the weight ρi of the 

component Ei to be

ρi = μi

Ni
+ 1.

Let � be the dual graph of the special fiber Xk . Denote by �min the graph spanned by the vertices corresponding to 
components Ei with minimal weight ρi .

Theorem 3.1 (Crauder–Morrison Classification [2]). Let X be a relatively minimal triple-point-free model of X. Then X has the fol-
lowing properties:

(i) �min is a connected subgraph of � and it is either a single vertex, a cycle or a chain. We call X a flowerpot degeneration, a cycle 
degeneration or a chain degeneration respectively.

(ii) Each connected component of � \ �min is a chain (called a flower) F0—F1— · · ·—Fl, with only Fl meeting �min, and it meets 
a unique vertex of �min . The weights strictly increase: ρ0 > ρ1 > · · · > ρl . The surfaces F1, . . . , Fl are minimal ruled and F0 is 
either minimal ruled or is isomorphic to P2. Flowers have been classified into 21 types.

(iii) Suppose �min is a single vertex P (called a flowerpot). Then the surface P is isomorphic to P2 , or a ruled surface, or it has Kodaira 
dimension 0.

(iv) Suppose �min is a cycle V 1—V 2— · · ·—Vk. Then there are no flowers and all components have the same multiplicity, i.e. there 
exists an integer N ≥ 1 such that the special fiber can be written as Xk = N

(∑k
i=1 V i

)
. Furthermore, all V i are elliptic minimal 

ruled surfaces.
(v) Suppose �min is a chain V 0—V 1— · · ·—Vk—Vk+1 . Then the surfaces V 1, . . . , Vk are elliptic ruled and if i = 0 or k + 1, the surface 

V i is either isomorphic to P2, or it is a rational or elliptic ruled surface.

Example 1. The dual graph in Fig. 1 shows a flowerpot degeneration with three flowers. Two of the flowers have a top 
isomorphic to P2 and the third flower has a ruled top. The labels next to the vertices denote (Ni , ρi).

In [7], a proof of the following will appear:

Proposition 3.2. If X is a K 3 surface, then �min is either a flowerpot or a chain.

4. The monodromy property for K 3 surfaces with a triple-point-free model

Let X be a K 3 surface over K . Suppose that X is a relatively minimal triple-point-free model of X with special fiber 
Xk = ∑

i∈I Ni Ei . Let ω be a volume form on X and let μi be the multiplicity of ω along Ei when viewed as a rational 
section of the log-relative canonical bundle ωX /R (Xk,red − Xk). It is possible to determine the poles of the motivic zeta 
function of (X, ω) in terms of X .

Theorem 4.1. The poles of Z X,ω(T ) are exactly −μi/Ni for i ∈ I such that ρi is minimal or such that Ei � P2 and it is the top of a 
flower meeting the next component in a conic.
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The motivic zeta function of such K 3 surfaces can have more than one pole, in contrast with abelian varieties. An easy 
example of a K 3 surface with a motivic zeta function with more than one pole is the following:

Example 2. Let X be the K 3 surface defined by the homogeneous equation

x2 w2 + y2 w2 + z2 w2 + x4 + y4 + z4 + t w4 = 0 (2)

in Proj K [x, y, z, w]. Let Y be the closed subscheme of Proj R[x, y, z, w] defined by the homogeneous equation (2). We 
construct an snc-model X of X by blowing up Y at P = (0 : 0 : 0 : 1). The special fiber of X is of the form Xk = D + 2E , 
where D is the strict transform of Yk and E � P2

k is the exceptional divisor. The strict transform D is smooth and intersects 
E transversally along a smooth conic C . For a suitable choice of volume form ω, one has μD = 0 and μE = 1. This means 
that X is a flowerpot degeneration, with D the flowerpot and E a flower. Using formula (1), the motivic zeta function can 
be computed as

Z X,ω(T ) = [D̃◦] T

1 − T
+ [Ẽ0] L−1T 2

1 −L−1T 2
+ [C] L−1T 3

(1 − T )(1 −L−1T 2)
.

One checks that 0 and −1/2 are poles of Z X,ω(T ), which is in agreement with Theorem 4.1.

Our main result is that K 3 surfaces with a flowerpot degeneration satisfy the GMP.

Theorem 4.2. Let X be a K 3 surface over K with relatively minimal triple-point-free model X over R with special fiber Xk a flowerpot 
degeneration. Then X satisfies the global monodromy property.

We also have some partial results for chain degenerations.

Theorem 4.3. Let X be a K 3 surface over K with relatively minimal triple-point-free model X over R with special fiber Xk a chain 
degeneration. Denote by V 0—V 1— · · ·—Vk—Vk+1 the chain. The K 3 surface X satisfies the global monodromy property if one of the 
following conditions hold:

(i) the components V 0, V 1, . . . , Vk+1 all have the same multiplicity N, or
(ii) neither V 0 nor Vk+1 is a rational ruled surface.

It is not known which special fibers can occur as a chain degeneration of a K 3 surface, which makes it hard to verify 
the GMP for K 3 surfaces with a chain degeneration in general. Therefore, it is an open question to determine whether all 
K 3-surfaces with a chain degeneration satisfy the GMP.
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