
C. R. Acad. Sci. Paris, Ser. I 355 (2017) 5–9
Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Algebra

On the number of generators of an algebra

Sur le nombre de générateurs d’une algèbre

Uriya A. First, Zinovy Reichstein 1

Department of Mathematics, University of British Columbia, Vancouver, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 October 2016
Accepted after revision 29 November 2016
Available online 7 December 2016

Presented by Jean-Pierre Serre

A classical theorem of Forster asserts that a finite module M of rank ≤ n over a Noetherian 
ring of Krull dimension d can be generated by n + d elements. We prove a generalization 
of this result, with “module” replaced by “algebra”. Here we allow arbitrary finite algebras, 
not necessarily unital, commutative or associative. Forster’s theorem can be recovered as 
a special case by viewing a module as an algebra where the product of any two elements 
is 0.
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r é s u m é

Un théorème classique de Forster affirme que tout module M de type fini et de rang ≤ n
sur un anneau noethérien de dimension de Krull d peut être engendré par n + d éléments. 
Nous prouvons une généralisation de ce résultat où le mot « module » est remplacé par 
« algèbre ». Les algèbres considérées ici sont de type fini, mais non nécessairement unitaires, 
commutatives ou même associatives. Le théorème de Forster peut être déduit du cas 
particulier où un module est vu comme une algèbre dont le produit de deux éléments 
quelconques est 0.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Throughout this paper, R will denote a commutative Noetherian ring with 1. For p ∈ Spec R , R(p) will denote the fraction 
field of R/p. The starting point of this paper is the following classical theorem of Forster.

Theorem 1.1 ([3]). Suppose R is Noetherian of Krull dimension d and let M be a finite R-module. If the R(p)-module

M(p) := M ⊗R R(p)

can be generated by n elements for every p ∈ Max R, then M can be generated by n + d elements.
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Swan [13] showed that Theorem 1.1 remains valid when the Krull dimension of R is replaced by the dimension of 
Max R .2 Further generalizations and refinements of Forster’s Theorem can be found in [13,2,14,6]. This note offers yet an-
other generalization, replacing the finite R-module M by a finite R-algebra A, i.e. by a finitely generated R-module A with 
an R-bilinear multiplication map A × A → A. This bilinear map can be arbitrary; we do not require A to be commutative 
or associative, or to have a unit element. For p ∈ Spec R , write A(p) := A ⊗R R(p).

Theorem 1.2. Assume dim Max R = d and let A be a finite R-algebra such that A(p) can be generated by n elements as a non-unital 
R(p)-algebra for every p ∈ Max R. Then A can be generated by n + d elements as a non-unital R-algebra.

In the case where the multiplication map A × A → A is identically zero, we recover Forster’s Theorem 1.1. Other applica-
tions of Theorem 1.2 can be found in Section 4. Before proceeding with the proof, we remark that our argument also proves 
the following variants of Theorem 1.2.

(i) If A is a unital algebra, Theorem 1.2 remains valid if we replace “generated as a non-unital algebra” with “generated 
as a unital algebra”.

(ii) Both the original and the unital versions of Theorem 1.2 remain valid in the setting of [13], where A is equipped with 
a left �-module structure, � being an R-algebra, and generation means generation as an R-algebra carrying an additional 
�-module structure. Note that, unlike [13, Theorem 1], we do not require � to be finitely generated as an R-module.

(iii) More generally, A can be taken to be a finite R-multialgebra, i.e. a finite right R-module equipped with an in-
dexed family of homogeneous maps { f i : Ani → A}i∈I . Here we say that f : Ak → A is (m1, . . . , mk)-homogeneous, if 
f (a1r1, . . . , akrk) = f (a1, . . . , ak)r

m1
1 . . . rmk

k for all a1, . . . , ak ∈ A and r1, . . . , rk ∈ R . Note that k = 0 is allowed; in this case 
f can be any map from A0 = 0 to A. The family { f i}i∈I is clearly amenable to base change, hence A(p) carries the struc-
ture of an R(p)-multialgebra. A multisubalgebra of A is an R-submodule closed under each f i , and the multisubalgebra 
generated by S ⊂ A is the smallest multisubalgebra containing S . Multialgebras can be used to encode many types of struc-
tures. For example, a (non-unital) R-algebra structure on A is a (1, 1)-homogeneous map A2 → A, a unit element can be 
specified by a map A0 → A, an involution by a (1)-homogeneous map A → A, a quadratic Jordan algebra structure by a 
(2, 1)-homogeneous map A2 → A, etc. Furthermore, if � is an associative R-algebra, then a left �-module structure, as 
in (ii), can be represented by the family of (1)-homogeneous maps { fλ : A → A}λ∈� , given by fλ(a) = λa.

2. Preliminary lemmas

Let A be a finite R-algebra. For p ∈ Spec R and a ∈ A, denote the image of a in A(p) by a(p).

Lemma 2.1. Let a1, . . . , an ∈ A. Then a1, . . . , an generate A as an R-algebra if and only if for all p ∈ Max R, the elements 
a1(p), . . . , an(p) generate A(p) as an R(p)-algebra.

Proof. Let B be the R-subalgebra generated by a1, . . . , an . The map B(p) → A(p) induced by the inclusion B ↪→ A is an 
isomorphism for all p. Since A is a finite R-algebra, Nakayama’s Lemma implies that the map Bp → Ap is an isomorphism 
for all p ∈ Max R . It is well known that this implies B = A. �
Lemma 2.2. Suppose a1, . . . , an ∈ A and p ∈ Spec R. If a1(p), . . . , an(p) generate A(p) as an R(p)-algebra, then there exists an open 
neighborhood U of p in Spec R such that a1(q), . . . , an(q) generate A(q) for any q ∈ U .

Proof. By our assumption, there exist (non-associative) monomials ω1, . . . , ωt on n letters such that A(p) is spanned 
by {ωi(a1(p), . . . , an(p))}t

i=1 as an R(p)-module. Write bi = ωi(a1, . . . , an). By Nakayama’s Lemma, Ap is spanned as an 
Rp-module by the images of b1, . . . , bt . Let B = ∑

i bi R . Then (A/B)p = 0. Since A is finitely generated, there is s ∈ R \ p

such that (A/B)s = 0. Thus, for any q ∈ Spec R not containing s, we have (A/B)q = 0. Hence, a1(q), . . . , an(q) generate A(q)

as an R(q)-algebra. �
To state the next lemma, we need some additional notations. Let n ∈ N. For any commutative associative unital 

R-algebra S , let A S = A ⊗R S and write

Vn(S) = {
(a1, . . . ,an) ∈ An

S : a1, . . . ,an generate A S as an S-algebra
}

.

For all 0 ≤ i ≤ n, we further let

Vn,i(S) =
{
(a1, . . . ,ai) ∈ Ai

S : ∃ ai+1, . . . ,an ∈ A S such that (a1, . . . ,an) ∈ Vn(S)
}

.

2 Recall that the dimension of a topological space X is the maximal length d of a chain ∅ 	= X0 � X1 � · · · � Xd ⊆ X of closed irreducible subsets (or 
−∞). The Krull dimension of R is the dimension of Spec R endowed with the Zariski topology. The maximal spectrum Max R is a subspace of Spec R , hence 
dim Max R � dim Spec R .
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Lemma 2.3. Let p ∈ Spec R, let a1, . . . , ai ∈ A, and assume that (a1(p), . . . , ai(p)) ∈ Vn,i(R(p)). Then there exists an open neighbor-
hood U of p in Spec R such that (a1(q), . . . , ai(q)) ∈ Vn,i(R(q)) for all q ∈ U .

Proof. There are bi+1, . . . , bn ∈ A(p) such that a1(p), . . . , ai(p), bi+1, . . . , bn generate A(p). After multiplying bi+1, . . . , bn by 
suitable invertible elements of R(p), we may assume that each b j is the image of some element a j ∈ A. By Lemma 2.2, 
there is an open neighborhood U of p such that, for all q ∈ U , the elements a1(q), . . . , an(q) generate A(q). In particular, 
(a1(q), . . . , ai(q)) ∈ Vn,i(R(q)). �
3. Proof of Theorem 1.2

We claim that, for every 0 ≤ j ≤ n + d, there exist elements a1, . . . , a j ∈ A and a partition of X := Max R into locally 
closed subsets X =F ( j)

0 �F ( j)
1 � · · · �F ( j)

n with the following properties:

(1) for any i � 1 and any p ∈ F ( j)
i , there are t1, . . . , ti ∈ {1, . . . , j} such that

(at1(p), . . . ,ati (p)) ∈ Vn,i(R(p));
(2) dimF ( j)

i ≤ dim X + i − j for every 0 ≤ i < n.

For j = n + d, condition (2) implies that F (n+d)
i = ∅ for all 0 ≤ i < n, hence X = F (n+d)

n . Condition (1) then tells us 
that for every p ∈ X , there are t1, . . . , tn ∈ {1, . . . , n + d} such that (at1 (p), . . . , atn (p)) ∈ Vn,n(R(p)) = Vn(R(p)). In particular, 
a1(p), . . . , an+d(p) generate A(p) as an R(p)-algebra for every p ∈ X . Lemma 2.1 now implies that a1, . . . , an+d generate A as 
an R-algebra, proving the theorem.

To prove the claim, we will construct the elements a1, . . . , a j ∈ A and the partition X = F ( j)
0 � F ( j)

1 � · · · � F ( j)
n by 

induction on j. For the base case j = 0, set F (0)
0 := X and F (0)

1 = · · · = F (0)
n := ∅. Condition (2) clearly holds and condition 

(1) follows from the assumption that A(p) is generated by n elements for every p ∈ X .
For the induction step, assume that elements a1, . . . , a j ∈ A and a partition X = F ( j)

0 � F ( j)
1 � · · · � F ( j)

n satisfying con-
ditions (1) and (2) have been constructed for some 0 � j < n + d. We shall choose an element a j+1 ∈ A as follows. For 
each 0 � i < n, choose finitely many distinct points pi,1, . . . , pi,Ni ∈ F ( j)

i meeting all irreducible components of F ( j)
i (here 

we are using our standing assumption that R is Noetherian). By condition (1), for each point pi,s , there exist integers 
t1, . . . , ti ∈ {1, . . . , j} (depending on i and s) such that (at1 (pi,s), . . . , ati (pi,s)) ∈ Vn,i(R(pi,s)). Therefore, for each point pi,s , 
there exists bi,s ∈ A(pi,s) such that (at1 (pi,s), . . . , ati (pi,s), bi,s) ∈ Vn,i+1(R(pi,s)). Since the sets F ( j)

0 , F ( j)
1 , . . . , F ( j)

n−1 are dis-
joint, the points pi,s are all distinct. By the Chinese Remainder Theorem, there exists a j+1 ∈ A such that a j+1(pi,s) = bi,s for 
every i = 1, . . . , n − 1, and every s = 1, . . . , Ni .

Now, by Lemma 2.3, for each i and s as above, there is an open subset Ui,s of X containing pi,s such that

(at1(p), . . . ,ati (p),a j+1(p)) ∈ V i+1,n(R(p)) (3.1)

for all p ∈ Ui,s . Let Ui be the union of Ui,s , as s ranges from 1 to Ni , and set Un = ∅. Now set

F ( j+1)

i :=
{

(F ( j)
i−1 ∩ Ui−1) ∪ (F ( j)

i \ Ui) if i = 1, . . . ,n, and

F ( j)
0 \ U0 if i = 0.

(3.2)

It is easy to see that {F ( j+1)
0 , . . . , F ( j+1)

n } is a partition of X . Let 0 ≤ i < n. By our construction, Ui meets all irreducible 
components of F ( j)

i , hence

dim(F ( j)
i \ Ui) � dim(F ( j)

i ) − 1 . (3.3)

Conditions (1), (2) for the elements a1, . . . , a j, a j+1 ∈ A and the partition X =�i F
( j+1)

i now readily follow from (3.1), (3.2), 
and (3.3). This completes the proof of Theorem 1.2. �
4. Applications

Let A and B be R-algebras. We say that A is a form of B (or equivalently, B is a form of A) if there is a faithfully flat 
commutative unital R-algebra S such that A ⊗R S ∼= B ⊗R S as S-algebras. For example, an Azumaya R-algebra of degree n is 
a form of the matrix algebra Mn(R), a finite étale R-algebra of rank n is a form of R ×· · ·× R (n times), a Cayley R-algebra is 
a form of the split octonion algebra OR (see [7, Corollary 4.11] or [9, Theorem 3.9]), and when 2 ∈ R× , an Albert R-algebra is 
a form of the split Albert algebra H3(OR), where H3 denotes the space of 3 × 3 Hermitian matrices (see [9, Theorem 6.9]).
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Proposition 4.1. Let A and B be finite-dimensional algebras over an infinite field F and assume A is a form of B. If B can be generated 
by n elements, then A can also be generated by n elements.

Proof. Let r := dimF (A) = dimF (B). Choose an F -basis for A and use it to identify A with the F -points of the affine 
space A

r
F . It is easy to see that there exists an open subscheme U of (Ar

F )n such that, for every field extension K/F , the 
K -points of U are the n-tuples (x1, . . . , xn) ∈ An

K that generate AK as a K -algebra. Our goal is to show that U has an F -point. 
Since U is an open subscheme of an affine space and F is an infinite field, it suffices to check that U 	= ∅.

Choose an F -field K such that AK ∼= B K . Since B is generated by n elements as an F -algebra, the same n elements will 
generate B K as a K -algebra. As AK ∼= B K , this implies that U has a K -point. Hence U 	= ∅, as claimed. �
Corollary 4.2. Assume the dimension of Max R is d. Then

(a) every Azumaya R-algebra is generated by d + 2 elements,
(b) every Cayley R-algebra is generated by d + 3 elements,
(c) every Albert R-algebra is generated by d + 3 elements, provided 2 ∈ R× ,3 and
(d) every finite étale R-algebra of rank n is generated by d + 1 elements, provided R/p is infinite for any p ∈ Max R.

We remind the reader that in the statement of the corollary, “generated” means “generated as a non-unital algebra”; 
allowing the use of the unit element in the proof does not improve the bounds. Note that, in (d), the assumption that R/p

is infinite is automatic if R contains an infinite field.

Proof. By Theorem 1.2, it is enough to prove the corollary when R is a field F , in which case d = 0. We let A denote an 
F -algebra that is Azumaya (resp. Cayley, Albert, étale of rank n).

(a) First note that Mn(F ) is generated by the two matrices, E1,1 and E1,2 + · · · + En−1,n + En,1. Here Ei, j denotes the 
n ×n matrix having 1 in the (i, j)-position and 0 elsewhere. Proposition 4.1 now tells us that when F is infinite, any form of 
Mn(F ) is also generated by two elements. When F is a finite field, the only form of Mn(F ) is Mn(F ) itself, by Wedderburn’s 
theorem, so we are done.

(b) By [11, §III.4], a Cayley F -algebra A is formed from a central simple F -algebra Q of degree 2 via the Cayley–Dickson 
process. In particular, A is generated by one element over Q . As we saw in the proof of part (a), Q is generated by two 
elements over F . Hence, A is generated by three elements over F .

(c) A split Albert F -algebra is generated by three elements; see [8, p. 112]. By Proposition 4.1, this is also the case for 
any Albert F -algebra when F is infinite. Thus we may assume that F is finite. In this case, Serre’s Conjecture I (proved by 
Steinberg) implies that every Albert F -algebra is split. Indeed, isomorphism classes of Albert F -algebras are classified by 
the first Galois cohomology set H1(F , G), where G is the split simply-connected algebraic group of type F4 defined over F
[5, Proposition 37.11]. By Serre’s Conjecture I, H1(F , G) = 0 whenever F has cohomological dimension � 1; see [12, Theo-
rem III.2.2.1]. On the other hand, finite fields are of cohomological dimension � 1; see [4, Theorem 6.2.6, Proposition 6.2.3]. 
This shows that A is split, thus completing the proof of part (c).

(d) We need to show that any étale F -algebra A of rank n over an infinite field F is generated by a single element. By 
Proposition 4.1, we may assume that A = F × · · · × F (n times). In this case, A is generated by any element (α1, . . . , αn)

with distinct entries. �
Remark 4.3. In part (d), the assumption that R/p is infinite for any p ∈ Spec R cannot be removed in general. Indeed, when 
R is a field F with q elements and A = F × · · · × F , one needs at least �logq(n + 1)� generators, since xq = x for any x ∈ A. 
In fact, it can be shown that any étale F -algebra of rank n can be generated by �logq(n + 1)� elements (or �logq n� if the 
use of the unity is allowed). Thus, if we drop the assumption that R/p is infinite in Corollary 4.2(d), we can still assert that 
A is generated by d + �logq(n + 1)� elements, where q = minp∈Max R |R/p|.

Remark 4.4. Recall that a unital associative algebra A is called separable if A is projective relative to the left A ⊗R Aop-module 
structure given by (a ⊗ bop)x = axb (a, b, x ∈ A). Examples of separable algebras include Azumaya and finite étale algebras; 
see [1] for further details. In the case where dim Max(R) = d and R has no finite homomorphic images, Corollary 4.2(a) can 
be generalized as follows: every finite separable R-algebra can be generated by d + 2 elements. Indeed, by Theorem 1.2, it suffices 
to show that every separable algebra B over an infinite field F is generated by two elements. Let K be an algebraic closure 
of F . By [1, Corollary 2.4], B ⊗F K is a product of matrix algebras Md1 (K ) ×· · ·×Mdr (K ). By Proposition 4.1, we may assume 
B itself is a product of matrix algebras Md1 (F ) × · · · × Mdr (F ). In this case, a proof can be found in [10, Proposition 2.10].
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