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This paper deals with functional evolution inclusions of neutral type in Banach space when 
the semigroup is compact as well as noncompact. The topological properties of the solution 
set is investigated. It is shown that the solution set is nonempty, compact and an Rδ-set 
which means that the solution set may not be a singleton but, from the point of view of 
algebraic topology, it is equivalent to a point, in the sense that it has the same homology 
group as one-point space. As a sample of application, we consider a partial differential 
inclusion at end of the paper.
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r é s u m é

Cette Note traite des inclusions fonctionnelles d’évolution de type neutre dans les espaces 
de Banach, aussi bien lorsque le semi-groupe est compact que lorsqu’il est non compact. 
Nous étudions les propriétés topologiques de l’ensemble des solutions. Nous montrons 
que cet ensemble est non vide, compact, et qu’il est un Rδ-ensemble. Ceci signifie qu’il 
peut ne pas être réduit à un point, mais qu’il est équivalent, pour la topologie algébrique, 
à un espace réduit à un point. Plus précisément, l’ensemble des solutions a les mêmes 
groupes d’homologie qu’un ensemble réduit à un point. Comme exemple d’application, 
nous considérons enfin une inclusion différentielle partielle.
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1. Introduction

In this paper, we study the following functional evolution inclusion of neutral type⎧⎨⎩
d

dt
[x(t) − h(t, xt)] ∈ Ax(t) + F (t, xt), t ∈ [0,b],

x(t) = φ(t), t ∈ [−τ ,0],
(1.1)

where the state x(·) takes value in Banach space X with norm | · |, F is a multimap defined on a subset of [0, b] × X , 
A is the infinitesimal generator of an analytic semigroup {T (t)}t≥0. For any continuous function x defined on [−τ , b] and 
any t ∈ [0, b], we denote by xt the element of C([−τ , 0], X) defined by xt(θ) = x(t + θ), θ ∈ [−τ , 0]. Here, xt(·) represents 
the history of the state from time t − τ , up to the present time t . For any c ∈ C([−τ , 0], X) the norm of c is defined by 
‖c‖∗ = supθ∈[−τ ,0] |c(θ)|.

The study of (1.1) is justified and motivated by a neutral partial differential inclusion of parabolic type⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂

∂t

(
x(t, ξ) −

π∫
0

U (ξ, ζ )xt(θ, ζ )dζ

)
∈ ∂2

∂ξ2
x(t, ξ) + F (t, ξ, xt(θ, ξ)), t ∈ [0,1], ξ ∈ [0,π],

x(t,0) = x(t,π) = 0, t ∈ [0,1],
x(θ, ξ) = φ(θ)(ξ), θ ∈ [−τ ,0], ξ ∈ [0,π],

where the functions U and φ satisfy appropriate conditions, F : [0, 1] × [0, π] → 2R is weakly upper semicontinuous with 
closed convex values.

Particularly, if h = 0, inclusion (1.1) degenerates to

x′(t) ∈ Ax(t) + F (t, xt).

A strong motivation for investigating this class of inclusions is that a lot of phenomena investigated in hybrid systems with 
dry friction, processes of controlled heat transfer, obstacle problems and others can be described with the help of various 
differential inclusions, both linear and nonlinear (cf. [9,16,21]). The theory of differential inclusions is highly developed 
and constitutes an important branch of nonlinear analysis (see, e.g., Bressan and Wang [7], Donchev et al. [11], Gabor and 
Quincampoix [14], and the references therein).

Since a differential inclusion usually has many solutions starting at a given point, new issues appear, such as investiga-
tion of topological and geometric properties of solution sets, selection of solutions with given properties, evaluation of the 
reachability sets, etc. An important aspect of topological structure is the Rδ-property, which means that an Rδ-set is acyclic 
(in particular, nonempty, compact and connected) and may not be a singleton but, from the point of view of algebraic 
topology, it is equivalent to a point, in the sense that it has the same homology groups as one point space. The topological 
structure of solution sets of differential inclusions on compact intervals has been investigated intensively by many authors—
please see Aronszajn [3], Bothe [6], Deimling [9], Hu and Papageorgiou [15], Staicu [19], and references therein. Moreover, 
one can find results on the topological structure of solution sets for differential inclusions defined on non-compact intervals 
(including infinite intervals) from Andres and Pavlačková [2], Andres et al. [1], Bakowska and Gabor [4], Bressan and Wang 
[7], Chen et al. [8], Gabor and Grudzka [12,13], Gabor and Quincampoix [14], Staicu [20], Wang et al. [22], and references 
therein.

The researches on the theory for nonlinear evolution inclusion of neutral type are only on their initial stage of de-
velopment, see [5,17,23]. However, to the best of our knowledge, nothing has been done with the topological properties of 
solution sets for nonlinear evolution inclusion of neutral type. Our purpose in this paper is to study the topological structure 
of solution sets for inclusion (1.1).

The paper is organized as follows. In Section 2, we recall some notations, definitions, and preliminary facts from mul-
tivalued analysis. Subsection 3.1 is devoted to proving that the solution set for inclusion (1.1) is nonempty compact in the 
case that the semigroup is compact, then proceed to study the Rδ-set. Subsection 3.2 provides that the solution set for 
inclusion (1.1) is nonempty compact in the case that the semigroup is noncompact, then proceed to study the Rδ -structure 
of the solution set of (1.1). Finally, an example is given to illustrate the obtained theory.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts from multivalued analysis which are used 
throughout this paper.

Let (X, | · |) be a Banach space. L(X) stands for the space of all linear bounded operators on X with norm ‖ · ‖, and 
L1([0, b], X) stands for the Banach space consisting of integrable functions from [0, b] to X equipped with the norm

‖ f ‖1 =
b∫
| f (t)|dt.
0
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We denote by C([−τ , b], X) the Banach space consisting of continuous functions from [−τ , b] to X equipped with the 
norm

‖x‖[−τ ,b] = max
t∈[−τ ,b]

|x(t)|.

We assume that A is the infinitesimal generator of an analytic semigroup {T (t)}t≥0 of uniformly bounded linear operators 
on X . Let 0 ∈ ρ(A), where ρ(A) is the resolvent set of A. Under these conditions, it is possible to define the fractional 
power Aβ , 0 < β ≤ 1, as a closed linear operator on its domain D(Aβ ). For the analytic semigroup {T (t)}t≥0, the following 
properties will be used:

(i) there is a M ≥ 1 such that M := supt≥0 ‖T (t)‖ < ∞;
(ii) for any β ∈ (0, 1], there exists a positive constant Cβ such that

‖Aβ T (t)‖ ≤ Cβ

tβ
, 0 < t ≤ b.

It is clear that Aβ T (t)x = T (t)Aβ x for x ∈ D(Aβ). Then AT (t)x = A1−β T (t)Aβ x for x ∈ D(Aβ).

Lemma 2.1. [10] Let X be reflexive and K ⊂ L1([0, b], X) be bounded. If K is uniformly integrable, then K is relatively weakly compact 
in L1([0, b], X).

Let Y and Z be metric spaces. P (Y ) stands for the collection of all nonempty subsets of Y . As usual, we denote Pcl(Y ) =
{D ∈ P (Y ) : closed}, Pcp(Y ) = {D ∈ P (Y ) : compact}, Pcl,cv(Y ) = {D ∈ P (Y ) : closed and convex}, co(D) (resp., co(D)) be 
the convex hull (resp., convex closed hull in D) of a subset D .

For the multimap ϕ : Y → P (Z), we let Gra(ϕ) stand for the graph of ϕ . If D is a subset of Z , then we denote by 
ϕ−1(D) = {y ∈ Y : ϕ(y) ∩ D �= ∅} the complete preimage of D under ϕ . ϕ is called closed if Gra(ϕ) is closed in Y × Z , 
quasicompact if ϕ(D) is relatively compact for each compact set D ⊂ Y , upper semi-continuous (shortly, u.s.c.) if ϕ−1(D)

is closed for each closed set D ⊂ Z , and weakly upper semi-continuous (shortly, weakly u.s.c.) if ϕ−1(D) is closed for each 
weakly closed set D ⊂ Z .

The following facts will be used.

Lemma 2.2. [16] Let Y and Z be metric spaces and ϕ : Y → P (Z) a closed quasicompact multimap with compact values. Then ϕ is 
u.s.c.

Lemma 2.3. [6] Let ϕ : D ⊂ Y → P (Z) be a multimap with weakly compact, convex values. Then ϕ is weakly u.s.c. iff {xn} ⊂ D with 
xn → x0 ∈ D and yn ∈ ϕ(xn) implies yn ⇀ y0 ∈ ϕ(x0), up to a subsequence.

X is called an absolute retract (AR-space) if for any metric space Y and any closed subset D ⊂ Y , every continuous 
function h : D → X can be extended to a continuous function ̃h : Y → X .

X is called an absolute neighborhood retract (AN R-space) if for any metric space Y , closed subset D ⊂ Y and continuous 
function h : D → X , there exists a neighborhood U ⊃ D and a continuous extension ̃h : U → X of h.

Definition 2.1. A nonempty subset D of a metric space is said to be contractible if there exists a point y0 ∈ D and a 
continuous function h : [0, 1] × D → D such that h(0, y) = y0 and h(1, y) = y for every y ∈ D .

Definition 2.2. A subset D of a metric space is called an Rδ-set if there exists a decreasing sequence {Dn} of compact and 
contractible sets such that

D =
∞⋂

n=1

Dn.

A function γ : P (X) →R
+ defined by:

γ (D) = inf{r > 0 : D can be covered by finitely many balls of radius r}
is called the Hausdorff measure of noncompactness. A function μ : P (X) →R

+ defined by:

μ(D) = inf{r > 0 : D ⊂
m⋃

i=0

Ni and diam(Ni) ≤ r}

is called Kuratowski measure of noncompactness. Here diam(Ni) is the diameter of Ni . Moreover, we have γ ≤ μ ≤ 2γ .
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Lemma 2.4. [16] Let X be a separable Banach space and F : [0, b] → P (X) be integrably bounded multifunction such that γ (F (t)) ≤
q(t) for a.e. t ∈ [0, b], here, q ∈ L1([0, b], R+). Then

γ

( t∫
0

F (s)ds

)
≤

t∫
0

q(s)ds

for all t ∈ [0, b].

Lemma 2.5. [16, Proposition 4.2.2] Let X be a Banach space and L be an operator

L : L1([0,b], X) → C([0,b], X)

that satisfies the following conditions:

(S1) there exists a constant c0 > 0, such that

|L( f )(t) −L(g)(t)| ≤ c0

t∫
0

| f (s) − g(s)|ds, t ∈ [0,b]

for every f , g ∈ L1([0, b], X);
(S2) for each compact set K ⊂ X and sequence { fn} ⊂ L1([0, b], X) such that { fn(t)} ⊂ K for a.e. t ∈ [0, b], the weak convergence 

fn ⇀ f0 implies the convergence L( fn) →L( f0).

Then

(i) if the sequence of functions { fn} ⊂ L1([0, b], X) is integrably bounded for all n = 1, 2, ... and γ ( fn(t)) ≤ q1(t) for a.e. t ∈ [0, b], 
where q1 ∈ L1([0, b], R+), then

γ ({L( fn)(t)}∞n=1) ≤ 2c0

t∫
0

q1(s)ds;

(ii) for every semicompact sequence { fn} ⊂ L1([0, b], X), the sequence {L( fn)} is relatively compact in C([0, b], X) and, moreover, 
if fn ⇀ f0 , then L( fn) →L( f0).

Theorem 2.1. [6] Let X be a complete metric space, γ denote Hausdorff measure of noncompactness in X and let ∅ �= D ⊂ X. Then 
the following statements are equivalent:

(i) D is an Rδ-set;
(ii) D is an intersection of a decreasing sequence {Dn} of closed contractible spaces with γ (Dn) → 0;

(iii) D is compact and absolutely neighborhood contractible, i.e., D is contractible in each neighborhood in Y ∈ AN R.

Definition 2.3. A multimap ϕ : X → Pcp(X) is said to be condensing with respect to an MNC γ (γ -condensing) if for every 
bounded set D ⊂ X which is not relatively compact, we have:

γ (ϕ(D)) < γ (D).

In subsequent proofs, we shall also use the following fixed point results for multimaps.

Theorem 2.2. [16, Corollary 3.3.1] Let D be a bounded convex closed subset of a Banach space X, and ϕ : D → Pcp,cv(D) an u.s.c. 
γ -condensing multimap. Then the fixed point set Fixϕ := {x : x ∈ ϕ(x)} is a nonempty compact set.

Theorem 2.3. Let D be a bounded convex closed subset of a Banach space X. Let ϕ1 : D → X be a single-valued map and ϕ2 : D →
Pcp,cv(X) be a multimap such that ϕ1(x) + ϕ2(x) ∈ P (D) for x ∈ D. Suppose that

(a) ϕ1 is a contraction with the contraction constant k < 1
2 , and

(b) ϕ2 is u.s.c. and compact.

Then the fixed point set Fix(ϕ1 + ϕ2) := {x : x ∈ ϕ1(x) + ϕ2(x)} is a nonempty compact set.
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Proof. Since ϕ1 is a single-valued contraction, it is continuous on X . For x ∈ D , ϕ1(x) + ϕ2(x) ∈ P (D). Therefore the mul-
timap ϕ : D → P (D) defined by ϕ(x) = ϕ1(x) +ϕ2(x) is u.s.c. Since ϕ1 is a contraction with the contraction constant k, then 
we have that μ(ϕ1(S)) ≤ kμ(S) for any bounded subset S of X . Thus μ(ϕ1(x)) ≤ kμ({x}) = 0. Obviously, ϕ1 : D → Pcp,cv(D). 
As a result, we have ϕ : D → Pcp,cv(D). Let S be a bounded subset of D . As ϕ2 is compact, we have that γ (ϕ2(S)) = 0. It 
follows:

γ (ϕ(S)) ≤ γ (ϕ1(S) + ϕ2(S))

≤ γ (ϕ1(S)) + γ (ϕ2(S)) ≤ μ(ϕ1(S))

≤ kμ(S) ≤ 2kγ (S)

< γ (S),

whenever γ (S) > 0. Hence, we have that γ (ϕ(S)) < γ (S), γ (S) > 0 for all bounded sets S in D . So ϕ : D → Pcp,cv(D) is a 
γ -condensing multimap. By Theorem 2.2, the fixed point set Fixϕ is a nonempty compact set. This completes the proof. �
3. Topological structure of solution sets

In this section, let X be reflexive. We study the topological structure of solution sets in cases that T (t) is compact and 
noncompact, respectively. Before stating and proving the main results, we introduce the following hypotheses:

(H1) the multivalued nonlinearity F : [0, b] × C([−τ , 0], X) → Pcl,cv(X) satisfies
(i) F (t, ·) is weakly u.s.c. for a.e. t ∈ [0, b], and the multimap F (·, c) has a strongly measurable selection for every 

c ∈ C([−τ , 0], X);
(ii) there exists a function α(t) ∈ L1([0, b], R+) such that

|F (t, c)| ≤ α(t)(1 + ‖c‖∗) for a.e. t ∈ [0,b] and c ∈ C([−τ ,0], X).

(H2) The function h : [0, b] × C([−τ , 0], X) → X is continuous and there exists a constant β ∈ (0, 1) and d, d1 > 0 with 
d
(
‖A−β‖ + C1−βbβ

β

)
< 1

2 , such that h ∈ D(Aβ) and for any c1, c2 ∈ C([−τ , 0], X), the function Aβh(t, ·) is strongly 

measurable and Aβh(t, ·) satisfies the Lipschitz condition

|Aβh(t, c1) − Aβh(t, c2)| ≤ d‖c1 − c2‖∗
and the inequality

|Aβh(t, c1)| ≤ d1(1 + ‖c1‖∗) for every t ∈ [0,b].
Given x ∈ C([−τ , b], X), let us denote

SelF (x) = { f ∈ L1([0,b], X) : f (t) ∈ F (t, xt) for a.e. t ∈ [0,b]}.
The set SelF (x) is always nonempty, as Lemma 3.1 below shows.

Lemma 3.1. [8] (see also [6]) Let condition (H1) be satisfied. Then SelF : C([−τ , b], X) → P (L1([0, b], X)) is weakly u.s.c. with 
nonempty, convex and weakly compact values.

Definition 3.1. A continuous function x : [−τ , b] → X is said to be a mild solution to inclusion (1.1) if x(t) = φ(t) for t ∈
[−τ , 0] and if there exists f (t) ∈ L1([0, b], X) such that f (t) ∈ F (t, xt), and x satisfies the following integral equation:

x(t) = T (t)[φ(0) − h(0, φ)] + h(t, xt) +
t∫

0

AT (t − s)h(s, xs)ds +
t∫

0

T (t − s) f (s)ds, for t ∈ [0,b].

Remark 3.1. For any x ∈ C([−τ , b], X), now define a solution multioperator F : C([−τ , b], X) → P (C([−τ , b], X)) as follows

F(x) = �1(x) + �2(x),

where

�1(x)(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− T (t)h(0, φ) + h(t, xt) +

t∫
0

AT (t − s)h(s, xs)ds, t ∈ [0,b],

0, t ∈ [−τ ,0],
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and

�2(x)(t) =
{

y(t) ∈ C([−τ ,b], X) : y(t) =
{

S( f )(t), f ∈ SelF (x), t ∈ [0,b],
φ(t), t ∈ [−τ ,0],

}
,

here, the operator S : L1([0, b], X) → C([0, b], X) is defined by

S( f ) = T (t)φ(0) +
t∫

0

T (t − s) f (s)ds.

It is easy to verify that the fixed points of the multioperator F are mild solutions to inclusion (1.1).

Lemma 3.2. [8, Lemma 3.3] Let hypothesis (H1) be satisfied. Then there exists a sequence {Fn} with Fn : [0, b] × C([−τ , 0], X) →
Pcl,cv(X) such that

(i) F (t, c) ⊂ · · · ⊂ Fn+1(t, c) ⊂ Fn(t, c) ⊂ · · · ⊂ co(F (t, B31−n (c)), n ≥ 1, for each t ∈ [0, b] and c ∈ C([−τ , 0], X);
(ii) |Fn(t, c)| ≤ α(t)(2 + ‖c‖∗), n ≥ 1, for a.e. t ∈ [0, b] and each c ∈ C([−τ , 0], X);

(iii) there exists E ⊂ [0, b] with mes(E) = 0 such that for each x∗ ∈ X∗ , ε > 0 and (t, c) ∈ [0, b] \ E × C([−τ , 0], X), there exists 
N > 0 such that for all n ≥ N,

x∗(Fn(t, c)) ⊂ x∗(F (t, c)) + (−ε, ε);
(iv) Fn(t, ·) : C([−τ , 0], X) → Pcl,cv(X) is continuous for a.e. t ∈ [0, b] with respect to the Hausdorff metric for each n ≥ 1;
(v) for each n ≥ 1, there exists a selection gn : [0, b] × C([−τ , 0], X) → X of Fn such that gn(·, c) is measurable for each c ∈

C([−τ , 0], X) and for any compact subset D ⊂ C([−τ , 0], X), there exist constants C V > 0 and δ > 0 for which the estimate

|gn(t, c1) − gn(t, c2)| ≤ C V α(t)‖c1 − c2‖∗
holds for a.e. t ∈ [0, b] and each c1, c2 ∈ C([−τ , 0], X) with V := D + Bδ(0);

(vi) Fn verifies condition (H1)(i) with Fn instead of F for each n ≥ 1, provided that X is reflexive.

3.1. Compact operator case

The following compactness characterizations of the solution set to inclusion (1.1) will be useful.

Lemma 3.3. Suppose that {T (t)}t>0 is compact and that there exists r ∈ L1([0, b], R+) such that

|F (t, c)| ≤ r(t) for a.e. t ∈ [0,b] and c ∈ C([−τ ,0], X).

Then the multimap �2 is compact in C([−τ , b], X).

Proof. Let D be a bounded set of C([−τ , b], X). We will prove that for each t ∈ [−τ , b], V (t) = {�2(x)(t) : x ∈ D} is relatively 
compact in X .

Obviously, for t ∈ [−τ , 0], V (t) = {φ(t)} is relatively compact in X . Let t ∈ [0, b] be fixed, for x ∈ D and y ∈ V (t), there 
exists f ∈ SelF (x) such that

y(t) = T (t)φ(0) +
t∫

0

T (t − s) f (s)ds.

For an arbitrary ε ∈ (0, t), define an operator Jε : V (t) → X by

Jε y(t) = T (t)φ(0) + T (ε)

t−ε∫
0

T (t − ε − s) f (s)ds.

From the compactness of T (t), t > 0, we get that the set Vε(t) = { Jε y(t) : y(t) ∈ V (t)} is relatively compact in X for each 
ε ∈ (0, t). Moreover, it follows

|y(t) − Jε y(t)| ≤
∣∣∣∣

t∫
t−ε

T (t − s) f (s)ds

∣∣∣∣≤ M

t∫
t−ε

r(s)ds.

Therefore, there is a relatively compact set arbitrarily close to the set V (t). Thus the set V (t) is also relatively compact in 
X , which yields that V (t) = {�2(x)(t) : x ∈ D} is relatively compact in X for each t ∈ [−τ , b].
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We proceed to verify that the set {�2(x) : x ∈ D} is equicontinuous on [−τ , b]. Taking 0 < t1 < t2 ≤ b and δ > 0 small 
enough, for any y(t) ∈ �2(x), we obtain:

|y(t2) − y(t1)| ≤‖T (t2) − T (t1)‖|φ(0)| +
∣∣∣∣

t2∫
t1

T (t2 − s) f (s)ds

∣∣∣∣
+
∣∣∣∣

t1−δ∫
0

[T (t2 − s) − T (t1 − s)] f (s)ds

∣∣∣∣+ ∣∣∣∣
t1∫

t1−δ

[T (t2 − s) − T (t1 − s)] f (s)ds

∣∣∣∣
≤‖T (t2) − T (t1)‖‖φ‖∗ + M

t2∫
t1

r(s)ds

+ sup
s∈[0,t1−δ]

‖T (t2 − s) − T (t1 − s)‖
t1−δ∫
0

r(s)ds + 2M

t1∫
t1−δ

r(s)ds.

The right-hand side tends to zero as t2 − t1 → 0, since T (t) is strongly continuous, and the compactness of T (t) (t > 0), 
implies the continuity in the uniform operator topology.

For −τ ≤ t1 < 0 < t2 ≤ b, we have

|y(t2) − y(t1)| ≤ |T (t2)φ(0) − φ(t1)| +
∣∣∣∣

t2∫
0

T (t2 − s) f (s)ds

∣∣∣∣≤ ‖T (t2) − I)‖‖φ‖∗ + |φ(t1) − φ(0)| + M

t2∫
0

r(s)ds.

The right-hand side tends to zero as t2 − t1 → 0 (t2 → 0+, t1 → 0−), since φ(t) is continuous. Note that for t1, t2 ∈ [−τ , 0], 
|y(t2) − y(t1)| = |φ(t2) − φ(t1)| → 0 as t2 − t1 → 0. Thus {�2(x) : x ∈ D} is equicontinuous as well. Thus, an application 
of the Arzela–Ascoli theorem justifies that {�2(x) : x ∈ D} is relatively compact in C([−τ , b], X). Hence �2 is compact in 
C([−τ , b], X). This completes the proof. �

Let a ∈ [0, b) and ϕ ∈ C([−τ , b], X). Consider the integral equation of the form

x(t) =

⎧⎪⎪⎨⎪⎪⎩
ϕ(t) + h(t, xt) +

t∫
a

AT (t − s)h(s, xs)ds +
t∫

a

T (t − s)g(s, xs)ds, t ∈ [a,b],

ϕ(t), t ∈ [−τ ,a].
(3.1)

Lemma 3.4. Assume that for every c ∈ C([a − τ , a], X), g(·, c) is L1-integrable, {T (t)}t>0 is compact and (H2) holds. Suppose in 
addition that

(i) for any compact subset K ⊂ C([a − τ , a], X), there exist δ > 0 and LK ∈ L1([a, b], R+) such that

|g(t, c1) − g(t, c2)| ≤ LK (t)‖c1 − c2‖∗, for a.e. t ∈ [a,b] and each c1, c2 ∈ Bδ(K );
(ii) there exists r1(t) ∈ L1([a, b], R+) such that |g(t, c)| ≤ r1(t)(c′ + ‖c‖∗) for a.e. t ∈ [a, b] and every c ∈ C([a − τ , a], X), where c′

is arbitrary, but fixed.

If d1‖A−β‖ < 1, then integral equation (3.1) admits a unique solution for every ϕ ∈ C([−τ , b], X). Moreover, the solution to (3.1)
depends continuously on ϕ .

Proof. Step 1. (Priori estimate). Assume that x is a solution to (3.1). We have

|x(t)| ≤ |A−β Aβh(t, xt)| +
∣∣∣∣

t∫
a

A1−β T (t − s)Aβh(s, xs)ds

∣∣∣∣+ |ϕ(t)| +
∣∣∣∣

t∫
a

T (t − s)g(s, xs)ds

∣∣∣∣
≤d1‖A−β‖(1 + ‖xt‖∗) + d1C1−β

t∫
(t − s)β−1(1 + ‖xs‖∗)ds + max

[a,b]
|ϕ(t)| + M

t∫
r1(s)(c′ + ‖xs‖∗)ds
a a
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≤d1‖A−β‖(1 + ‖x‖[a−τ ,t]
)+ d1C1−β

t∫
a

(t − s)β−1(1 + ‖x‖[a−τ ,s]
)

ds

+ max
[−τ ,b]

|ϕ(t)| + M

t∫
a

r1(s)
(
c′ + ‖x‖[a−τ ,s]

)
ds,

for t ∈ [a, b], and notice that |x(t)| = |ϕ(t)| for t ∈ [−τ , a]. Then

‖x‖[a−τ ,t] ≤ 1

1 − d1‖A−β‖
(

d1‖A−β‖ + max
[−τ ,b]

|ϕ(t)| + d1C1−βbβ

β
+ c′M‖r1‖1

+
t∫

a

[
d1C1−β(t − s)β−1 + Mr1(s)

]
‖x‖[a−τ ,s] ds

)
.

By Gronwall’s inequality, we get that there exists M1 > 0 such that ‖x‖[−τ ,b] ≤ M1.
Step 2. Let ϕ ∈ C([−τ , b], X) be fixed. From d1‖A−β‖ < 1, we can find one ξ arbitrarily close to a such that

d1

(
‖A−β‖ + C1−β(ξ − a)β

β

)
+ M‖r1‖L[a,ξ ] < 1.

Then for one of such ξ , we choose one ρ satisfying

ρ ≥
d1

(
‖A−β‖ + C1−β (ξ−a)β

β

)
+ max[−τ ,ξ ] |ϕ(t)| + Mc′‖r1‖L[a,ξ ]

1 − d1

(
‖A−β‖ + C1−β (ξ−a)β

β

)
− M‖r1‖L[a,ξ ]

,

that is,

d1(1 + ρ)

(
‖A−β‖ + C1−β(ξ − a)β

β

)
+ max[−τ ,ξ ] |ϕ(t)| + M(c′ + ρ)‖r1‖L[a,ξ ] ≤ ρ.

Write

Bρ(ξ) =
{

x ∈ C([−τ , ξ ], X) : max
t∈[−τ ,ξ ] |x(t)| ≤ ρ

}
.

Let us define the operator W :

W x(t) = W1x(t) + W2x(t),

where

W1x(t) =

⎧⎪⎪⎨⎪⎪⎩
h(t, xt) +

t∫
a

AT (t − s)h(s, xs)ds, t ∈ [a,b],

0, t ∈ [−τ ,a],
and

W2x(t) =

⎧⎪⎪⎨⎪⎪⎩
ϕ(t) +

t∫
a

T (t − s)g(s, xs)ds, t ∈ [a,b],

ϕ(t), t ∈ [−τ ,a].
For x ∈ Bρ(ξ), we have

|W1x(t) + W2x(t)| ≤ |A−β Aβh(t, xt)| +
∣∣∣∣

t∫
a

A1−β T (t − s)Aβh(s, xs)ds

∣∣∣∣+ |ϕ(t)| +
∣∣∣∣

t∫
a

T (t − s)g(s, xs)ds

∣∣∣∣
≤‖A−β‖d1

(
1 + ‖x‖[a−τ ,t]

)+ d1C1−β

t∫
(t − s)β−1(1 + ‖x‖[a−τ ,s]

)
ds
a
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+ max[−τ ,ξ ] |ϕ(t)| + M

t∫
a

r1(s)
(
c′ + ‖x‖[a−τ ,s]

)
ds

≤d1(1 + ρ)

(
‖A−β‖ + C1−β(ξ − a)β

β

)
+ max[−τ ,ξ ] |ϕ(t)| + M(c′ + ρ)‖r1‖L[a,ξ ]

≤ρ,

for t ∈ [a, ξ ]. Obviously, W maps Bρ(ξ) into itself.
For any x, y ∈ Bρ(ξ) and t ∈ [a, b], we have

|W1x(t) − W1 y(t)| ≤ |h(t, xt) − h(t, yt)| +
∣∣∣∣

t∫
a

AT (t − s)[h(s, xs) − h(s, ys)]ds

∣∣∣∣
= ∣∣A−β Aβ [h(t, xt) − h(t, yt)]

∣∣+ ∣∣∣∣
t∫

a

A1−β T (t − s)Aβ [h(s, xs) − h(s, ys)]ds

∣∣∣∣
≤ d ‖A−β‖‖xt − yt‖∗ + d C1−β

t∫
a

(t − s)β−1‖xs − ys‖∗ ds

≤ d ‖A−β‖‖x − y‖[a−τ ,t] + dC1−β

t∫
a

(t − s)β−1‖x − y‖[a−τ ,s] ds

≤ d
(
‖A−β‖ + C1−β(ξ − a)β

β

)
‖x − y‖[a−τ ,ξ ].

Noting that W1x(t) = 0 for t ∈ [−τ , a], which implies that

‖W1x − W1 y‖[a−τ ,ξ ] ≤ d
(
‖A−β‖ + C1−βξβ

β

)
‖x − y‖[a−τ ,ξ ],

we get that W1 is a contraction.
Next, we will prove that W2 is continuous on Bρ(ξ). Let xn, x ∈ Bρ(ξ) with xn → x on Bρ(ξ). Then by (i) and the fact 

that xn
t → xt for t ∈ [a, ξ ], we have

g(s, xn
s ) → g(s, xs), for a.e. s ∈ [a, ξ ] as n → ∞.

Noting that |g(s, xn
s ) − g(s, xs)| ≤ 2r1(t)(c′ + ρ), by Lebesgue’s dominated convergence theorem, we have

|W2xn(t) − W2x(t)| ≤ M

t∫
a

∣∣g(s, xn
s ) − g(s, xs)

∣∣ds → 0, as n → ∞.

Moreover, from the proof of Lemma 3.3, we see that W2 is a compact operator. Thus, W2 is a completely continuous 
operator. Hence, Krasnoselskii’s fixed point theorem shows that there is a fixed point of W , denoted by x, which is a local 
solution to equation (3.1).

Step 3. We prove that this solution is unique. In fact, let y be another local solution to equation (3.1). According to 
condition (i), we obtain

|x(t) − y(t)| ≤ |h(t, xt) − h(t, yt)| +
∣∣∣∣

t∫
a

AT (t − s)[h(s, xs) − h(s, ys)]ds

∣∣∣∣+ ∣∣∣∣
t∫

a

T (t − s)[g(s, xs) − g(s, ys)]ds

∣∣∣∣
≤ d‖A−β‖‖xt − yt‖∗ + dC1−β

t∫
a

(t − s)β−1‖xs − ys‖∗ds + M

t∫
a

LK (s)‖xs − ys‖∗ds

≤ d‖A−β‖‖x − y‖[a−τ ,t] +
t∫

a

[dC1−β(t − s)β−1 + MLK (s)]‖x − y‖[a−τ ,s] ds,

for t ∈ [a, ξ ], and |x(t) − y(t)| = 0 for t ∈ [−τ , a]. It follows that
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‖x − y‖[a−τ ,t] ≤ 1

1 − d‖A−β‖
t∫

a

[dC1−β(t − s)β−1 + MLK (s)]‖x − y‖[a−τ ,s] ds.

Applying Gronwall’s inequality, we get ‖x − y‖[a−τ ,t] = 0, which implies x(t) = y(t) for t ∈ [−τ , ξ ].
Next, we continue the solution for t ≥ ξ . For t ∈ [ξ, ξ1], where ξ < ξ1, we say that a function x̂(t) is a continuation of 

x(t) to the interval [ξ, ξ1], if
(a) x̂ ∈ C([−τ , ξ1], X), and
(b) x̂(t) = ϕ(t) + h(t, ̂xt) +

∫ t
ξ

AT (t − s)h(s, ̂xs) ds + ∫ t
ξ

T (t − s)g(s, ̂xs) ds.

The terminology mild continuation applied to x̂(t) is justified by the observation that if we define a new function v(t) on 
[0, ξ1] by setting

v(t) =
{

x(t), if t ∈ [0, ξ ],
x̂(t), if t ∈ [ξ, ξ1],

and v(t) = ϕ(t), t ∈ [−τ , a], then v(t) is a mild solution to (3.1) on [0, ξ1]. The existence and uniqueness of the mild con-
tinuation x̂(t) is demonstrated exactly as above with only some minor changes. The details are therefore omitted. Repeating 
this procedure and by the a priori estimate of the solution, one continues the solution till the time ξm = ξmax, where [0, ξm]
is the maximum interval of the existence and uniqueness of a solution, and x̃ denotes the solution on the interval [0, ξmax]. 
We prove ξmax = b. If this is not the case, then ξmax < b. Put

ϕ̂(t) = ϕ(t) +
ξmax∫
a

AT (t − s)h(s, x̃s)ds +
ξmax∫
a

T (t − s)g(s, x̃s)ds,

with ϕ̂ ∈ C([ξmax, b], X). We consider the following integral equation:

x(t) = ϕ̂(t) + h(t, xt) +
t∫

ξmax

AT (t − s)h(s, xs)ds +
t∫

ξmax

T (t − s)g(s, xs)ds,

one can use the previous arguments to extend the solution beyond ξmax, which is a contradiction.
Step 4. Let ϕn → ϕ0 in C([−τ , b], X) as n → ∞, and xn be the solution to equation (3.1) with the perturbation ϕn , i.e.,

xn(t) = ϕn(t) + h(t, xn
t ) +

t∫
a

AT (t − s)h(s, xn
s )ds +

t∫
a

T (t − s)g(s, xn
s )ds (3.2)

for t ∈ [a, b] and xn(t) = ϕn(t) for t ∈ [−τ , a]. It is clear that limn→∞ xn exists in C([−τ , a], X). From condition (ii) and the 
compactness of T (t) for t > 0 it follows that the set{ t∫

a

T (t − s)g(s, xn
s )ds : n ≥ 1

}
is relatively compact in C([a, b], X). This gives that the family{

xn(t) − h(t, xn
t ) −

t∫
a

AT (t − s)h(s, xn
s )ds : n ≥ 1

}
is relatively compact in C([a, b], X). We only prove that limn→∞ xn exists in C([a, b], X). On the contrary, if limn→∞ xn does 
not exist in C([a, b], X), then for any n ∈ N, we have n1, n2 with n1, n2 > n such that ‖xn1 − xn2‖[a,b] > ε0 (ε0 > 0 is a 
constant), that is, there exists t∗ such that

|xn1(t∗) − xn2(t∗)| = ‖xn1 − xn2‖[a,b] > ε0.

Let un(t) = xn(t) − h(t, xn
t ) −
∫ t

a AT (t − s)h(s, xn
s ) ds. Using (H2), we estimate

|un1(t∗) − un2(t∗)| ≥ |xn1(t∗) − xn2(t∗)| − |h(t∗, xn1
t∗ ) − h(t∗, xn2

t∗ )| −
∣∣∣∣

t∗∫
a

AT (t∗ − s)[h(s, xn1
s ) − h(s, xn2

s )]ds

∣∣∣∣
≥ |xn1(t∗) − xn2(t∗)| − d‖A−β‖‖xn1

t∗ − xn2
t∗ ‖∗ − dC1−β

t∗∫
(t∗ − s)β−1‖xn1

s − xn2
s ‖∗ds
a
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≥ |xn1(t∗) − xn2(t∗)| − d

(
‖A−β‖ + C1−βbβ

β

)
‖xn1 − xn2‖[a,b]

=
[

1 − d

(
‖A−β‖ + C1−βbβ

β

)]
ε0,

which contradicts the compactness of un in C([a, b], X). Hence {xn} converges in C([−τ , b], X). We assume xn → x in 
C([a, b], X) as n → ∞. Therefore, taking the limit in (3.2) as n → ∞, one finds, again by (H2) and Lebesgue’s dominated 
convergence theorem, that x is the solution to equation (3.1) with the perturbation ϕ0. This completes the proof. �

For convenience, define

d̃ = d1

(
‖A−β‖ + C1−βbβ

β

)
+ M‖α‖1.

Theorem 3.1. Assume that (H1) and (H2) hold. In addition, suppose that {T (t)}t>0 is compact in X. If d̃ < 1, then the solution set of 
the inclusion (1.1) is a nonempty compact subset of C([−τ , b], X) for each φ ∈ C([−τ , 0], X).

Proof. Step 1. Let φ ∈ C([−τ , 0], X) be fixed. Consider the set

B R(b) = {x ∈ C([−τ ,b], X) : max
t∈[−τ ,b]

|x(t)| ≤ R},

where

R >
‖φ‖∗ + M[‖φ‖∗ + ‖A−β‖d1(1 + ‖φ‖∗)] + d̃

1 − d̃
.

It is clear that B R(b) is a bounded, closed and convex set of C([−τ , b], X). We first show that �1(B R(b)) + �2(B R(b)) ⊂
B R(b). Indeed, taking x ∈ B R(b) and y(t) ∈ �2(x), there exists f ∈ SelF (x) such that

|�1x(t)| ≤ |T (t)h(0, φ)| + |A−β Aβh(t, xt)| +
∣∣∣∣

t∫
0

A1−β T (t − s)Aβh(s, xs)ds

∣∣∣∣
≤ M|A−β Aβh(0, φ)| + ‖A−β‖d1(1 + ‖xt‖∗) + d1C1−β

t∫
0

(t − s)β−1(1 + ‖xs‖∗)ds

≤ Md1‖A−β‖(1 + ‖φ‖∗) + ‖A−β‖d1
(
1 + ‖x‖[−τ ,t]

)+ d1C1−β

t∫
0

(t − s)β−1(1 + ‖x‖[−τ ,s]
)

ds

≤ Md1‖A−β‖(1 + ‖φ‖∗) + ‖A−β‖d1(1 + R) + d1(1 + R)
C1−βbβ

β
,

and

|y(t)| ≤ |T (t)φ(0)| +
∣∣∣∣

t∫
0

T (t − s) f (s)ds

∣∣∣∣
≤ M‖φ‖∗ + M

t∫
0

α(s)(1 + ‖xs‖∗)ds

≤ M‖φ‖∗ + M(1 + R)‖α‖1,

it follows that

|�1x(t) + y(t)| ≤ M[‖φ‖∗ + ‖A−β‖d1(1 + ‖φ‖∗)] + d̃(1 + R)

for t ∈ [0, b]. From �1x(t) + y(t) = φ(t) for t ∈ [−τ , 0], we know

|�1x(t) + �2x(t)| ≤ ‖φ‖∗ + M[‖φ‖∗ + ‖A−β‖d1(1 + ‖φ‖∗)] + d̃(1 + R) ≤ R

for t ∈ [−τ , b],
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Step 2. We show that �1 is a contraction on C([−τ , b], X). Let x, y ∈ C([−τ , b], X). Then

|�1x(t) − �1 y(t)| ≤ |h(t, xt) − h(t, yt)| +
∣∣∣∣

t∫
0

AT (t − s)[h(s, xs) − h(s, ys)]ds

∣∣∣∣
≤ d‖A−β‖‖xt − yt‖∗ + dC1−β

t∫
0

(t − s)β−1‖xs − ys‖∗ds

≤ d‖A−β‖‖x − y‖[−τ ,t] + dC1−β

t∫
0

(t − s)β−1‖x − y‖[−τ ,s] ds

≤ d
(
‖A−β‖ + C1−βbβ

β

)
‖x − y‖[−τ ,b].

Noting that �1x(t) = 0 for t ∈ [−τ , 0], which implies that

‖�1x − �1 y‖[−τ ,b] ≤ d
(
‖A−β‖ + C1−βbβ

β

)
‖x − y‖[−τ ,b].

This shows that �1 is a contraction, since d
(
‖A−β‖ + C1−βbβ

β

)
< 1

2 .

Step 3. An application of Lemma 3.3 enables us to find that �2 is compact on B R (b). We only show that �2 is u.s.c.
By Lemma 2.2, it suffices to show that �2 has closed graph (and therefore has closed values). Let xn ⊂ B R(b) with xn → x

and yn ∈ �2(xn) with yn → y. We shall prove that y ∈ �2(x). By the definition of �2, there exist f n ∈ SelF (xn) such that

yn(t) = T (t)φ(0) +
t∫

0

T (t − s) f n(s)ds, for t ∈ [0,b], and yn(t) = φ(t), for t ∈ [−τ ,0].

We need to prove that there exists f ∈ SelF (x) such that

y(t) = T (t)φ(0) +
t∫

0

T (t − s) f (s)ds, for t ∈ [0,b], and y(t) = φ(t), for t ∈ [−τ ,0]. (3.3)

By (H1)(ii), noticing that SelF (x) is weakly u.s.c. with weakly compact and convex values due to Lemma 3.1, an application 
of Lemma 2.3 yields that there exists f ∈ SelF (x) and a subsequence of f n , still denoted by f n , such that f n ⇀ f in 
L1([0, b], X). From this and Lemma 3.3, we see

yn(t) = T (t)φ(0) +
t∫

0

T (t − s) f n(s)ds → T (t)φ(0) +
t∫

0

T (t − s) f (s)ds, as n → ∞.

By the uniqueness of the limit, (3.3) holds and y ∈ �2(x). It follows that �2 is closed and therefore has compact values.
Therefore, the operators �1 and �2 satisfy all conditions of Theorem 2.3, thus the fixed points set of the operator �1 +�2

is a nonempty compact subset of C([−τ , b], X). �
Now, let �(φ) denote the set of all mild solutions for inclusion (1.1).

Theorem 3.2. Under the conditions in Theorem 3.1, the solution set of (1.1) is an Rδ-set.

Proof. To this aim, let us consider the following semilinear evolution inclusion⎧⎨⎩
d

dt
[x(t) − h(t, xt)] ∈ Ax(t) + Fn(t, xt), t ∈ [0,b],

x(t) = φ(t), t ∈ [−τ ,0],
(3.4)

where multivalued functions Fn : [0, b] × C([−τ , 0], X) → Pcl,cv(X) are established in Lemma 3.2. Let �n(φ) denote the set 
of all mild solutions for inclusion (3.4).

From Lemma 3.2(ii) and (vi), it follows that {Fn} verifies condition (H1) for each n ≥ 1. Then from Lemma 3.1, one finds 
that SelFn is weakly u.s.c. with convex and weakly compact values. Moreover, one can see from Theorem 3.1 that each set 
�n(φ) is nonempty and compact in C([−τ , b], X) for each n ≥ 1.



Y. Zhou, L. Peng / C. R. Acad. Sci. Paris, Ser. I 355 (2017) 45–64 57
We show that the set �n(φ) is contractible for each n ≥ 1. In fact, let x ∈ �n(φ). For any λ ∈ [0, 1], we consider the 
Cauchy problem of the form⎧⎨⎩

d

dt
[y(t) − h(t, yt)] = Ay(t) + gn(t, yt), t ∈ [λb,b],

y(t) = x(t), t ∈ [−τ ,λb],
(3.5)

where gn is the selection of Fn . Since the functions gn satisfy the conditions in Lemma 3.4 due to Lemma 3.2(ii) and (v), 
by Lemma 3.4, we know that equation (3.5) has a unique solution for every x(t) ∈ C([−τ , λb], X). Moreover, the solution 
to (3.5) depends continuously on (λ, x), denoted by y(t, λb, x).

Define the function h̃ : [0, 1] × �n(φ) → �n(φ) by the formula

h̃(λ, x) =
{

x(t), t ∈ [−τ ,λb],
y(t, λb, x), t ∈ [λb,b].

Clearly h̃(λ, x) ∈ �n(φ). In fact, for each x ∈ �n(φ), there exists g̃ ∈ SelFn (x) such that x = �1(x) + S(g̃). Put

ĝ(t) = g̃(t)χ[0,λb](t) + gn(t)χ[λb,b](t) for each t ∈ [0,b].
It is clear that ĝ ∈ SelFn (h̃). Also, it is readily checked that �1(h̃(λ, x)) + S(ĝ)(t) = x(t) for all t ∈ [−τ , λb] and �1(h̃(λ, x)) +
S(ĝ)(t) = y(t, λb, x) for all t ∈ [λb, b], which gives �1(h̃(λ, x)) + S(ĝ) = h̃(λ, x) and hence h̃(λ, x) ∈ �n(φ).

To show that h̃ is a continuous homotopy, let (λm, xm) ∈ [0, 1] × �n(φ) be such that (λm, xm) → (λ, x) as m → ∞. Then

h̃(λm, xm) =
{

xm, t ∈ [−τ ,λb],
y(t, λmb, xm), t ∈ [λb,b].

We shall prove that h̃(λm, xm) → h̃(λ, x) as m → ∞. Without loss of generality, we assume that λm ≤ λ. If t ∈ [−τ , λmb], 
then

|h̃(λm, xm)(t) − h̃(λ, x)(t)| = |xm(t) − x(t)| → 0, as m → ∞.

If t ∈ [λb, b], then

‖h̃(λm, xm) − h̃(λ, x)‖[λb,b] = sup
t∈[λb,b]

|y(t, λmb, xm) − y(t, λ, x)|,

which tends to 0 as m → ∞, since y(t, λb, x) depends continuously on (λ, x). If t ∈ [λmb, λb], then

|h̃(λm, xm)(t) − h̃(λ, x)(t)| = |y(t, λmb, xm) − x(t)|
≤ |y(t, λmb, xm) − xm(t)| + |xm(t) − x(t)| → 0, as m → ∞,

due to y(t, λmb, xm) → xm(t) (t → λmb). But h̃(0, ·) = y(t, 0, φ) and h̃(1, ·) is the identity, hence �n(φ) is contractible.
Finally, in view of Lemma 3.2(i), it is easy to verify that �(φ) ⊂ · · · ⊂ �n(φ) · · · ⊂ �2(φ) ⊂ �1(φ); this implies that 

�(φ) ⊂⋂n≥1 �n(φ). To prove the reverse inclusion, we take x ∈⋂n≥1 �n(φ). Therefore, there exists a sequence {gn} ⊂
L1([0, b], R+) such that gn ∈ SelFn (x), x = �1(x) + S(gn) and for n ≥ 1,

|gn(t)| ≤ α(t)(2 + ‖xt‖∗), for a.e. t ∈ [0,b],
in view of Lemma 3.2(ii). According to the reflexivity of the space X and Lemma 2.1, we have the existence of a subsequence, 
denoted as the sequence, such that gn ⇀ g ∈ L1([0, b], X). By Mazur’s convexity theorem, we obtain a sequence g̃n ∈ co{gk :
k ≥ n} for n ≥ 1 such that g̃n → g in L1([0, b], X) and, up to subsequence, g̃n(t) → g(t) for a.e. t ∈ [0, b] and gn(t) ∈ Fn(t, xt)

for all n ≥ 1.
Denote by N the set of all t ∈ [0, b] such that g̃n(t) → g(t) in X and gn(t) ∈ Fn(t, xt) for all n ≥ 1. According 

to Lemma 3.2(iii), we know that there exists E ⊂ [0, b] with mes(E) = 0 such that for each t ∈ ([0, b] \ E) ∩ N and 
x∗ ∈ X∗, ε > 0

〈x∗, g̃n(t)〉 ∈ co{〈x∗, gk(t)〉 : k ≥ n} ⊂ 〈x∗, Fn(t, xt)〉 ⊂ 〈x∗, F (t, xt)〉 + (−ε, ε),

here, 〈x∗, F (t, ·)〉 denotes the duality product. Therefore, we obtain that 〈x∗, g(t)〉 ∈ 〈x∗, F (t, xt)〉 for each x∗ ∈ X and t ∈
([0, b] \ E) ∩N . Since F has convex and closed values, we conclude that g(t) ∈ F (t, xt) for each t ∈ ([0, b] \ E) ∩ N , which 
implies that g ∈ SelF (x). Moreover, since

x(t) = T (t)[φ(0) − h(0, φ)] + h(t, xt) +
t∫

AT (t − s)h(s, xs)ds +
t∫

T (t − s)gn(s)ds,
0 0
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by Lemma 3.3, we know that 
∫ t

0 T (t − s)gn(s) ds → ∫ t
0 T (t − s)g(s) ds, which implies that x = �1(x) + S(g). This proves that 

x ∈⋂n≥1 �n(φ). We conclude that �(φ) =⋂n≥1 �n(φ). Consequently, we conclude that �(φ) is an Rδ-set, completing this 
proof. �
3.2. Noncompact operator case

We study the semilinear differential inclusion (1.1) under the following assumptions:

(H2)
′ h satisfies (H2) with

|Aβh(t, c1) − Aβh(s, c2)| ≤ d‖c1 − c2‖∗, for t, s ∈ [0,b]
instead of

|Aβh(t, c1) − Aβh(t, c2)| ≤ d‖c1 − c2‖∗;
(H3) for every ε > 0 and every bounded set D ⊂ C([−τ , 0], X) there exists δ > 0 and a function k ∈ L1([0, b], R+) such 

that

γ (F (t, Bδ(D))) ≤ k(t) sup
−τ≤θ≤0

γ (Bε(D(θ))) for a.e. t ∈ [0,b],

where Bδ(D) denotes a δ-neighborhood of D defined as

Bδ(D) := {z ∈ C([−τ ,0], X) : dist(z, D) < δ}.
The assumption (H3) was introduced and used in [13] and it implies the compactness of values of F .

Theorem 3.3. Let conditions (H1), (H2)
′ and (H3) be satisfied. If d̃ < 1, then the solution set of inclusion (1.1) is a nonempty compact 

subset of C([−τ , b], X) for each φ ∈ C([−τ , 0], X).

Proof. For the same B R(b), as the reason for Theorem 3.1, we see that B R(b) is a closed and convex subset of C([−τ , b], X).
Claim 1. The multimap F has closed graph with compact values. Let xn ⊂ B R(b) with xn → x and yn ∈F(xn) with yn → y. 

We shall prove that y ∈ F(x). By the definition of F , there exists fn ∈ SelF (xn) such that

yn(t) =
{

�1(xn)(t) + S( fn)(t), t ∈ [0,b],
φ(t), t ∈ [−τ ,0].

The operator S satisfies the properties (S1) and (S2) of Lemma 2.5, since T (t) is a strongly continuous operator. In view 
of (H1)(ii), we have that { fn} is integrably bounded, and condition (H3) implies

γ ({ fn(t)}) ≤ γ (F (t, xn
t )) ≤ k(t) sup

−τ≤θ≤0
γ (xn

t (θ)) ≤ k(t) sup
−τ≤θ≤t

γ (xn(s)) = 0.

Then { fn} is a semicompact sequence. Consequently, { fn} is weakly compact in L1([0, b], X); we may assume, without loss 
of generality, that fn ⇀ f in L1([0, b], X). By Lemma 2.5(ii), one obtains that S( fn) → S( f ) in C([0, b], X). Since SelF is 
weakly u.s.c. with weakly compact and convex values (see Lemma 3.1), from Lemma 2.3, we have that f ∈ SelF (x).

On the other hand, we have the inequalities:

|�1(xn)(t) − �1(x)(t)| ≤ |h(t, xn
t ) − h(t, xt)| +

∣∣∣∣
t∫

0

AT (t − s)[h(s, xn
s ) − h(s, xs)]ds

∣∣∣∣
≤ d‖A−β‖‖xn − x‖[−τ ,t] + dC1−β

t∫
0

(t − s)β−1‖xn − x‖[−τ ,s] ds

≤ d

(
‖A−β‖ + C1−βbβ

β

)
‖xn − x‖[−τ ,b],

for t ∈ [0, b]. For t ∈ [−τ , 0], we have

|�1(xn)(t) − �1(x)(t)| = 0.

Then

‖�1(xn) − �1(x)‖[−τ ,b] ≤ d
(
‖A−β‖ + C1−βbβ

β

)
‖xn − x‖[−τ ,b] → 0, as n → ∞.
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It follows immediately that yn → y with

y(t) =
{

�1(x)(t) + S( f )(t), t ∈ [0,b],
φ(t), t ∈ [−τ ,0],

where f ∈ SelF (x) and y ∈F(x). Hence, F is closed.
It remains to show that, for x ∈ M0 and { fn} chosen in SelF (x), the sequence {S( fn)} is relatively compact in 

C([−τ , b], X). Hypotheses (H1)(ii) and (H3) imply that { fn} is semicompact. Using Lemma 2.5(ii), we obtain that {S( fn)} is 
relatively compact in C([0, b], X). Thus F(x) is relatively compact in C([−τ , b], X), together with the closeness of F , then 
F has compact values.

Claim 2. The multioperator F is u.s.c. In view of Lemma 2.2, it suffices to check that F is a quasicompact multimap. Let 
Q be a compact set. We prove that F(Q ) is a relatively compact subset of C([−τ , b], X). Assume that {yn} ⊂F(Q ). Then

yn(t) =
{

�1(xn)(t) + S( fn)(t), t ∈ [0,b],
φ(t), t ∈ [−τ ,0],

where { fn} ∈ SelF (xn), for a certain sequence {xn} ⊂ Q . Hypotheses (H1)(ii) and (H3) yield the fact that { fn} is semicompact 
and then it is a weakly compact sequence in L1([0, b], X). Similar arguments as in the previous proof of closeness imply 
that {�1(xn)} and {S( fn)} are relatively compact in C([0, b], X). Thus, {yn} converges in C([−τ , b], X), so the multioperator 
F is u.s.c.

Claim 3. The multioperator F is a condensing multioperator. Now in the space C([−τ , b], X), we consider the measure 
of noncompactness ν defined as: for a bounded subset � ⊂ M0, let modC(�) be the modulus of equicontinuity of the set 
of functions � given by

modC(�) = lim
δ→0

sup
x∈�

max|t2−t1|<δ
|x(t2) − x(t1)|.

Given Hausdorff MNC γ , let χ be the real MNC defined on bounded set D ⊂ C([−τ , b], X) by

χ(D) = sup
t∈[0,b]

e−Ltγ (D(s)).

Here, the constant L > 0 is chosen such that

l := d‖A−β‖ + sup
t∈[0,b]

(
c0

t∫
0

e−L(t−s)k(s)ds + d C1−β

t∫
0

e−L(t−s)(t − s)β−1 ds

)
<

1

2
,

where k(t) is the function from condition (H3).

Consider the function ν(�) = max
D∈�(�)

(
γ (D[−τ , 0]), χ(D), modC(D)

)
in space C([−τ , b], X), where �(�) is the collection 

of all countable subsets of �.
To show that F is ν-condensing, let � ⊂ M0 be a bounded set in M0 such that

ν(�) ≤ ν(F(�)). (3.6)

We will show that � is relatively compact. Let ν(F(�)) be achieved on a sequence {yn} ⊂F(�), i.e.,

ν({yn}) =
(
γ ({yn}|[−τ ,0]),χ({yn}),modC({yn})

)
.

Then

yn(t) =
{

�1(xn)(t) + S( fn)(t), t ∈ [0,b],
φ(t), t ∈ [−τ ,0],

where {xn} ⊂ � and fn ∈ SelF (xn). From inequality (3.6), it follows that γ ({xn}|[−τ ,0]) = 0. Indeed, we have

γ ({yn}|[−τ ,0]) = γ ({φ(t) : t ∈ [−τ ,0]}) = 0 ≥ γ ({xn}|[−τ ,0]) ≥ 0.

Now we give an upper estimate of γ ({yn(t)}) for any t ∈ [0, b]. Using (H3), we have γ ({ fn(t)}) ≤
k(t) sup−τ≤θ≤0 γ ({xn

t (θ)}). Then

γ ({ fn(t)}) ≤ k(t)

(
sup

s∈[−τ ,0]
γ ({xn(s)}) + sup

s∈[0,t]
γ ({xn(s)})

)
≤ eLtk(t)

(
sup

s∈[0,t]
e−Lsγ ({xn(s)})

)
≤ eLtk(t)χ({xn}).
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Then, from Lemma 2.5(i) with c0 = M , we get

e−Ltγ ({S( fn)(t)}) ≤ 2Me−Lt

t∫
0

eLsk(s)ds · χ({xn})

≤ 2M

t∫
0

e−L(t−s)k(s)ds · χ({xn}).
(3.7)

Since the measure γ is monotone, from (H2)
′ , for t ∈ [0, b] we get

e−Ltγ ({h(t, xn
t )}) ≤ e−Ltγ

({
A−β Aβh(t, xn

t )
})≤ ‖A−β‖e−Ltγ

({
Aβh(t, xn

t )
})

≤ ‖A−β‖e−Ltμ
({

Aβh(t, xn
t )
})≤ d‖A−β‖e−Lt

(
sup

θ∈[−τ ,0]
μ({xn

t }))
)

≤ 2d‖A−β‖e−Lt
(

sup
θ∈[−τ ,0]

γ ({xn
t }))
)

≤ 2d‖A−β‖e−Lt
(

sup
s∈[0,t]

γ ({xn(s)})
)

≤ 2d‖A−β‖
(

sup
s∈[0,t]

e−Lsγ ({xn(s)})
)

≤ 2d‖A−β‖χ({xn}).

(3.8)

Let t ∈ [0, b] and s ∈ [0, t]. Clearly, the function G : s �→ AT (t − s)h(s, xn
s ) is integrable and integrably bounded. Since

γ (
{

AT (t − s)h(s, xn
s )
}
) = γ

({
A1−β T (t − s)Aβh(s, xn

s )
})

≤ ‖A1−β T (t − s)‖γ ({Aβh(s, xn
s )
})

≤ 2dC1−β(t − s)β−1eLs
(

sup
s1∈[0,s]

e−Ls1γ ({xn(s1)})
)

≤ 2dC1−β(t − s)β−1eLsχ({xn}),
by Lemma 2.4, one obtains

e−Lt

t∫
0

γ ({AT (t − s)h(s, xn
s )})ds ≤ 2dC1−βχ({xn})

t∫
0

e−L(t−s)(t − s)β−1 ds

≤ 2dC1−βχ({xn}) sup
t∈[0,b]

t∫
0

e−L(t−s)(t − s)β−1 ds.

(3.9)

From (3.7)–(3.9), and the fact that d‖A−β‖ < 1
2 , it follows

χ({yn}) = sup
t∈[0,b]

e−Ltγ ({yn(t)})

≤ sup
t∈[0,b]

e−Ltγ

({
S( fn)(t) + h(t, xn

t ) +
t∫

0

AT (t − s)h(s, xn
s )ds

})

≤ 2

[
d‖A−β‖ + sup

t∈[0,b]

(
M

t∫
0

e−L(t−s)k(s)ds + dC1−β

t∫
0

e−L(t−s)(t − s)β−1 ds

)]
χ({xn})

≤ 2 lχ({xn}).
But (3.6) implies

χ({yn}) ≥ χ({xn}),
and consequently, χ({xn}) = 0. This implies that γ ({xn(t)}) = 0.

Using (H1)(ii) and (H3) again, one gets that { fn} is a semicompact sequence. Then Lemma 2.5(ii) ensures that {S( fn)} is 
relatively compact in C([0, b], X). Hence, modC({S( fn)}) = 0.

Now we will show that the set {�1(xn)(t)} is equicontinuous on C([−τ , b], X). For −τ ≤ t1 < t2 ≤ 0, we have

|�1(xn)(t2) − �1(xn)(t1)| = |φ(t2) − φ(t1)| → 0, as |t1 − t2| → 0.
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For 0 < t1 < t2 ≤ b, we obtain

|�1(xn)(t2) − �1(xn)(t1)|
≤ ‖T (t2) − T (t1)‖|h(0, φ)| + ∣∣h(t2, xn

t2
) − h(t1, xn

t1
)
∣∣

+
∣∣∣∣

t2∫
t1

AT (t2 − s)h(s, xn
s )ds

∣∣∣∣+ ∣∣∣∣
t1∫

0

A[T (t2 − s) − T (t1 − s)]h(s, xn
s )ds

∣∣∣∣
≤ ‖T (t2) − T (t1)‖|h(0, φ)| + d‖A−β‖‖xn

t2
− xn

t1
‖∗ + d1C1−β(t2 − t1)

β

β

(
1 + ‖xn‖[t1−τ ,t2]

)
+
∣∣∣∣[T (t2 − t1) − I]

t1∫
0

AT (t1 − s)h(s, xn
s )ds

∣∣∣∣.
Since γ

(∫ t
0 AT (t − s)h(s, xn

s ) ds
)

= 0 for all t ∈ [0, b], the last term on the right-hand side converges to zero when t2 − t1

tends uniformly to 0. From the inequality

modC({yn}) ≤ modC({�1(xn)}) + modC({S( fn)}),
we get

modC({yn}) ≤ d‖A−β‖‖xn
t2

− xn
t1

‖∗ ≤ d‖A−β‖modC({xn}).
In view of d‖A−β‖ < 1, from the last inequality and inequality (3.6) follows modC({yn}) = 0, which implies that 
modC({xn}) = 0. Hence, the subset {xn} is relatively compact, thus ν({xn}) = 0, and so the map F is ν-condensing.

From Theorem 2.2, we deduce that the fixed point set FixF is a nonempty compact set. �
Before proving the main result of this subsection, we give an important lemma to prove the contractibility of the solution 

set.

Lemma 3.5. Under the conditions in Lemma 3.4 except that {T (t)}t>0 is compact, if

(H4) there exists a function k1 ∈ L1([a, b], R+) such that

γ (g(t, D)) ≤ k1(t) sup
−τ≤θ≤0

γ ((D(θ)) a.e. t ∈ [a,b]

for every bounded set D ⊂ C([a − τ , a], X),

then integral equation (3.1) admits a unique solution for every ϕ(t) ∈ C([−τ , b], X). Moreover, the solution to (3.1) depends continu-
ously on ϕ .

Proof. Let ϕ(t) ∈ C([−τ , ξ ], X) be fixed. In view of Lemma 3.4, we know that the operator W : Bρ → Bρ is continuous. 
Similar to the proof of Claim 3 in Theorem 3.3, it follows that W is a ν-condensing operator. So W has a fixed point, which 
implies that equation (3.1) has a local solution. According to Lemma 3.4, the uniqueness and continuation of the solution 
are obtained. Therefore, the first part of the lemma is proved.

We only prove that the solution to equation (3.1) depends continuously on ϕ . Let ϕn → ϕ0 in C([−τ , b], X) as n → ∞, 
and xn be the solution to equation (3.1) with the perturbation ϕn , i.e.,

xn(t) = ϕn(t) + h(t, xn
t ) +

t∫
a

AT (t − s)h(s, xn
s )ds +

t∫
a

T (t − s)g(s, xn
s )ds

for t ∈ [a, b] and xn(t) = ϕn(t) for t ∈ [−τ , a]. By (H2)
′ and (H4), together with similar argument as above, we have

χ({xn}) = sup
t∈[0,b]

e−Ltγ ({xn(t)})

≤ sup
t∈[0,b]

e−Ltγ

({
ϕn(t) + h(t, xn

t ) +
t∫

a

AT (t − s)h(s, xn
s )ds +

t∫
a

T (t − s)g(s, xn
s )ds

})
≤ sup e−Ltγ ({ϕn(t)}) + sup e−Ltγ ({h(t, xn

t )})

t∈[0,b] t∈[0,b]
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+ sup
t∈[0,b]

e−Ltγ

({ t∫
a

AT (t − s)h(s, xn
s )ds +

t∫
a

T (t − s)g(s, xn
s )ds

})

≤ 2

[
d‖A−β‖ + sup

t∈[0,b]

(
M

t∫
a

e−L(t−s)k1(s)ds + dC1−β

t∫
a

e−L(t−s)(t − s)β−1 ds

)]
χ({xn})

< χ({xn}).
Thus χ({xn}) = 0, then γ ({xn(t)}) = 0. On the other hand, as the reason for the proof of modC({xn}) in Theorem 3.3, it 
follows that modC({xn}) = 0. Hence, {xn} is relatively compact in C([−τ , b], X). Therefore, taking the limit in (3.2) as n → ∞, 
one finds, again by (H2) and Lebesgue’s dominated convergence theorem, that x is the solution to equation (3.1) with the 
perturbation ϕ0. The proof is completed. �
Theorem 3.4. Under the conditions in Theorem 3.3, the solution set of (1.1) is an Rδ-set.

Proof. We also consider inclusion (3.4), where the multivalued functions Fn : [0, b] × C([−τ , 0], X) → Pcl,cv(X) are estab-
lished in view of Lemma 3.2, and Fn satisfy condition (H1) for each n ≥ 1.

Let �n(φ) denote the set of all mild solutions for inclusion (3.4).
We show that each sequence {xn} such that xn ∈ �n(φ) for all n ≥ 1 has a convergent subsequence xnk → x ∈ �(φ). At 

first we notice

xn(t) =T (t)[φ(0) − h(0, φ)] + h(t, xn
t ) +

t∫
0

AT (t − s)h(s, xn
s )ds +

t∫
a

T (t − s)gn(s)ds, gn(s) ∈ Fn(s, xn
s ),

for t ∈ [0, b], and xn(t) = φ(t) for t ∈ [−τ , 0]. It is easy to know that γ ({xn(t)}) = 0 for t ∈ [−τ , 0]. By (H3), for any ε > 0
there exist some N ∈N such that

γ ({gn(s)}n≥1) = γ ({gn(s)}n≥N) ≤ γ ({F N(s, xn
s )}n≥N)

≤ γ
(
coF (t, B31−N ({xn

s }n≥N))
)

≤ k(s)
(

sup
−τ≤θ≤0

γ ({xn
s }n≥N) + ε

)
≤ k(s)

(
sup

θ∈[0,s]
γ ({xn(θ)}n≥1) + ε

)
.

(3.10)

Therefore,

γ ({gn(s)}n≥1) ≤ k(s) sup
θ∈[0,s]

γ ({xn(θ)}n≥1).

This, together with (3.8) and (3.9) implies

χ({xn}) = sup
t∈[0,b]

e−Ltγ ({xn(t)})

≤ sup
t∈[0,b]

e−Ltγ ({h(t, xn
t )}) + sup

t∈[0,b]
e−Ltγ

({ t∫
0

AT (t − s)h(s, xn
s )ds

})

+ sup
t∈[0,b]

e−Ltγ

({ t∫
0

T (t − s)gn(s)ds

})

≤2

[
d‖A−β‖ + sup

t∈[0,b]

(
M

t∫
0

e−L(t−s)k(s)ds + dC1−β

t∫
0

e−L(t−s)(t − s)β−1 ds

)]
χ({xn})

≤2lχ({xn}) < χ({xn}).
Thus χ({xn}) = 0, then γ ({xn(t)}) = 0 for t ∈ [0, b]. From (3.10), we get that γ ({gn(s)}) = 0. The fact that the equicontinuity 
of {xn} is proved in Theorem 3.3 implies the existence of a subsequence {xnk } that is convergent on [−τ , b]. Denote the 
limit by x.

Since γ ({gn(s)}) = 0, we can assume, up to subsequence, that gn(s) → g(s) in X for s ∈ [0, t]. From the above discussion, 
we have



Y. Zhou, L. Peng / C. R. Acad. Sci. Paris, Ser. I 355 (2017) 45–64 63
x(t) = T (t)[φ(0) − h(0, φ)] + h(t, xt) +
t∫

0

AT (t − s)h(s, xs)ds +
t∫

0

T (t − s)g(s)ds,

for t ∈ [0, b] and x(t) = φ(t) for t ∈ [−τ , 0]. As the reason for Theorem 3.2, the fact that Fn satisfies condition (H1) shows 
that g(t) ∈ F (t, xt) for a.e. t ∈ [0, b].

It follows that sup{d(x, �(φ)) : x ∈ �n(φ)} → 0 (an easy proof by contradiction). Therefore, sup{d(x, �(φ)) : x ∈ �n(φ)} →
0, as well. Since �(φ) is compact and �n+1(φ) ⊂ �n(φ), γ (�n(φ)) = γ (�n(φ)) → 0, as n → ∞ and �(φ) =

∞⋂
n=1

�n(φ).

By the same methods as in Theorem 3.1, together with Lemma 3.5, we know that �n(φ) is contractible for all n ≥ 1. 
Consequently, we conclude that �(φ) is an Rδ-set. The proof is completed. �
4. An example

Let X = L2([0, π], R), we consider the following partial differential inclusions of neutral type:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂

∂t

(
z(t, ξ) −

π∫
0

U (ξ, y)zt(θ, y)dy

)
∈ ∂2

∂ξ2
z(t, ξ) + G(t, zt(θ, ξ)), t ∈ [0,b], ξ ∈ [0,π],

z(t,0) = z(t,π) = 0, t ∈ [0,b],
z(θ, ξ) = φ(θ)(ξ), θ ∈ [−τ ,0], ξ ∈ [0,π],

(4.1)

where φ ∈ C([−τ , 0], X), that is, φ(θ) ∈ X and zt(θ, ξ) = z(t + θ, ξ), t ∈ [0, b], θ ∈ [−τ , 0].
We consider the operator A : D(A) ⊂ X → X defined as Ay = −y′′ with the domain

D(A) = {y(·) ∈ X : y, y′ absolutely continuous, y′′ ∈ X and y(0) = y(π) = 0}.
Then A generates a strongly continuous semigroup {T (t)}t≥0, which is compact, analytic and self-adjoint. Furthermore, 

A has a discrete spectrum, the eigenvalues are n2 (n ∈ N), with corresponding normalized eigenvectors xn(ξ) =
√

2
π sin nξ . 

This implies that supt≥0 ‖T (t)‖ < +∞ (see [18]). We also use the following properties:

(i) for each y ∈ X , T (t)y =∑∞
n=1 e−n2t〈y, xn〉xn;

(ii) for each y ∈ X , A− 1
2 y =∑∞

n=1
1
n 〈y, xn〉xn;

(iii) the operator A
1
2 is given by

A
1
2 y =

∞∑
n=1

n〈y, xn〉xn

on the space D(A
1
2 ) = {y(·) ∈ X :∑∞

n=1 n〈y, xn〉xn ∈ X}.

Then system (4.1) can be reformulated as⎧⎨⎩
d

dt
[x(t) − h(t, xt)] ∈ Ax(t) + F (t, xt), t ∈ [0,b],

x(t) = φ(t), t ∈ [−τ ,0],
where x(t)(ξ) = z(t, ξ), xt(θ, ξ) = zt(θ, ξ), F (t, xt)(ξ) = G(t, zt(θ, ξ)). The function h(t, xt) : [0, b] × C([−τ , 0], X) → X is 
defined by

h(t, xt) =
π∫

0

U (ξ, y)zt(θ, y)dy.

Moreover, we assume that the following conditions hold:

(h1) the function U (ξ, y) is measurable and

π∫
0

π∫
0

U 2(ξ, y)dy dξ < ∞;
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(h2) the function ∂ξ U (ξ, y) is measurable, U (0, y) = U (π, y) = 0, and let

H =
( π∫

0

π∫
0

(∂ξ U (ξ, y))2dy dξ

) 1
2

< ∞.

Clearly, (H2) is satisfied.
Let F (t, zt) = [ f1(t, zt), f2(t, zt)]. Now, we assume that:

f i : [0,b] × C([−τ ,0], X) →R, i = 1,2

satisfy

(F1) f1 is l.s.c. and f2 is u.s.c.;
(F2) f1(t, ψ) ≤ f2(t, ψ) for each (t, ψ) ∈ [0, b] × C([−τ , 0], X);
(F3) there exists α1, α2 ∈ L∞([0, b], R+) such that

| f i(t,ψ)| ≤ αi(t)(1 + ‖ψ‖∗), i = 1,2,

for each (t, ψ) ∈ [0, b] × C([−τ , 0], X).

From our assumptions on (F1)–(F3), it follows readily that the multivalued function F (·, ·) : [0, b] × C([−τ , 0], X) → P (X)

satisfies (H1).
Thus, all the assumptions in Theorems 3.1 and 3.2 are satisfied, our results can be used to problem (4.1).
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[2] J. Andres, M. Pavlačková, Topological structure of solution sets to asymptotic boundary value problems, J. Differ. Equ. 248 (2010) 127–150.
[3] N. Aronszajn, Le correspondant topologique de l’unicité dans la théorie des équations différentielles, Ann. Math. (2) 43 (4) (1942) 730–738.
[4] A. Bakowska, G. Gabor, Topological structure of solution sets to differential problems in Fréchet spaces, Ann. Pol. Math. 95 (2009) 17–36.
[5] M. Benchohra, S. Abbas, Advanced Functional Evolution Equations and Inclusions, Springer, 2015.
[6] D. Bothe, Multi-valued perturbations of m-accretive differential inclusions, Isr. J. Math. 108 (1998) 109–138.
[7] A. Bressan, Z.P. Wang, Classical solutions to differential inclusions with totally disconnected right-hand side, J. Differ. Equ. 246 (2009) 629–640.
[8] D.H. Chen, R.N. Wang, Y. Zhou, Nonlinear evolution inclusions: topological characterizations of solution sets and applications, J. Funct. Anal. 265 (2013) 

2039–2073.
[9] K. Deimling, Multivalued Differential Equations, de Gruyter, Berlin, 1992.

[10] J. Diestel, W.M. Ruess, W. Schachermayer, Weak compactness in L1(μ; X), Proc. Amer. Math. Soc. 118 (1993) 447–453.
[11] T. Donchev, E. Farkhi, B.S. Mordukhovich, Discrete approximations, relaxation, and optimization of one-sided Lipschitzian differential inclusions in 

Hilbert spaces, J. Differ. Equ. 243 (2007) 301–328.
[12] G. Gabor, A. Grudzka, Structure of the solution set to impulsive functional differential inclusions on the half-line, Nonlinear Differ. Equ. Appl. 19 (2012) 

609–627.
[13] G. Gabor, A. Grudzka, Erratum to: structure of the solution set to impulsive functional differential inclusions on the half-line, Nonlinear Differ. Equ. 

Appl. 22 (2015) 175–183.
[14] G. Gabor, M. Quincampoix, On existence of solutions to differential equations or inclusions remaining in a prescribed closed subset of a finite-

dimensional space, J. Differ. Equ. 185 (2002) 483–512.
[15] S.C. Hu, N.S. Papageorgiou, On the topological regularity of the solution set of differential inclusions with constraints, J. Differ. Equ. 107 (1994) 280–289.
[16] M. Kamenskii, V. Obukhovskii, P. Zecca, Condensing Multi-valued Maps and Semilinear Differential Inclusions in Banach Spaces, Walter de Gruyter, 

Berlin, New York, 2001.
[17] S.K. Ntouyas, D. O’Regan, Existence results for semilinear neutral functional differential inclusions via analytic semigroups, Acta Appl. Math. 98 (2007) 

223–253.
[18] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New 

York, 1983.
[19] V. Staicu, On the solution sets to nonconvex differential inclusions of evolution type, Discrete Contin. Dyn. Syst. 2 (1998) 244–252.
[20] V. Staicu, On the solution sets to differential inclusions on unbounded interval, Proc. Edinb. Math. Soc. 43 (2000) 475–484.
[21] I.I. Vrabie, Compactness Methods for Nonlinear Evolutions, second edition, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 75, 

Longman and John Wiley & Sons, 1995.
[22] R.N. Wang, Q.H. Ma, Y. Zhou, Topological theory of non-autonomous parabolic evolution inclusions on a noncompact interval and applications, Math. 

Ann. 362 (2014) 173–203.
[23] J.H. Wu, Theory and Applications of Partial Functional Differential Equations, vol. 119, Springer Science & Business Media, 2012.

http://refhub.elsevier.com/S1631-073X(16)30255-2/bib416E647265733031s1
http://refhub.elsevier.com/S1631-073X(16)30255-2/bib416E64726573s1
http://refhub.elsevier.com/S1631-073X(16)30255-2/bib41726F6E737A616A6Es1
http://refhub.elsevier.com/S1631-073X(16)30255-2/bib42616B6F77736B61s1
http://refhub.elsevier.com/S1631-073X(16)30255-2/bib42656E63686F687261s1
http://refhub.elsevier.com/S1631-073X(16)30255-2/bib426F746865s1
http://refhub.elsevier.com/S1631-073X(16)30255-2/bib4272657373616Es1
http://refhub.elsevier.com/S1631-073X(16)30255-2/bib4368656Es1
http://refhub.elsevier.com/S1631-073X(16)30255-2/bib4368656Es1
http://refhub.elsevier.com/S1631-073X(16)30255-2/bib6465s1
http://refhub.elsevier.com/S1631-073X(16)30255-2/bib4469657374656Cs1
http://refhub.elsevier.com/S1631-073X(16)30255-2/bib446F6E63686576s1
http://refhub.elsevier.com/S1631-073X(16)30255-2/bib446F6E63686576s1
http://refhub.elsevier.com/S1631-073X(16)30255-2/bib4761626F72s1
http://refhub.elsevier.com/S1631-073X(16)30255-2/bib4761626F72s1
http://refhub.elsevier.com/S1631-073X(16)30255-2/bib4761626F723135s1
http://refhub.elsevier.com/S1631-073X(16)30255-2/bib4761626F723135s1
http://refhub.elsevier.com/S1631-073X(16)30255-2/bib4761626F724A4445s1
http://refhub.elsevier.com/S1631-073X(16)30255-2/bib4761626F724A4445s1
http://refhub.elsevier.com/S1631-073X(16)30255-2/bib4875s1
http://refhub.elsevier.com/S1631-073X(16)30255-2/bib4B616D656E736B6969s1
http://refhub.elsevier.com/S1631-073X(16)30255-2/bib4B616D656E736B6969s1
http://refhub.elsevier.com/S1631-073X(16)30255-2/bib4E746F75796173s1
http://refhub.elsevier.com/S1631-073X(16)30255-2/bib4E746F75796173s1
http://refhub.elsevier.com/S1631-073X(16)30255-2/bib50617A79s1
http://refhub.elsevier.com/S1631-073X(16)30255-2/bib50617A79s1
http://refhub.elsevier.com/S1631-073X(16)30255-2/bib537461696375s1
http://refhub.elsevier.com/S1631-073X(16)30255-2/bib5374616963753030s1
http://refhub.elsevier.com/S1631-073X(16)30255-2/bib56726162696532s1
http://refhub.elsevier.com/S1631-073X(16)30255-2/bib56726162696532s1
http://refhub.elsevier.com/S1631-073X(16)30255-2/bib77616E677A686F75s1
http://refhub.elsevier.com/S1631-073X(16)30255-2/bib77616E677A686F75s1
http://refhub.elsevier.com/S1631-073X(16)30255-2/bib7775626F6F6Bs1

	Topological properties of solution sets for partial functional evolution inclusions
	1 Introduction
	2 Preliminaries
	3 Topological structure of solution sets
	3.1 Compact operator case
	3.2 Noncompact operator case

	4 An example
	Acknowledgements
	References


