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We analyze the inverse problem of identifying the diffusivity coefficient of a scalar elliptic 
equation as a function of the resolvent operator. We prove that, within the class of 
measurable coefficients, bounded above and below by positive constants, the resolvent 
determines the diffusivity in an unique manner. Furthermore, we prove that the inverse 
mapping from resolvent to the coefficient is Lipschitz in suitable topologies. This result 
plays a key role when applying greedy algorithms to the approximation of parameter-
dependent elliptic problems in an uniform and robust manner, independent of the given 
source terms. In one space dimension, the results can be improved using the explicit 
expression of solutions, which allows us to link distances between one resolvent and a 
linear combination of finitely many others and the corresponding distances on coefficients. 
These results are also extended to multi-dimensional elliptic equations with variable 
density coefficients. We also point out some possible extensions and open problems.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Nous examinons le problème inverse de l’identification du coefficient de diffusion comme 
fonction de la résolvante pour des équations elliptiques scalaires. Nous établissons, pour 
des topologies appropriées, un résultat de stabilité Lipschitz pour une classe de coefficients 
de diffusion mesurables, minorés et majorés par des constantes positives fixées a priori. Ce 
résultat intervient de manière essentielle dans le développement d’algorithmes greedy pour 
l’approximation d’une famille paramétrée de problèmes elliptiques de manière robuste et 
uniforme par rapport au terme source. Nous traitons séparément le cas de la dimension 
un, pour lequel nous disposons de formules explicites de représentation des solutions 
permettant de comparer la distance entre une résolvante et une combinaison linéaire d’un 
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nombre fini d’autres et des coefficients correspondants, et un développement complet de 
l’approche greedy. Nous étendons ces résultats au problème de l’identification de la densité 
à partir de l’opérateur résolvant correspondant. Nous signalons aussi quelques problèmes 
ouverts, en particulier dans le cas multi-dimensionnel.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Let � be a bounded domain of Rn , n ≥ 1. Fix 0 < σ0 < σ1 and consider the class of scalar diffusivity coefficients

� = {σ ∈ L∞(�); σ0 ≤ σ ≤ σ1 a.e. in �}.
In the sequel H1

0(�) is endowed with the norm

‖w‖H1
0(�) = ‖∇w‖L2(�)n .

For σ ∈ �, let Aσ : H1
0(�) → H−1(�) be the bounded operator given by

Aσ u = −div(σ∇u).

The inverse or resolvent operator Rσ maps continuously H−1(�) into H1
0(�).

To be more precise, denote by 〈·, ·〉−1,1 the duality pairing between H−1(�) and H1
0(�). For f ∈ H−1(�), consider the 

variational problem of finding w ∈ H1
0(�) so that∫

�

σ∇w · ∇v = 〈 f , v〉−1,1 for any v ∈ H1
0(�). (1.1)

According to Lax–Milgram’s lemma, (1.1) has a unique solution uσ ∈ H1
0(�). Moreover, the energy estimate yields

‖uσ ‖H1
0(�) ≤ σ−1

0 ‖ f ‖H−1(�). (1.2)

Indeed, using the solution itself uσ as test function we have

σ0

∫
�

|∇uσ |2 dx ≤
∫
�

σ(x)|∇uσ |2 dx = 〈 f , u〉−1,1 ≤ || f ||H−1(�)||∇uσ ||L2(�)n

and consequently

σ0||∇uσ ||L2(�)n ≤ || f ||H−1(�).

As we have seen, the coefficient σ of the elliptic equation determines uniquely the resolvent operator Rσ . We address 
the inverse problem consisting in identifying the coefficient σ in terms of the resolvent Rσ .

The main result of this paper ensures the Lipschitz character of the inverse map in suitable topologies:

Theorem 1.1. For any σ , ̃σ ∈ �,

σ 2
0 ‖Rσ − R σ̃ ‖−1,1 ≤ ‖σ − σ̃‖L∞(�) ≤ σ 2

1 ‖Rσ − R σ̃ ‖−1,1. (1.3)

Here and henceforth ‖ · ‖−1,1 denotes the norm in B(H−1(�), H1
0(�)).

As observed by Albert Cohen [4], this result can be easily extended to the case of continuous matrix valued coefficients. 
The proof is the same as the one we shall develop, but using test functions that are scaled in a more pronounced manner 
in a distinguished direction. The extension of this result to the general case of measurable matrix valued coefficients seems 
however more delicate and requires further work. See Remark 2.1 below.

As we shall see below, this question and result arise in the context of parameter-dependent elliptic equations and it is 
of potential use (but not sufficient) to develop greedy algorithms to build fast and efficient approximation methods.

By inspecting the proof, one can see that Theorem 1.1 holds for any domain � for which Poincaré’s inequality holds.
Let d∞ be the distance (between diffusivity coefficients) induced by the L∞-norm. Inequality (1.3) in Theorem 1.1 can be 

rephrased as

σ 2dR ≤ d∞ ≤ σ 2dR on �,
0 1

http://creativecommons.org/licenses/by-nc-nd/4.0/
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where dR is the metric on � defined as follows

dR(σ , σ̃ ) = ‖Rσ − R σ̃ ‖−1,1, σ , σ̃ ∈ �.

The rest of the paper is organized as follows. We prove Theorem 1.1 in Section 2. In Section 3 we adapt the proof of 
Theorem 1.1 in order to establish a Lipschitz stability estimate in the case of the Neumann or Robin boundary conditions. 
The case of a BVP with non-homogeneous boundary values is treated in Section 4. In that case, the resolvent is obtained 
by varying the boundary data. Due to the elliptic smoothing effect, which prevents the information to propagate completely 
from the boundary to the interior, in the present case we are only able to prove Hölder’s stability. We devote Section 5 to 
the one-dimensional case. Taking advantage of the explicit representation formula for the solution to the BVP, we establish 
a Lipschitz stability property and also estimate the distance from a resolvent to the linear subspace generated by a finite 
number of them. In Section 6, we present the motivation of this paper in the context of greedy algorithms for parameter-
dependent elliptic equations and we fully develop it in the one-dimensional case, using the results of Section 5. We also 
added a remark in Section 6 in order to explain how the same program can be fully developed, in any dimension, for elliptic 
equations with variable density coefficients. We close with Section 7 devoted to some open problems, and in particular to 
the extension of the greedy approach to the multi-dimensional diffusivity model.

2. Proof of Theorem 1.1

The first inequality in (1.3) is contained in the following elementary lemma.

Lemma 2.1. For any σ , ̃σ ∈ L∞(�) satisfying σ0 ≤ σ , ̃σ ,

‖Rσ − R σ̃ ‖−1,1 ≤ σ−2
0 ‖σ − σ̃‖L∞(�).

Proof. From (1.1) we have∫
�

σ∇uσ · ∇v dx =
∫
�

σ̃∇uσ̃ · ∇v dx for any v ∈ H1
0(�).

Hence∫
�

σ∇(uσ − uσ̃ ) · ∇v dx =
∫
�

(σ̃ − σ)∇uσ̃ · ∇v dx for any v ∈ H1
0(�).

The particular choice of v = uσ − uσ̃ in the identity above, thanks to (1.2), yields

σ0

∫
�

|∇(uσ − uσ̃ )|2 dx ≤
∫
�

σ |∇(uσ − uσ̃ )|2 dx ≤ ‖σ̃ − σ‖L∞(�)‖∇uσ̃ ‖L2(�)n‖∇(uσ − uσ̃ )‖L2(�)n (2.1)

≤ σ−1
0 ‖σ̃ − σ‖L∞(�)‖ f ‖H−1(�)‖∇(uσ − uσ̃ )‖L2(�)n . �

From (2.1) we deduce immediately the expected inequality.

Next, we establish the key lemma that we will use to prove the second inequality in (1.3).

Lemma 2.2. Let γ ∈ L∞(�). For a.e. x0 ∈ �, there exists a sequence (ux0,ε) in H1
0(�) so that ‖ux0,ε‖H1

0(�) = 1, for each ε , and

lim
ε

∫
�

γ (x)|∇ux0,ε |2 dx = γ (x0).

Proof. Let ε > 0 and set

ϕε(r) = 0, r ≤ 0, ϕε(r) = r, 0 < r < ε, ϕε(r) = ε, r ≥ ε,

the continuous function such that ϕ′
ε = χ(0,ε) , where χ(0,ε) is the characteristic function of the interval (0, ε).

Let x0 ∈ � and ε0 be sufficiently small is such a away that B(x0, ε0) ⊂ �. Define ux0,ε , 0 < ε ≤ ε0 by

ux0,ε(x) = 1√|B(x0, ε)|ϕε(|x − x0|).

It is easy to see that
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∇ux0,ε(x) = χB(x0,ε)(x)
x − x0

|x − x0|√|B(x0, ε)|
and that ux0,ε belongs to H1

0(�). Whence

|∇ux0,ε |2 = 1

|B(x0, ε)|χB(x0,ε).

Therefore ‖ux0,ε‖H1
0(�) = 1 and by Lebesgue’s differentiation theorem∫

�

γ (x)|∇ux0,ε |2 dx = 1

|B(x0, ε)|
∫

B(x0,ε)

γ (x)dx−→
ε→0

γ (x0) a.e. x0 ∈ �. �

Corollary 2.1. Let γ ∈ L∞(�) be so that∫
�

±γ |∇u|2 dx ≤ C, for any u ∈ H1
0(�), ‖u‖H1

0(�) = 1, (2.2)

for some constant C > 0. Then

‖γ ‖L∞(�) ≤ C . (2.3)

Proof. In light of Lemma 2.2, for a.e. x0 ∈ �, there exists a sequence (u±
n ) in H1

0(�) so that ‖u±
n ‖H1

0(�) = 1, for each n, and

lim
n

∫
�

±γ (x)|∇u±
n |2 dx = ±γ (x0).

Therefore, in view of (2.2), |γ (x0)| ≤ C a.e. x0 ∈ �, implying (2.3). �
We are now ready to complete the proof of Theorem 1.1. Fix σ , ̃σ ∈ �0. Starting from the identity

Aσ − Aσ̃ = Aσ (R σ̃ − Rσ )Aσ̃ ,

we get

‖Aσ − Aσ̃ ‖1,−1 ≤ σ 2
1 ‖Rσ − R σ̃ ‖−1,1. (2.4)

On the other hand,

〈(Aσ − Aσ̃ )u, v〉−1,1 =
∫
�

(σ − σ̃ )∇u · ∇v dx, u, v ∈ H1
0(�),

implying∫
�

(σ − σ̃ )∇u · ∇v dx ≤ ‖Aσ − Aσ̃ ‖1,−1‖u‖H1
0(�)‖v‖H1

0(�), u, v ∈ H1
0(�).

Combined with (2.4), this estimate yields∫
�

γ ∇u · ∇v dx ≤ σ 2
1 ‖Rσ − R σ̃ ‖−1,1‖u‖H1

0(�)‖v‖H1
0(�), u, v ∈ H1

0(�), (2.5)

where we set γ = σ − σ̃ . Hence∫
�

γ |∇u|2 dx ≤ σ 2
1 ‖Rσ − R σ̃ ‖−1,1, u ∈ H1

0(�), ‖u‖H1
0(�) = 1. (2.6)

But, by symmetry, (2.6) holds when γ is substituted by −γ = σ̃ − σ . That is we have∫
�

±γ |∇u|2 dx ≤ σ 2
1 ‖Rσ − R σ̃ ‖−1,1, u ∈ H1

0(�), ‖u‖H1
0(�) = 1

which, by Corollary 2.1, yields the second inequality of (1.3).
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Remark 2.1. Following interesting discussions with A. Cohen [4], here we present possible extensions to the anisotropic case 
that can be obtained following the method of proof of Theorem 1.1.

(i) Consider, to begin with, in dimension two, the case of an anisotropic diagonal conductivity

σ = diag(σ1,σ2).

In the sequel, for the sake of simplicity, we identify σ with (σ1, σ2).
Fix 0 < a0 < a1 and let �′ be the set of σ = (σ1, σ2) ∈ C(�) ⊕ C(�) satisfying

a0|ξ |2 ≤ σ1(x)ξ2
1 + σ2(x)ξ2

2 and σ1(x),σ2(x) ≤ a1 for any x ∈ �, ξ ∈R
2.

Let σ , ̃σ ∈ �′ . With similar notations (γ denotes the difference of two diffusivity pairs), instead of (2.6) we have in the 
present case∫

�

[
γ1(∂1u)2 + γ2(∂2u)2

]
dx ≤ a2

1‖Rσ − R σ̃ ‖−1,1, u ∈ H1
0(�), ‖u‖H1

0(�) = 1. (2.7)

Without loss of generality, we can assume that

‖γ1‖C(�) = max
(
‖γ1‖C(�),‖γ2‖C(�)

)
Fix 0 < δ < 1 and let x0 ∈ � so that

|γ1(x0)| = (1 − δ)‖γ1‖C(�).

Substituting σ − σ̃ by σ̃ − σ , we can always assume that γ1(x0) > 0.
Let ϕε be as in Lemma 2.2, D K (x0, ε) = {(x1, x2); |(K (x1 − x0,1), x2 − x0,2)| ≤ ε} and consider the test function

ϕx0,ε(x1, x2) = 1√
D K (x0, ε)

ϕε(|(K (x1 − x0,1), x2 − x0,2)|),
where the scaling parameter K is chosen in such a away that Kγ1(x0) − |γ2(x0)| ≥ γ1(x0), and ε is sufficiently small so that 
supp(ϕx0,ε ) � �.

Define ψx0,ε by ψx0,ε(x1, x2) = ϕx0,ε(x2, x1) and observe that we still have supp(ψx0,ε ) � � provided that ε is sufficiently 
small. Then (2.7) with u = ϕx0,ε and u = ψx0,ε successively yields in a straightforward manner

1

|D K (x0, ε)|
∫

D K (x0,ε)

(Kγ1 + γ2) dx ≤ 2a2
1‖Rσ − R σ̃ ‖−1,1.

Whence

1

|D K (x0, ε)|
∫

D K (x0,ε)

γ1 dx ≤ 2a2
1‖Rσ − R σ̃ ‖−1,1.

A standard continuity argument leads

(1 − δ)max
(
‖γ1‖C(�),‖γ2‖C(�)

)
= γ1(x0) ≤ 2a2

1‖Rσ − R σ̃ ‖−1,1.

Letting δ tend to zero, we get

max
(
‖γ1‖C(�),‖γ2‖C(�)

)
≤ 2a2

1‖Rσ − R σ̃ ‖−1,1.

On the other hand, we can proceed as in the proof of Lemma 2.1 in order to get

1

2
a2

0‖Rσ − R σ̃ ‖−1,1 ≤ max
(
‖γ1‖C(�),‖γ2‖C(�)

)
.

In other words, we established the following two-sided estimate

1

2
a2

0‖Rσ − R σ̃ ‖−1,1 ≤ max
(
‖γ1‖C(�),‖γ2‖C(�)

)
≤ 2a2

1‖Rσ − R σ̃ ‖−1,1.

(ii) The same arguments apply in the any space dimension for continuous anisotropic diagonal conductivities of the form

σ = diag(σ1, . . . σn).

(iii) The case of general symmetric continuous conductivities σ can be handled by an extra diagonalization argument 
that can be performed at each point x0 in �.

(iv) Handling the more general case of measurable matrix valued diffusivities requires significant extra work [4].
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3. Neumann and Robin boundary conditions

We explain briefly how Theorem 1.1 can be adapted to both Neumann and Robin BVP’s.

3.1. The Neumann case

For σ ∈ �, define AN
σ : H1(�) → (H1(�))′ by

〈AN
σ u, v〉 :=

∫
�

σ∇u · ∇v dx +
∫
�

uv dx, u, v ∈ H1(�),

where 〈·, ·〉 is the duality pairing between (H1(�))′ and H1(�).
Clearly AN

σ is bounded and, with σ 1 = max(σ1, 1),

‖AN
σ u‖(H1(�))′ ≤ σ 1‖u‖H1(�), u ∈ H1(�).

We claim that AN
σ is invertible. Indeed, if f ∈ (H1(�))′ , we get by applying Lax–Milgram’s lemma that the variational 

problem∫
�

σ∇uσ · ∇v dx +
∫
�

uσ v dx = 〈 f , v〉, v ∈ H1(�) (3.1)

has a unique solution uσ ∈ H1(�).
Taking v = uσ in (3.1), we get in a straightforward manner that

‖uσ ‖H1(�) ≤ σ−1
0 ‖ f ‖(H1(�))′ , with σ 0 = min(σ0,1). (3.2)

As a consequence of (3.1), AN
σ uσ = f . Thus AN

σ has a bounded inverse

R N
σ := (AN

σ )−1 : (H1(�))′ → H1(�).

This operator is nothing but the resolvent of the operator −div(σ∇·) + 1 under the Neumann boundary condition. When 
� and u are sufficiently smooth, this boundary condition can be written as ∂ν u = 0 on ∂�, where ∂ν = ν · ∇ with ν the 
exterior normal unit normal vector field on �.

As

〈(AN
σ − AN

σ̃ )u, v〉 =
∫
�

(σ − σ̃ )∇u · ∇v dx, u, v ∈ H1(�),

we can mimic the proof of Theorem 1.1 in order to get

‖σ − σ̃‖L∞(�) ≤ σ 2
1‖R N

σ − R N
σ̃ ‖−1,1.

On the other hand, we have, similarly to Lemma 2.1,

σ 2
0‖R N

σ − R N
σ̃ ‖−1,1 ≤ ‖σ − σ̃‖L∞(�).

In other words, we proved

σ 2
0‖R N

σ − R N
σ̃ ‖−1,1 ≤ ‖σ − σ̃‖L∞(�) ≤ σ 2

1‖σ − σ̃‖L∞(�).

3.2. The Robin case

In the present subsection, we assume that � has Lipschitz boundary �.
We examine the case of a BVP with a Robin boundary condition. To this end, pick β ∈ L∞(�) so that β ≥ 0 and β ≥ β0

on a measurable subset �0 of � of positive measure, where β0 > 0 is some constant. Consider the Robin BVP

−div(σ∇u) = f in � and σ∂νu + βu = 0 on �. (3.3)

If σ ∈ �, define AR
σ : H1(�) → (H1(�))′ by

〈AR
σ u, v〉 :=

∫
�

σ∇u · ∇v dx +
∫
�

β u v dS(x), u, v ∈ H1(�).

In the sequel, we equip H1(�) with the norm
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‖u‖H1(�) =
(
‖∇u‖2

L2(�)n + ‖u‖2
L2(�0)

)1/2
. (3.4)

It is not hard to check that AR
σ is bounded and

‖AR
σ u‖(H1(�))′ ≤ σ 1‖u‖H1(�), u ∈ H1(�), with σ 1 = max(σ1, κ‖β‖L∞(�)),

where κ is the norm of the trace operator u ∈ H1(�) → u|� ∈ L2(�) when H1(�) is endowed with the norm (3.4).
Similarly to the Neumann case, we show that AR

σ is invertible and we calculate its inverse. To do that we consider the 
bilinear form

a(u, v) =
∫
�

σ∇u · ∇v dx +
∫
�

β u v dS(x), u, v ∈ H1(�).

One can check that u → a(u, u) defines a norm on H1(�) equivalent to the usual one on H1(�). Let f ∈ (H1(�))′ . Then 
according to Riesz’s representation theorem, there exists a unique uσ ∈ H1(�) satisfying

a(uσ ,ψ) =
∫
�

σ∇uσ · ∇ψ dx +
∫
�

β uσ ψ dS(x) = 〈 f ,ψ〉, ψ ∈ H1(�). (3.5)

Note that uσ is nothing but the variational solution to the BVP (3.3).
From (3.5), we easily get

‖uσ ‖H1(�) ≤ σ 0‖ f ‖(H1(�))′ , with σ 0 = min(σ0, β0).

Consequently, AR
σ possesses a bounded inverse R R

σ = (AR
σ )−1 : (H1(�))′ → H1(�) defined by Rσ f := uσ for f ∈ (H1(�))′ .

Concerning the inverse problem for Robin boundary conditions, starting from

〈(AR
σ − AR

σ̃ )u, v〉−1,1 =
∫
�

(σ − σ̃ )∇u · ∇v dx, u, v ∈ H1(�),

we get, similarly to the Neumann case,

σ 2
0‖Rσ − R σ̃ ‖−1,1 ≤ ‖σ − σ̃‖L∞(�) ≤ σ 2

1‖Rσ − R σ̃ ‖−1,1.

4. Non-homogeneous BVPs

In this section, � is a C2-smooth bounded domain of Rn , n ≥ 2, diffeomorphic to the unit ball of Rn . Its boundary is 
denoted again by �.

Let σ ∈ �. For g ∈ H
1
2 (�), we denote by uσ ∈ H1(�) the unique weak solution to the BVP:

div(σ∇u) = 0 in � and u = g on �.

Let G ∈ H1(�) so that G = g on � and ‖G‖H1(�) = ‖g‖
H

1
2 (�)

, where we identified H
1
2 (�) to the quotient space 

H1(�)/H1
0(�). Then f = −div(σ∇G) ∈ H−1(�) and

‖ f ‖H−1(�) ≤ σ1‖G‖H1(�) = σ1‖g‖
H

1
2 (�)

.

On the other hand, it is straightforward to check that uσ = G + Rσ f , Rσ being the Dirichlet resolvent defined above. 
Therefore

‖uσ ‖H1(�) ≤ ‖G‖H1(�) + σ−1
0 ‖ f ‖H−1(�) ≤ (1 + σ−1

0 σ1)‖g‖
H

1
2 (�)

.

Then �σ given by �σ g := uσ defines a bounded operator from H
1
2 (�) into H1(�) and

‖�σ ‖ 1
2 ,1 ≤ 1 + σ−1

0 σ1.

Here and in the sequel, ‖ · ‖ 1
2 ,1 denotes the norm in B(H

1
2 (�), H1(�)).

Fix g ∈ C2(�) so that

�− = {x ∈ �; g(x) = min g}, �+ = {x ∈ �; g(x) = max g}
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are nonempty and connected, and the following condition is fulfilled: there exists a continuous strictly increasing function 
ψ : [0, ∞) → [0, ∞) with ψ(0) = 0 and ρ0 > 0 so that, for any 0 < ρ ≤ ρ0,

|∇τ g| ≥ ψ(ρ), on {x ∈ �; dist(x,�− ∪ �+) ≥ ρ},
where ∇τ denotes the tangential gradient.

Such a function is called quantitatively unimodal in [1].
We point out that the existence of a quantitatively unimodal function is guaranteed by the assumption that � is diffeo-

morphic to the unit ball.
For σ1 > σ0, define

E = {σ ∈ W 1,∞(�); σ0 ≤ σ and ‖σ‖W 1,∞(�) ≤ σ1}.

Theorem 4.1. ([1, Theorem 3.5]) There exist two constants C > 0 and γ > 0, that can depend on �, E and g, so that

‖σ − σ̃‖L∞(�) ≤ C‖�σ g − �σ̃ g‖γ

L2(�)
, σ , σ̃ ∈ E0,

where E0 = {σ ∈ E; σ = σ on �}, for some fixed σ ∈ E .

This result is essential in the stability issue of the problem of determining the conductivity coefficient from two atten-
uated energy densities obtained from well chosen two illuminations. This problem is related to the so-called qualitative 
photo-acoustic tomography. We refer to [1] and the references therein for more details on this topic.

As a consequence of Theorem 4.1, we readily obtain:

Corollary 4.1. There exist two constants C > 0 and γ > 0, that can depend on � and E , so that

‖σ − σ̃‖L∞(�) ≤ C‖�σ − �σ̃ ‖γ
1
2 ,1

, σ , σ̃ ∈ E0,

where E0 is as in the preceding theorem.

This result can be interpreted as a Hölder stability estimate on the determination of σ from �σ .

Remark 4.1. Denote the lifting operator g → G , defined above, by E and, for σ ∈ E , consider the operator Lσ given by

Lσ : F ∈ H1(�) �→ Lσ F = div(σ∇ F ) ∈ H−1(�).

Then one can check in a straightforward manner that �σ = E + Rσ Lσ E . Therefore, the mapping

σ ∈ E �→ �σ ∈ B(H
1
2 (�), H1(�))

is Lipschitz continuous. Whence, with reference to Corollary 4.1, we get, for some constants c > 0 and C > 0,

‖σ − σ̃‖L∞(�) ≤ Ccγ ‖σ − σ̃‖γ
L∞(�), σ , σ̃ ∈ E0,

or equivalently

c‖σ − σ̃‖L∞(�) ≤ Cc
(
c‖σ − σ̃‖L∞(�)

)γ
, σ , σ̃ ∈ E0.

As ‖σ − σ̃‖L∞(�) can be chosen arbitrarily small, we conclude that γ ≤ 1.
We do not know whether, actually, γ < 1 or not. Explicit computations can be carried out in the one-dimensional case, 

very much as in the next section. But Theorem 4.1, which genuinely of multi-dimensional nature, fails in this case since two 
different diffusivities, one multiple of the other, cannot be distinguished from boundary values.

5. The one-dimensional case

5.1. An explicit representation formula

For the sake of simplicity, we limit our analysis to a BVP with mixed boundary conditions. Specifically, we consider the 
BVP

−(σ (x)ux)x = f in (0,1), ux(0) = 0 and u(1) = 0. (5.1)

Let σ0 < σ1 be two positive constants and
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�0 = {σ ∈ L∞(0,1); 0 < σ0 ≤ σ ≤ σ1 a.e. in (0,1)}
and

H = {u ∈ H1(0,1); u(1) = 0}.
It is a classical result that u ∈ H → ‖ux‖L2(0,1) defines a norm on H , which is equivalent to the norm induced by the usual 
norm on H1(0, 1). In the sequel, H is equipped with this norm.

According to Lax–Milgram’s lemma or Riesz’s representation theorem, for each f ∈ H ′ , there exists a unique u = uσ ∈ H
so that

1∫
0

σ(x)ux(x)vx(x)dx = 〈 f , v〉, for any v ∈ H,

where 〈·, ·〉 is the duality pairing between H and its dual H ′ . Note that uσ is nothing but the variational solution to the 
BVP (5.1).

Therefore Rσ : f ∈ H ′ → uσ ∈ H defines a bounded operator with

‖Rσ f ‖H ≤ σ−1
0 ‖ f ‖H ′ .

Pick f ∈ L2(0, 1) and set

v(x) =
1∫

x

1

σ(t)

t∫
0

f (s)ds dt, x ∈ [0,1].

Clearly v is absolutely continuous, v(1) = 0 and

vx(x) = − 1

σ(x)

x∫
0

f (t)dt a.e. (0,1). (5.2)

On the other hand, if w ∈ H , we get by applying Green’s formula

1∫
0

σ(x)vx(x)wx(x) = −
1∫

0

wx(x)

⎛⎝ x∫
0

f (t)dt

⎞⎠ dx =
1∫

0

w(x) f (x)dx.

In other words, v = Rσ f .

5.2. Lipschitz stability

In view of the explicit representation formula above it is convenient to introduce the space W −1,1(0, 1), the closure of 
C∞

0 (0, 1) for the norm

‖ f ‖W −1,1(0,1) =
∥∥∥∥∥∥

x∫
0

f (t)dt

∥∥∥∥∥∥
L1(0,1)

.

The resolvent operators, according to the explicit representation formula above, can be represented as

Tm f (x) = m(x)

x∫
0

f (t)dt, a.e. x ∈ (0,1), (5.3)

where

m = 1

σ
.

Given m ∈ L∞(0, 1), these operators can be naturally understood in the functional setting of linear bounded operators, 
Tm : W −1,1(0, 1) → L1(0, 1). We denote by B(W −1,1(0, 1), L1(0, 1)) this Banach space and by ‖ · ‖−1,1 its norm.

The following holds:



M. Choulli, E. Zuazua / C. R. Acad. Sci. Paris, Ser. I 354 (2016) 1174–1187 1183
Lemma 5.1. Let m ∈ L∞(0, 1) and Tm : W −1,1(0, 1) → L1(0, 1) as in (5.3). Then

‖Tm‖−1,1 = ‖m‖L∞(0,1). (5.4)

Proof. Firstly, it is straightforward to check that

‖Tm‖−1,1 ≤ ‖m‖L∞((0,1)).

The reverse inequality can be easily derived as in Lemma 2.2, by taking a sequence fε so that the corresponding primi-
tives

Fε =
x∫

0

fε(t)dt,

constitute an approximation of the identity around each x0 ∈ (0, 1). �
Given two diffusivity coefficients σ , ̃σ ∈ �0, formula (5.2) yields

(Rσ f − R σ̃ f )x =
(

1

σ̃ (x)
− 1

σ(x)

) x∫
0

f (t)dt a.e. (0,1).

In view of Lemma 5.1, it is natural to analyze the norms of these resolvent operators and their distances in the norm

||Rσ ||∗ = ||T1/σ ||−1,1.

As a consequence of Lemma 5.1,

||Rσ − R σ̃ ||∗ =
∥∥∥∥ 1

σ̃ (x)
− 1

σ(x)

∥∥∥∥
L∞(0,1)

.

Obviously, using the uniform upper and lower bounds on the coefficients, this also allows us to get estimates in terms 
of the L∞(0, 1)-distances between coefficients:

σ−2
1 ||σ̃ − σ ||L∞(0,1) ≤ ||Rσ − R σ̃ ||∗ ≤ σ−2

0 ||σ̃ − σ ||L∞(0,1). (5.5)

This is so because

σ − σ̃

σ σ̃
= 1

σ̃
− 1

σ
.

5.3. Distance to a subspace

As we shall see in the following section, in the application of greedy algorithms, we need to further develop the com-
putations above to achieve precise Lipschitz stability estimates on the distance from one given resolvent to the subspace 
generated by a finite number of others.

To do this, we consider a distinguished coefficient that we denote by τ (x) and N ≥ 2 others, σ1(x), · · · , σN(x), and denote 
the corresponding resolvents by Rτ and R1, · · · , R N , respectively.

As a straightforward application of identity (5.2), we have(
Rτ f −

N∑
i=1

ai Ri f

)
x

=
(

N∑
i=1

ai

σi(x)
− 1

τ (x)

) x∫
0

f (t)dt a.e. (0,1) (5.6)

which yields the representation of the difference of a resolvent with respect to the linear combination of a finite number of 
others.

Arguing as above, we can conclude that∥∥∥∥∥Rτ −
N∑

i=1

ai Ri

∥∥∥∥∥
∗
=

∥∥∥∥∥
N∑

i=1

ai

σi(x)
− 1

τ (x)

∥∥∥∥∥
L∞((0,1))

. (5.7)

In other words, we have shown that the L∞-distance between inverses of coefficients yields an adequate surrogate for 
the distance between the resolvents:
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dist∗(Rτ , span[Ri,1 ≤ i ≤ N]) = distL∞(0,1)

(
1

τ (x)
, span

[
1

σi(x)
,1 ≤ i ≤ N

])
. (5.8)

Here the distance dist∗ stands for the one given in terms of the ‖ · ‖∗-norm.
Note that the methods of the previous sections do not allow us to achieve similar results in the multi-dimensional case. 

In particular, the analysis of the one-dimensional case shows that when dealing with the distance between a resolvent to 
the span of several others, one has to analyze nonlinear expressions involving the diffusivity coefficients.

6. Application to greedy algorithms for parameter depending elliptic equations

In recent years, there has been a significant body of literature developed on greedy methods to approximate parameter-
dependent elliptic problems of the form

−div(σ (x,μ)∇u) = f in �, u = 0 on �. (6.1)

We refer for instance to [2,3,5,6,8,9].
Roughly, the problem has been formulated and addressed as follows.
Assume that σ(x, μ) ∈ � (with � as in previous sections) depends on a multi-parameter μ living on a compact set K

of Rd , with d ≥ 1 finite. We denote by S the parametrized set of coefficients σ(x, μ) ∈ � for all values of μ.
Given a fixed f ∈ H−1(�) and solving (6.1) we get the set U of the corresponding solutions u(x, μ) ∈ H1

0(�), μ ∈ K . 
This set inherits the regularity of the coefficients σ(x, μ) ∈ � in its dependence with respect to μ.

The question that has been considered so far consists in identifying the most distinguished values of the parameter μ
to better approximate the set of solutions U , for that specific given right-hand-side term f ∈ H−1(�). This has been done 
applying (weak) greedy algorithms obtaining optimal approximation rates for U . But, proceeding that way, the sequence 
of most relevant snapshots μn that the algorithm gives depends on the right-hand-side term f ∈ H−1(�) and different 
right-hand-side terms f lead to different choices of the snapshots of μ.

Theorem 1.1 was developed in an attempt to apply the same methods independently of the specific value of the right-
hand-side term f ∈ H−1(�). However, this program can only be achieved so far in the one-dimensional case where our 
analysis was much more complete.

For this to be done, one needs to deal with the set R of resolvent operators R(μ) in B(H−1(�), H1
0(�)) for all μ ∈

K that inherit the continuity and regularity properties of the coefficients σ(x, μ) ∈ � in its dependence with respect 
to μ. For instance, if the map μ ∈ K → σ(x, μ) ∈ L∞(�) is continuous, the same occurs for the map μ ∈ K → R(μ) ∈
B(H−1(�), H1

0(�)). The same can be said about the Ck , C∞ or analytic dependence. On the other hand, the compactness 
of the set K together with the continuous dependence on μ ensures the compactness of R in B(H−1(�), H1

0(�)).
The goal is then to approximate the compact set of resolvents R of the Banach space B(H−1(�), H1

0(�)) by a sequence 
of finite-dimensional subspaces Vn of dimension n ≥ 1. The weak greedy algorithms yield the subspaces Vn that approxi-
mate the set R in the best possible manner, in the sense of the Kolmogorov n-width. The subspaces Vn are defined as the 
span of the most distinguished resolvent operators R(μ1), . . . , R(μn) with μ1, ..., μn chosen as follows.

Fix a constant γ ∈ (0, 1). Choose μ1 ∈ K such that

||R(μ1)||−1,1 ≥ γ max
μ∈K

||R(μ)||−1,1. (6.2)

We then proceed in a recursive manner. Having found μ1, . . . , μn , denote Vn = span{R(μ1), . . . , R(μn)} and choose the next 
element μn+1 such that

dist(R(μn+1), Vn) ≥ γ max
μ∈K

dist(R(μ), Vn) . (6.3)

From the previous existing theory (see [9] and [7]) this algorithm is well known to yield nearly optimal approximation 
rates of the parameterized set of resolvents R . As indicated in the previous references because, now, we are in a Banach 
space setting, B(H−1(�), H1

0(�)), a loss of the order 1/2 on the approximation rate of the Kolmogorov width has to be 
expected.

However, the difficulty on its implementation consists in computing, for each step, the distance dist(R(μ), Vn). This 
would require, in particular, computing R(μ) for all values of μ, and this is unfeasible and, precisely, what we want to 
avoid.

But the existing theory has also developed a means of bypassing this difficulty. In fact, it is well known that the same 
algorithm yields optimal approximation rates if it is implemented, as indicated above, but replacing dist(R(μ), Vn) by a 
“surrogate”, i.e. a different distance function, easier to be computed, and giving a uniform bound from below for the true 
distance dist(R(μ), Vn).

Theorem 1.1 is a first attempt in that direction, ensuring that the L1-distance between two coefficients provides a lower 
bound on the distance between the resolvents. But the issue of finding true surrogates for the distance of a resolvent to the 
subspace generated by a finite number of others is open in the general multi-dimensional case. The results in Subsection 5.3
yield such a surrogate in dimension n = 1, see (5.8).
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Accordingly, in one space dimension, n = 1, the implementation of the weak greedy algorithm for the approximation 
of the parameter set of resolvents can be done as above, by modifying the recursive step as follows: fix some 0 < γ < 1. 
Having found μ1, . . . , μn , with the corresponding diffusivity coefficients σ1(x), . . . , σN (x), to choose the next element μn+1
such that the corresponding diffusivity coefficient σN+1 satisfies

distL∞(0,1)

(
1

σN+1
, span

[
1

σi
; i, . . . , N

])
≥ γ max

μ∈K
distL∞(0,1)

(
1

σ(μ)
, span

[
1

σi
; i = 1, . . . , N

])
. (6.4)

The important consequence of this fact is that, for the identification of the most relevant parameter values μn , we do 
not need to solve the elliptic equation, but simply deal with the family of coefficients σ(x, μ), solving a by now classical 
L∞-minimization problem in an approximated manner as indicated in (6.4) by a multiplicative factor (0 < γ < 1). Once 
this choice of μn is done, this readily allows identifying the most relevant resolvent or elliptic problem, for all values 
of the right-hand-side term f ∈ H−1(�), contrarily to previous developments where the choice of these snapshots was 
f -dependent.

The choice of the parameters μn that we achieve in this manner is optimal from the point of view of the approximation 
of the resolvents and can then be applied to any f ∈ H−1(�), as mentioned above. But, of course, for a specific value of 
f ∈ H−1(�), the ad-hoc application of the weak greedy method will lead to better approximations. But for this to be done 
one has to afford the cost of implementing the weak greedy method for each f ∈ H−1(�) again and again. The advantage 
of the method developed in this paper is that it leads to uniform, robust approximation results, valid for all f ∈ H−1(�)

and can be used as a preconditioner to later use further greedy arguments, adapted to each right hand side term f .
In practice, given an arbitrary value of μ, the resolvent can be identified with the corresponding multiplier 1/σ (μ). 

Therefore, it can be approximated by a suitable linear combination of the weak-greedy offline choices 1/σi . This gives an 
easy and computationally inexpensive way of approximating the resolvent associated with μ.

Note, however, that this program was only fully developed in the one-dimensional case, since the multi-dimensional 
analogue of the surrogate in terms of the coefficients is not known. In the next section, we address, in the multi-dimensional 
context, the simpler problem of variables density functions.

Remark 6.1. It is worthwhile mentioning that the program we carried out for the conductivity coefficient in the one-
dimensional case can be extended to the problem of identifying the density coefficient from the corresponding resolvent in 
an arbitrary dimension.

For sake of simplicity we assume in this remark that � is C1,1-smooth.
Consider, for f ∈ L2(�) and ρ ∈ L∞(�), the problem of finding u ∈ H1

0(�) so that

−�u = ρ f in �.

The corresponding variational formulation consists in seeking u ∈ H1
0(�) satisfying:∫

�

∇u · ∇v dx =
∫
�

ρ f v dx, v ∈ H1
0(�). (6.5)

By Lax–Milgram lemma, this problem has a unique solution uρ := Rρ f .
As � is C1,1-smooth, Rρ maps L2(�) into H = H1

0(�) ∩ H2(�). When ρ ≡ 1, we denote Rρ by R . Then R is nothing but 
the inverse of the bounded operator A :H → L2(�) given by Au = −�u.

Using once again Lebesgue’s differentiation theorem, we can prove that Mρ , the multiplication operator by ρ ∈ L∞(�), 
acting as an operator on L2(�), satisfies ‖Mρ‖ := ‖Mρ‖B(L2(�)) = ‖ρ‖L∞(�) .

Since Rρ = RMρ or equivalently Mρ = ARρ , we derive

‖R‖−1‖Rρ‖ ≤ ‖ρ‖L∞(�) ≤ ‖A‖‖Rρ‖.
Fix ρ1, . . . , ρN ∈ L∞(�), and let ρ ∈ V N = span{ρ1, . . . ρN} and ρ̃ ∈ L∞(�). In light of the linearity of the mapping 

ρ → Rρ we get

‖R‖−1‖Rρ − Rρ̃‖ ≤ ‖ρ − ρ̃‖L∞(�) ≤ ‖A‖‖Rρ − Rρ̃‖.
Accordingly

d(Rρ̃ ,RN) = distL∞(�)(ρ̃, V N),

where RN = span{Rρ1 , . . . , RρN } and

d(Rρ, Rρ̃ ) = ‖ρ − ρ̃‖L∞(�)

yields an appropriate surrogate between resolvents.
This allows the full application of the weak greedy algorithm described in the previous section in this case of multi-

dimensional density-dependent elliptic equations.
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7. Extensions and further comments

The results of this paper constitute a first contribution on a topic that is rich in open interesting problems.
We mention here some of them:

• Surrogates in the multi-dimensional case. In Subsection 5.3, we have found surrogates for the elliptic problem with variable 
diffusivity in dimension n = 1. This problem is totally open in the multi-dimensional case. The case of the variable 
density was solved in the previous section.

• Elliptic matrices. In dimensions n ≥ 2 the same problems can be formulated in the context of elliptic problems involving 
coefficients σi j(x, μ), i.e. to equations of the form

−
∑

j

∂ j(σi j(x,μ)∂iu) = f .

Of course, the problem is much more complex in this case, since there is not only one coefficient σ to be identified, 
but rather all the family σi j with i, j = 1, ..., N .

• Elliptic systems. The same problems arise also in the context of elliptic systems, such as, for instance, the system of 
elasticity.

• Evolution equations. The problems addressed in the present paper make also sense for evolution problems and, in par-
ticular, parabolic, hyperbolic and Schrödinger equations.
Let us consider for instance the heat equation:⎧⎪⎨⎪⎩

ut − div(σ∇u) = 0 in � × (0,∞)

u = 0 on � × (0,∞)

u(x,0) = f (x) in �.

(7.1)

The same questions we have addressed in the elliptic context arise also in the parabolic one. In this case, the question 
can be formulated as follows: Does the resolvent f ∈ L2(�) → C([0, ∞); L2(�)) determine the diffusivity coefficient in an 
unique manner? Is the map from resolvent to diffusion coefficient Lipschitz in suitable norms?
The way the question has been formulated is easy to solve. In fact it is sufficient to observe that the elliptic equation is 
subordinated to the parabolic one, so that, the time integral of the parabolic solution, namely,

v(x) =
∞∫

0

u(x, t)dt,

solves the elliptic equation{−div(σ∇v) = f in �

v = 0 on �.
(7.2)

This can be easily seen integrating the parabolic equation in time and using the fact that the solutions to the heat 
equation tend to zero as t → ∞.
Therefore, a full knowledge of the parabolic resolvent yields, in particular, fully, the elliptic resolvent as well. According 
to the previous results in this paper, the diffusivity coefficient can be determined, and the dependence is Lipschitz. Our 
comments on the explicit representation of solutions in 1 − d and their possible use for the development of greedy 
algorithms apply as well.
This simple observation however raises many other interesting problems: can the same Lipschitz identification result 
be achieved if the parabolic solution is only known in a finite time interval [0, T ]? What about diffusivity coefficients 
depending also on time σ = σ(x, t)? What happens when, rather than the solution for the initial value problem, one 
considers those with non-homogeneous source terms?
Similar questions arise for wave-like equations and the same answer can be expected if the models under consideration 
are dissipative. This allows us to integrate the equations under consideration in the time interval (0, ∞) and employing 
the decay of solutions as t → ∞. Of course, the expected behavior is completely different in the absence of damping.

• Control problems. Greedy and weak greedy methods have been implemented in the context of controllability of finite and 
infinite-dimensional Ordinary Differential Equations (ODEs) in [10]. But this has been done for fixed specific data to be 
controlled. It would be interesting to analyze whether the results of this paper can be extended to these controllability 
problems so as to achieve approximations, independent of the data to be controlled. For this to be done, one would 
need to adapt the Lipschitz stability estimate in (1.3) to control problems, getting upper bounds on the distance between 
the generators of the semigroups in terms of the distance between the corresponding control maps. This is an issue 
that needs significant further investigation.
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