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RESUME

On obtient, en utilisant les résidus de Grothendieck, une formule résiduelle pour I'invariant
de Morita-Futaki-Bott par rapport a un champ de vecteurs holomorphes avec singularités
isolées, dégénérées ou non.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

0. Introduction

Let X be a compact complex orbifold of dimension n. That is, X is a complex space endowed with the following property:
each point p € X possesses a neighborhood, which is the quotient U/Gp, where U is a complex manifold, say of dimen-
si~on n, nand NG,J is a properly discontinuous finite group of automorphisms of U, so that locally we have a quotient map
(U, p)—= (U/Gp, p). See [1].

Let n(X) be the complex Lie algebra of all holomorphic vector fields of X. Choose any Hermitian metric h on X and let
V and ® be the Hermitian connection and the curvature form with respect to h, respectively. Let & be a global holomorphic
vector field on X and consider the operator

LE) =[£, - 1—Ve(-): THOX — 110X,
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Let ¢ be an invariant polynomial of degree n + k; the Futaki-Morita integral invariant is defined by

f¢($)—f¢ LE). - L(E). 3= 2i®),
_f_/ T
k times
ntlmes

where ¢ denotes the polarization of ¢. Morita and Futaki proved in [6] that the definition of f¢(&) does not depend on
the choice of the Hermitian metric h. It is well known that the Futaki-Morita integral invariant can be calculated via a
Bott-type residue formula for non-degenerated holomorphic vector fields, see [5-7] and [4] in the orbifold case. In this
work, we prove a residue formula for holomorphic vector fields with isolated and possibly degenerated singularities in
terms of Grothendieck’s residues (see [8, Chapter 5]).

Theorem 1. Let &£ € n(X) a holomorphic vector field with only isolated singularities, then

n+k 1 o(JE dZ/\ RN
o |

peSing6) P &
)
where, given p such that £(p) = 0 and (U, p)— (U /Gy, p) denotes the projection: & = niE, JE = (ﬁ) and
Zj 1<i, j<n
P(JE)dzi A AdZy | hendieck's point residue and (3 . he coordi o
Resj 5L is Grothendieck’s point residue and (z1, ..., zp) is a germ of the coordinate system on (U, p).

We note that such residue can be calculated using Hilbert's Nullstellensatz and Martinelli’s integral formula. In fact, if
70— Z?:l bij €;, then (see [11])

Res. | PUE) Az A ndzn | 1 (et (D) ) (. (1)
b dz:, ..., Zy" !

g]...sn H?:](al'_l)! 1 2 4n

Moreover, note that if p € Sing(¢) is a non-degenerated singularity of &, then

$(JE)dziA---ndZn | (JE(D))

§1...6 Det(J&(P))
Theorem 1 allows us to calculate the Morita-Futaki invariant for holomorphic vector fields with possible degenerated sin-
gularities. For instance, in a recent work [9], the Futaki-Bott residue for vector fields with degenerated singularities, on the

blowup of Kahler surfaces, was calculated by Li and Shi. Compare the equation (1) with Lemma 3.6 of [9].
Futaki showed in [5] that if X admits a Kdhler-Einstein metric, then f.+1 =0, where C; = Tr denotes the trace, i.e., the
1

Resﬁ

first elementary symmetric polynomial. Taking ¢ = Cq‘“ = Tr™1, we obtain the following corollary of Theorem 1.

Corollary 2. Let & € n(X) with only isolated singularities, then

LResp { Trit(JE)dzi A+ A dZ,
p “E Sn

-1
Jep®) = oy >

p €Sing(&)

This result generalizes the Proposition 1.2 of [4]. It is well known that projective planes are Kdhler-Einstein. However,
the non-existence of Kihler-Einstein metrics on singular weighted projective planes was shown in previous works; see, for
example, [12]. As an application of Theorem 1, we will give, in Section 1, a new proof of this fact.

1. Non-existence of Kihler-Einstein metric on weighted projective planes

Here we consider weighted complex projective planes with only isolated singularities, which we briefly recall.
Let wqg, w1, wy be positive integers two by two co-primes, set w := (wg, w1, Wy) and |w| := wg + wq + wy. Define an
action of C* in C3\ {0} by

C* x C3\ {0} — C3\ {0}
r.(20,21,22) —> (AWW0zg, AWz, A2 7))

and let P2, := C3\ {0}/ ~. The weights are chosen to be pairwise co-primes in order to assure a finite number of singularities
and to give IP’%V the structure of an effective, Abelian, compact orbifold of dimension 2. The singular locus is:
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Sing(P2,) = {[1:0:0],,[0:1: 0]y, [0:0: 110}
We have the canonical projection
n:C3\ {0} — P2,
(20.21.22) —> [29°:2{" : )% 1w
and the natural map
QP — Pr,
[20:21:22) > [z5°:2)" 1 2) 1w
of degree degy, = wowiwy. The map ¢y is good in the sense of [1, section 4.4], which means, among other things,

that V-bundles behave well under pullback. It is shown in [10] that there is a line V-bundle (9]%(1) on IF’%V, unique up to
isomorphism, such that

01 Op2 (1) = Op2 (1)
and, by naturality, cq ((p\’jv@%(l)) =c1(0p2(1)) = go"jvcl((Opgv(l)), from which we obtain the Chern number

1
Wow1w2

n 2
P%1~ (c1(0g, (1)) = / (c10, (1) =
Py
since
2 2
1= [ @) = [ ¢ (10m,10) = eggn) [ (@),
P2 P2 P2,
There exist an Euler type sequence on P},

2
0— C—> @Opev(w,-) — TP2, — 0,
i=0

where

(i) 1+ (Woz0, w121, W222).
(i) (Po. P1., P2) — T (20 Pisk ).

It is well known that the non-singular weighted projective planes admit Kdhler-Einstein metrics. On the other side, sin-
gular weighted projective spaces do not admit Kdhler-Einstein metrics, see [12]. We give a simple proof of the non-existence
of Kdhler-Einstein metrics on singular IP(ZD by using Corollary 2.

Theorem 3. The singular weighted projective space IP’(ZD does not admit any Kidhler-Einstein metric.

Proof. Choose ag,ar,a; € C* such that a;w; # a;w;, for all i # j. Suppose, without loss of generality, that 1 < wo <
wy < wy. Consider the holomorphic vector field on IP%) given by

2
ad
k= Zakzkﬁ e HO(P,. TPZ).
k=0 ¢

where (Zy, Z1, Z3) denotes the homogeneous coordinate system.
The local expression of & over U; = {[Zg: Z1 : Z3] € P?; Z; 0} is given by

2
Wi a
= ay—a;i— | Zy—.
5a|U, kX_O:(k 'Wi> kazk
ket
Therefore, the singular set Sing(&|y,) is reduced to {0} and it is nondegenerate. In general,
Sing(£q) = {[1:0: 0]y, [0:1: 0]y, [0:0: 1], } = Sing(P2).

It follows from Corollary 2 that
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3

-1 1 (Chsi(@wi —aiwy))

f(sa):?)_z 2 l—[ (Wi — ajwg)
i—o Wi fes£i Uk Wi iWk

Thus
¢, a1,a2) = =3*wiwiwi [ (@w;—ajwi)f(&) =
0<i<j<2
(3W?W%W0 - BW?W%WO + 3w3w‘21w0 + 3W%W§W0 - 3wgw%w% +3w(3)w3w% + 6W(2)W‘21W% +

+3wéw%w% BWOWfW2 6w0w1w2) a1azaé+

is a homogeneous polynomial of degree 4 in the variables ag,ai,a. Suppose by contradiction that ¢(ag,a;,a) =0. In
particular, the coefficient of the monomial a%alaz is zero. Thus, we have the following equation

Wo(Wiwa + W3 + Wi + 2wows) = wi(wiwz + wi + wi + 2wowy).
This contradicts 1 < wg < w, < w1. Thus the non-vanishing of ¢(ag, a;, az) implies that f(&;) is not zero. Therefore, IP’?U does
not admit Kihler-Einstein metrics. O

2. Proof of Theorem 1

For the proof, we will use Bott-Chern’s transgression method, see [2] and [3].

Let p1,..., pm be the zeros of £. Let {Ug} be an open cover orbifold of X (¢g:Ug — Ug C X coordinate map). Suppose
that {Ug} is a trivializing neighborhood for the holomorphic tangent orbibundle TX (see [1, section 2.3]) of X and that
we have disjoint neighborhoods coordinates U, with pa € Uy and py ¢ Ug if a # B. On each Ua, take local coordinates

=(Z{,...,Zzy) and the holomorphic frame {az‘{ ,..., a2z} of TX. Thus, we have a local representation

Zé‘ az""

where 5;1 are holomorphic functions in Uy, 1 <i <n. Let h, the Hermitian metric in U, defined by (8/9z¢, 8/82‘]?‘) = 81’

’Bz

Also consider G& C ﬁa and U, = (pa(f](’x) for each «. Take a Hermitian metric hg in any X\ Uy {po} and {po, po} a partition
of unity subordinate to the cover {X\ Uy U_{x , Uy} Define a Hermitian metric h = pohg + )_ pahe in X. Then we have that
for every «, the metric curvature ® =0 in U,,.

Consider the matrix of the metric connection V in the open ge given by 68 = Ok Fﬁ{]dzﬂ)

The local expression of L(£) is given by Ef = (E‘ﬁ) such that

~ﬁ - ZF Ss,

see [2] and [8]. We indicate by AP 9(X) the vector space of complex-valued (p + q)-forms on X of type (p, q). Define
n+k\ -
¢r :=< ! >¢<E,...,E,®,...,®> e A"T(X) r=0,..,n.
r —— S——

n+k—r r

Let w € A_LO(X) in X\Sing(&), with w(¢) = 1. Following Bott’s idea (see [2]), it is sufficient to show that there exists i such
that i(§)(0 ¥ + ¢n) =0 on X\Sing(&). We take ¢ = Z?;& ¥y such that

Vr=wA @) TV AG e AV IHX) r=0,..,n—1.
The following formulas hold (see [2] or [8]):
a) 00 =0, 0E=i(§)®;
b) d¢r =i(E)prv1, r=0,....,n+1;
¢) i(§)dw =0.

Let us prove b): since d ® =0 and 9E = i(£)®, we have

B I n+k—r
5y = <"+ ‘) Z G(E,....i(¢)0O, ... E, 0, ..., 0) =iE)dri1.
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Therefore, a), b) and c) implies that on X\Sing(¢) we get

i(E)@Y +¢n) =0.
Therefore, dyy = 3y = —¢, on X\Sing(&). Thus, by the Satake-Stokes Theorem, we have

n+k i\" i\" .
() [, S s
X X\Uq Be (pa)
i\" . i\" o
= (5) im [ av=(5) > [ @
X\Ua Be (pa) 0Be(pa)

where is B¢ (py) = Be(Pa)/Gp, and Be(Py) is an Euclidean ball centered at py such that B¢ (py) C U,. Since our metric is
Euclidean in B¢ (py), its connection is zero and
IEY

Za
Ej; = 59
J

Now, by our choice of metric, ® and hence ¢, for r > 0, vanishes identically in B¢(py). Then, we have

PO=P =on@w)" $E) = D)o n @) pJEY)
on B¢(py). Therefore,

7= Do n @w)" pIEY). (3)
Consider the map & : C" — C2" given by ®(2) = (Z + £(2), 2). There is a (2n,2n — 1) closed form g, in C2"\{0} (the

Bochner-Martinelli kernel) such that

D* By = (ﬁ) wr@o) (4)

Finally, if we substitute (3) and (4) into (2), and by using Martinelli’s formula ([8, p. 655])

(JEX)dz1 A+ AdZy

f $UE®) Dy = Res,

~ §1...6
9Be (Par)
we obtain
n+k) v 1 P(JEX)dzy A+ AdZy
fo® =(=1) Res 5, Ll
< n ;#GPQ P Sl--'gﬂ
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