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RESUME

Dans cette note, on considére le probléme du pricing pour un certain type d’option
réelle, donnant les droits de changer le mode d’'investissement et d’abandonner le projet
d'investissement avant son échéance. La valeur de cette option peut étre caractérisée par
les solutions des équations différentielles stochastiques rétrogrades (EDSRs) avec deux
types de réflexions aux bords, normale et oblique, dont les coefficients sont a croissance
linéaire et sont lipschitziens en y a gauche ainsi que lipschitziens en z. Dans ce cadre, on
fournit un théoréme d’existence des solutions minimales pour les EDSRs.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The reflected backward stochastic differential equations (RBSDEs for short) were first studied by El Karoui et al. [5] for the
one-dimensional case with lower obstacles, and then by Cvitani¢ and Karatzas [3] with upper and lower obstacles. RBSDEs
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are closely related to the problem of optimal stopping and Dykin games. There is a rich literature on RBSDEs. Readers are
referred to [1,6,14,18], among many others. Multidimensional BSDEs with oblique reflections and Lipschitz coefficients have
been studied by Hamadéne and Jeanblanc [7], Hu and Tang [9,10], and Hamadene and Zhang [8]. They first arise in the
problem of optimal switching, see Carmona and Ludkovski [2] and Ludkovski [12], where they presented some applications
on energy pricing and investment timing models. See also Porchect, Touzi and Warin [15] and references therein.

Problems with both optimal switching and stopping via the RBSDE approach were first studied by Tang and Zhong [17]
and Zhong [19], as far as the author knows. Zhong [19] proved a uniqueness and existence theorem for the solution to
RBSDE (1) by imposing Lipschitz conditions on the coefficients. A uniqueness and existence theorem of RBSDE (1) was

proved by Tang and Zhong [17] under Lipschitz conditions on the coefficients, but with reflections of S{ > Y{ > hy; (t, Y{)

Note that it is required in their paper that h;j; (t, y) < y. Obviously, the lower obstacle in RBSDE (1) is not the case. The
superimposed obstacles here make significant sense from the point of view of economics, as illustrated later, and they also
bring additional complexity to the proof for the continuity of the first part of the solution.

There is a rigorous financial context for optimal switching and stopping problems. To illustrate this, consider an invest-
ment which can be carried out under several modes, for example, under different production scales or techniques. Thus
the investment project receives a different cash flow under each mode. The decision-maker can switch among these modes
according to the product prices. Each switch needs certain nonnegative cost. Of course, the decision-maker is allowed to
stop the project before its maturity when encountering disastrous news. The goal of the investor is to maximize the accu-
mulative yields by adopting optimal switching and stopping decisions. The project is in fact a real option including a switch
option and an abandon option. Techniques of evaluating real options have been introduced to capture the value of flexibility
or optionality embedded in investments. See, for instance, Dixit and Pindyck [4] and Schwartz and Trigeorgis [16] for the
fundamental concepts of this theory.

When there are two or more options in an investment, they are typically not independent. The value of the multiple
option is generally not the sum of each option. For instance, there is a project containing a switch option and an abandon
option. The project can not switch if it has already been abandoned. Furthermore, the value of the abandon option also
depends on which mode the project has been switched to. Pricing such multiple real options is equivalent to solve a
multidimensional RBSDE with normal and oblique reflections. Sometimes the coefficients of RBSDEs are not necessarily
continuous. This paper provides an existence theorem when the coefficient is discontinuous with respect to (w.r.t. for short)
y and Lipschitz w.r.t. z. Compared with [17] and [19], the non-uniqueness of solutions increases the difficulties in checking
the last equality in RBSDE (1) after convergence of the approaching sequence. The solution we obtain is the minimal one
in a strong order, i.e. it is minimal in each dimension. Furthermore, the main result also holds when y', i=1,...m are not
only interacted in the obstacles, but also in the generators.

2. Preliminaries

Let (Bt)tefo,7) be a standard d-dimensional Brownian motion on the probability space (2, Fr,P) and (Ft)icfo,1) the
usual augmented Brownian filtration. T > 0 is a fixed time. Let A :={1,...,m}, m > 1, denote all possible modes and X the
indicator function. The process

N

a(s) = aoXjgp.00) () + Y iXig6,11 (), s € [60, ON]
i=1

is called an admissible switching strategy if

(i) {6i}72, is an increasing sequence of stopping times that represent switching times and, for any i, «; is an
Fo,-measurable random variable valued in A,

(ii) there exists an integer-valued random variable N such that the stopping time Oy € [0, T] and the project will stop
at Oy.

We make the following notations:

AB: the set of admissible strategies starting at time 6y = 0 with initial mode a¢ =1i;

(Xt): the price process of the product;

¥ (t,x,a(t)): the instantaneous yield depending on the price of products;

¢ (t): the cost of stopping the project, for instance, the termination allowance of workers;

k (i, j): the cost when the project switching from state i to state j.

For a given admissible strategy a (-), the dynamic yield follows:

N-1 ON On
Y?z—zl<(aj_1,aj)—¢(9N)X{9N<r}+/1/f(s, Xs,a(S))dS—/Z?st,te[0,9N]-
j=1 ¢ ¢

Define | (a) = Yg. Then we want to find an optimal decision a* € .Ag such that

J (a*) = max J (a).

1
ac Ay



Y. Xu/ C. R. Acad. Sci. Paris, Ser. 1 354 (2016) 1101-1108 1103

Under certain conditions, the above optimal switching and stopping problem is equivalent to the following RBSDE:
vi= [Ty, Xs,iyds+ [ dKki — [T ZLdBs, te[0,T],
Vizmaxis {Y! -k D). Yiz -0,
Jy (i max; {Y{ —kd, j)} V(= ¢ ®))dKi =o0.

Zhong [19] proved that Y} = max J (a). We now consider the following m-dimensional RBSDE with a more general coeffi-

ac Ay
cient defined on [0, T]:
vi=gi4 [Tgl(s, YL, zl)ds + [ dki — [ ZidBs, te[0,T],
Y;‘zmax#i{Y{—k(i,j)],yg'zs;, (1)

Jo (yg' — maxj {Yg' —kd, j)] v sg) dKi = 0.

The function g = (gl, . ,gm) with g' : 2 x [0, T] x R x R —> R is called the generator of RBSDE (1) and & € L2(Fr; R™) is
the terminal datum, where L%(Fr; R™) denotes all the R™-valued Fr-measurable square-integrable random variables. k (-, -)
is a real function defined on A x A. The unknown processes (Yt)i[o,71, (Zt)tejo, 11 and (Ke)tepo, 7 are required to be adapted
w.r.t. the natural Brownian filtration (F;)¢efo,13. Furthermore, (Ktl) is an increasing process for each i € A.

RBSDE (1) evolves in the closure Q of the domain Q :

Q)= {(yl,...,ym)eRm:y">max{yf—k(i,j)]vs{,Vi,jeA,j;ei},
J#i

which is a nonempty time-depending random set. On the boundary 9Q, the ith equation is switched to another one. The so-
lution is reflected along some oblique direction y' = y/ —k (i, j) and normal direction y = S;. We denote by M%_-(O, T; R™Mxd)
the space of all (F;)-progressively measurable R™*%-valued processes such that E[fOT [ |2 dt} < 0o and S}(O, T;R™) the

space of all cadlag' processes in M?2-(0, T;R™) such that E[ sup |¢|*] < co. N%(0, T;R™) is defined as follows:
0<t<T

<t<
NZ(O,T;R™) := {K = (Kl, . 1<’") € S%(0,T;R™) : foreachi e A, K' (0) =0
and t — K (t) is increasing }.

We denote by S2(0, T; R™) (NZ(0, T;R™)) the space of all continuous processes in S%(0, T; R™) (N%(0, T;R™) resp.). We
make the following assumptions throughout the paper.
(H1) For each i € A, Vt, V(y, 2),

g (t,y,2)| <L(1+yl+1z]), L >0.
(H2) For each i € A, Vt, Y(y, ¥, Y(z,Z') such that y > y’, we have

gty -2 ty.2)=-L((y-y)+]z-7|)
and gi (t, -, z) is left-continuous.
(H3) k(i,j)>0,k(i,i)=0,i,je A, i#j; k@G, j)+k(,D>k(,lD, i,j,lGA, i#j,j#L
(H4) For each i € A, t — S is continuous, (S1)" e 82 and S} > maxjy; {S{ — ki, j)}.

Remark 2.1. Condition (H2) implies that g is in fact Lipschitz-continuous w.r.t. z. Taking y’ = y, we obtain that g (¢, y, z) —
g'(t,y.7)) = —L|z— 7|, then interchanging the position of z, z/, we have g’ (t,y,z) — g' (t, y,Z') < L|z — Z/|, therefore g' is
Lipschitz-continuous w.r.t. z. Condition (H2) has been used by Jia [11] to obtain solutions for standard BSDEs.

Remark 2.2. Condition (H3) implies that there is no sequence i, € A\iy, ..., ix € A\ix_1, i1 € A\ix and (yi] s yik), keA,
such that y;, = yi, —k(i1,i2) . ¥i, = ¥is —k(i2.13), ..., Yir_, = ¥i, —k (ik=1.1k) . ¥i = ¥i, — k (ix. i1), which means that it is
not free to make a circle of instantaneous switchings.

1 The French abbreviation for right continuous and left limited, or RCLL for short.
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Remark 2.3. For normal reflections, the condition S{ > max;j {S{ -k, j)} is necessary. If all modes stop at normal ob-

stacles at the same time, they must evolve in the domain of Q. A simple example is that all normal obstacles are the
same.

The following comparison theorem for RBSDEs is a variant of Bahlali et al. [1] Theorem 2.1 and Hamadéne [6] Theo-
rem 1.5.

Lemma 2.1 (Comparison Theorem). Consider the following two (1-dimensional) RBSDEs with lower barrier (S;) i=12:
vi=g 4 [Tgi(s, vl zl)ds+ [T dKi— [T zidB,,  te[0,T],
Yl > Sk, (2)
T o . .
fo (YL =5} )dK{=0.

For each i, assume &' € L*(Fr; R), one of g' : @ x [0, T] x R x RY — R satisfies (a) g' (t,0,0) € M2(0, T;R), (b) for each
i=1,2VY(,y) ¥z 2), g (t.y.2)—g (t.y.Z) | <L(ly — ¥'| + |z — Z/|), L > 0. The barrier (S}) is an adapted cadlag process
such that E[ sup | (S}')Jr 121 < oo.

0<t<T

If&! > £2, P-as, S} > S?, t €0, T], P-as., g satisfies (a), (b) and g'(t, Y}, Z}) = g%(t, Y], Z}) (or g" satisfies (a), (b) and

gl(t, Y2, 7% > g%(t, Y2, Z?)), t € [0, T], P-as., then Y} > Y2, ¥t €0, T], P-ass.

In equation (2), the lower barrier S{ needs not to be continuous w.r.t. t. The existence and uniqueness of solutions to
RBSDE (2) with continuous barriers are given in El Karoui et al. [5] and to the RCLL barrier in Hamadéne [6] and Peng and
Xu [14], among many others. The following lemma comes from Peng [13].

Lemma 2.2 (Monotonic Limit Theorem). Consider the following family of semi-martingales:
t t t
“yt=“y(0)+/”g(s)ds—fd(“1<s)+/"z5st,n=1,2,.... (3)
0 0 0

Here for each n, ("g, “z) € Mﬁf(o, T;R) x M}(O, T:RY), ("Ks) is a continuous and increasing process with E[|"Kr|?] < co. We
assume further that

(i) ("g) and ("z) are bounded in M2-(0, T): E [foT ("gl® + "2l?) dt] =C

(i) ("y¢) converges increasingly to (y;) with E[ sup |y;|?] < oo.

0<t<T

Then lim E [fOT My — yel? dt} =0and (y;) has the form:
n—oo

t t t

ye=yO+ [g@ds- [dkt [ zas. )
0 0 0

where (gs, zq) is the weak limit of ("gs,"zs) in M%(0, T;R) x M2-(0, T;RY) and (K;) is the weak limit of ("Ks) in L*(Fr; R).

(Ks) is an RCLL increasing process. Furthermore, for any p € [0, 2), nli)rgloE [fOT "zy — z;|P dt] =0.

3. Main result

We now show the existence of the minimal solution to RBSDE (1) under assumptions (H1)-(H4). For each i € A, let
Oy}, 0z{, 9K!) denote the solution to the following RBSDE:

Oyi=gi— [TL(140Yi|+9Zi))ds + [ d ki) — T 0zidB,, te[O,T],

iz St (5)
ST (Ovi—si)d(°ki) =o.

Let (31, Z, I}t) denote the solution to the following RBSDE:

Yo=Y |6+ ST L+ 1951+ 1251) ds+ [ deks) — [ 2,dBs,  te[0,T],

5/[22?1:1 |Slt| 6)
foT (Je— X0 |SH) d(ke) = 0.
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Consider the following sequence of m-dimensional RBSDEs parameterized by n=1,2,...,
i=E ] (8 (6 YLV Z) L (Y= DY) 4z - ez ds
7 a (kD) — T nziasy,
"Yi 2 maxiz | VY] k. )iz s

Jy (i = maxis { 0] k. ) v i) d (kD) =0,

te[0,T],

(7)

where & € L?(Fr; R™) evolves in Q and &' > S%. for each i € A. For the sequence {(" Y[)};;, we have the following result.

Lemma 3.1. Under conditions (H1)-(H4), the following properties hold true:

(i) for any n = 1,2, ..., there is a unique solution (”Yt,”Zt,”Kt) € S?(O, T;R™) x/\/lg_-(o, T; R™xdy x N?(O, T;R™) to
RBSDE (7);

(i) foreachi € A, foranyn=1,2,...,0vi <"yi < ®+Dy} < §, vt € [0, T], P-as.

Proof. We first prove the case where n = 1. The obstacle can be rewritten as "Y; > max {““”Y[j -k, j)} v Si. Since

(5) [1) <=

by [5], there is a unique solution (1Y, 1Z;, 1K) € S2(0, T; R™) xMZ2.(0, T; R™¢) x N’2(0, T; R™) to RBSDE (7).
By condition (H1) and Lemma 2.1, we deduce that °Y} < 'Y}, for each i € A. By Lemma 2.1 again, °Y} < j;. Note that
the following triple

(?tl’ 2;7 ktl) = (JA/t, z, lAct)
satisfies the following RBSDE:
DY +ftTL(1 +
Vi>maxjy {9 —kd, j)}, ¥i= 0, |si],
fo (f/g' —maxjy (e — k@, H}vED, |5;|) dRi =0.
It follows

La+ |1l +]'Z

2

E[ sup
0<t<T

(n=1)v/J A\
n— _ ] i
(r?ilx[ Y; k(z,;)] \/St>

m
1=<C ZE[ sup |Y{|*]+E[ sup
i O=t=T 0<t<T

Vil + |zt

)ds+ftTdf<;'_ftT ZldBs, tel0,T],

)= [ (s.ovi 0zt — L (("vi=vi) +|'Zi -0z

zL(1+‘1Y;

)]

+]1z! y+L((1Vi-0v1) + |1z -0

o
)— L1+

+ ’02;'

)

>0,

and Lemma 2.1 that 'Y} < V], t € [0, T], P-as., for each i € A.
RBSDE (7) also has a unique solution when n = 2. By the left-Lipschitz condition (H2), we have

1) o (=) Pt - ) (=)o -

> gf (s, lyi, 12;') _g (s,OY;,Ozg) +L((1Y§ —OY;) + ’12;' _0zi )

> 0.
As a consequence of Lemma 2.1, we have 1Yti < 2Y§, t €[0,T], P-as., for each i € A. Similarly to the case of “n=1", it is
easy to prove thqt ZY} < j/t', Vt e [O, T], P-as.
Assuming %Y} < =Dy} <"yl < §,. by induction and repeating the above procedure, we can obtain the desired re-
sults. O

)

Now we present an existence theorem for RBSDE (1).

Theorem 3.1. Let (H1)-(H4) hold and & € L?>(Fr;R™) take values in Q. Then there is a triple (Y¢, Zt, Kt)rejo,1) €S2(0, T; R™)
xMZ2.(0,T; R™?) x N2(0, T; R™) that solves RBSDE (1). Moreover, the limit (Y;) of {(" Y[)};:i] is the minimal solution, i.e. for
any other solution (y¢, z¢, ke)tefo, 17 to (1), we have, for each i € A, Yl < y{, te[0,T], P-as.
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Proof. By Lemma 3.1, for each i € A, we have supE[ sup |”Y 1’1 < E[ sup | Y |21+ E[ sup |9:|%] < co. Applying Itd’s for-

n 0<t<T 0<t<T

mula to | Y{| and taking expectation, we have

T T
E[Iﬂyl (0)|2] +E /|n2;|2 dt =E|:|§.l|2:| +2E[/nyz(gl (S, (l’l—ny;(ﬂ—])z;) _L((nyé_(n—nyé)
0 0

T
))dt+/”ygd "
0

T
1 4 ) .
<Cut gL [ (1 V2P 4 1 Zi) e+ pELKE )

+zi- vz

0<t<T

where C; =E[|§/]2] + T + (88L2 + ) <E[ sup 19Vi12] 4+ E[ sup |J¢|? ) B > 0. On the other hand,

t t
—"1<;‘:"y;‘—"yg+/ (g (s @ 0yL Oz —L(("yi- " Vyl) + rzi - 0V ZY)) ds—f"z;dss.
0 0
Thus
T
BL"KE ) = Cot (5124 2) B [ (1 V2P + 121 do,
0

where C; =8 (E[&%12 + [°Y] 2 + |J0/?) + 1612 ( sup |°Y}|%]+E[ sup |Jt] ]> Take 8 = m. Consequently, we have:

0<t<T 0<t<T

r T T
) 1 G

el [ 1"ziPdt| <~ / (" 1 zi zi )dt Cip—2
/| i | < gL (1"VZP +12P )i+t s
L0 0

Hence

[/ 1 . C

E| | "Zi2dt | <= /(” D712 4 Ci+—2 ),
/| e | < cEL[ "Dz do+ (1+16(8L2+2))
L0 .

which yields that supE[f; |"Z{|>dt] < oo and supE[|"K’[?] < co.
n n

By the Monotonic Limit Theorem (Lemma 2.2), for each i € A, there is a triple (Y{,Z{,K}tejo.1] € S%(0.T:R)
2 . pd 2 . : T nyi_ yip2 _ i .
x M2(0, T; R) x N'2(0, T; R) such that nlggoE[fO myi - vj| dt] =0 and (Y!) has the form:

T T T
=gi+/g§ds+/d1<;'—/z;d35,
t t t

where (gf, z!) is the weak limit of ("gl,"Z{) in MZ(0,T;R) x M%(0,T;R?%) and (K!) is the weak limit of ("K!)
in L2(Fr:R). (Ks) is an RCLL increasing process. Furthermore, for any p € [0,2), nllf‘goE[foT |”Z§—Z{|P dt] =0 and
gg =gl (s, Y;, Z;) by the left-continuity of g’ (s, -, z) and Lipschitz-continuity of g (s, y, ).

Passing to the limit on both sides of "Y > max ;i {m‘”Y[j —kd, j)} and "Y} > Si, we obtain Y} > max {Y[J —kd, j)}
and Y} > Si. Thus (Y}, Z, K}) satisfies

vi=g& 4 [Tgi(s, vl zl)ds+ [T dKi— [T zidB;, te[0,T],
Viz maxi {v! =k, ). vizsi.
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Let (Y¢, Z¢, K¢) be the limit of sequence ("Y;,"Z;,"K;), which satisfies

ng, — g +ftT <gi (S’ =Dy, (n—l)Z;‘) _1L ((ny;' _ (n—l){,si) +
+ /7 ("kE) — [T nZidss,

"Yl > Max;i { -k, j)} Vv Slr-

I ( —max]#ll L—kd, ])}\/S) (f(f):O,

where we set (°Y}, 9z, Ok}) := (°Y},9Z{, °K}). Note that equations (8) are a collection of 1-dimensional BSDEs with normal

reflections. The convergence of the sequence (*Y;,"Z;,"K;) to (Y;, Z, K;) can be obtained similarly by Zheng and Zhou [18]
under conditions (H1)-(H4) and (Y;, Z;, K;) is the solution to the following RBSDE:

nZ; _ (n—l)Zi

e

te[0,T],

(8)

Viegl+ [T gl (s, Vi 20) as+ [ aki - [ ZidBs, t 0, T],
Vi = maxj { Y] = k. D) v si, 9)
Iy ( {— — MaXjz {Ytj_ -k, j)} Y% Sf) dki =
Since "Dy} < Yi, we have max {(” 1)YJ —kd, ])} v Si< max]#{ —k(, ])} v Si. By Lemma 2.1, we have "Y} < V]
and passing to the limit as n — oo, we obtain that Yt' < Yt', t€[0,T], P-as., for each i € A. On the other hand, we define
y Y if dKi#£0,
£ ] max; {Ytj —kd, j)} v St otherwise.

Then (Y, Zi, K}) satisfies

vi=gi 4 [Tgi(s, vl zl)ds+ [T dKi— [T zidB;, tel0,T],
Yi>Li
ST(YE —1i)dKi=0

Observing that Li > MaXxjy; {Yj —k(, j)} \Y Si, by Lemma 2.1, we have Yg > ")7}' and passing to the limit, we get that
Yi >Vl t€[0,T], P-as., for each i € A. Consequently Y{ = Y}, which implies further that Z{ = Z! and K} = K/.

We now show that t Y’ is continuous, and consequently t — K| is continuous. Let AY{ (AK]) denote the jump value
of Yi (Ki resp.) at time t. We consider the continuity along a path (w;) excluding a trivial set. For some ij € A, if Yti1 is not
continuous at t, then AYt = —AK;1 < 0, which implies that

Yt —max[YJ —k(ll,])}\/Sll
J#i

Let i € A/i; be the optimal index. Since AY;‘ < 0, we have
(Y;'E — ki, i2)> vSii=yh syl > max {ytf — k(i1 j)} v s> (Y{z — ki, i2)> v s,
From the above (strict) inequality, it is obviously impossible that Sil > (Y[ii —k (i, i2)>. Thus
Yr = rjr;e:i({ _ —k(i1, 1)} (YZE — k(i1,i2)) > (Y;2 —k(iy, iz)).
Hence AYti2 < 0. Repeating the above procedure, we obtain that for some i, € A/iy_1, AY;" < 0. Since i, only takes values

1,...,m, without loss of generality, we can assume that i,,1 = i1, for some n > 1. Then we derive a loop:

Y= YR k(i) Y =Y — K (it in), YT =Y — K (in i),
which contradicts with Remark 2.2. Hence for all i € A, t + Y/ is continuous. ) _ )

~ For any solution (y¢, zt, ke)tejo, 1] of (1), applying the comparison theorem repeatedly, we have "Y{ < y; and hence Y{ <
yi, t €[0,T], P-as., for each i € A. Thus the solution (Y;)tefo,77 constructed above is the minimal solution. The proof is
complete. O
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Remark 3.1. If condition (H1) is replaced by
(H1’) There exist a constant L > 0 and a nonnegative process (h;) € MZJ_-(O, T;R") such that for each i € A, Vt, V(y, 2),

g €. y.2) | <he+ LIyl +zD),
then Theorem 3.1 still holds.

Remark 3.2. k (i, j) can depend on t, i.e. if k (i, j) is replaced by k; (i, j) with t — k; (i, j) being continuous, then the proof
is not altered.

Remark 3.3. Results in this paper can be also generalized to the case that Yi,i=1,...m are interacted in the generators, if
we assume the following condition:

(H2') For each i € A, VYt €[0,T], Vy € R", g; does not depend on (zj)#i, gi is non-decreasing in (y;)
Lipschitz w.r.t. y;, and left-continuous w.r.t. y, Lipschitz w.r.t. z;.

i and left-
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