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We consider the 3 × 3 determinant polynomial and we describe the limit points of the set 
of all polynomials obtained from the determinant polynomial by linear change of variables. 
This answers a question of Joseph M. Landsberg.
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r é s u m é

Nous étudions le polynôme donné par le déterminant 3 × 3 et décrivons l’adhérence de 
l’ensemble des polynômes obtenus par changements de variables linéaires à partir de ce 
déterminant, ce qui répond à une question de Joseph M. Lansberg.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

0. Introduction

Mulmuley and Sohoni [11] propose, in their geometric complexity theory, to study the geometry of the orbit closure of 
some polynomials under linear change of variables, and especially, the determinant polynomial. Yet, very few explicit results 
describing the geometry are known in low dimension. The purpose of this work is to describe the boundary of the orbit of 
the 3 × 3 determinant, that is, the set of limit points of the orbit that are not in the orbit.

Let det3 be the polynomial

det3
def= det

⎛
⎝x1 x2 x3

x4 x5 x6
x7 x8 x9

⎞
⎠ ∈C[x1, . . . , x9],

which we consider as a homogeneous form of degree 3 on the space C
3×3 of 3 × 3 matrices, denoted W . Let C[W ]3

denote the 165-dimensional space of all homogeneous forms of degree 3 on W . The group GL(W ) acts on C[W ]3 by right 
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composition. For a nonzero P ∈C[W ]3, let �(P ) denote the (projective) orbit of P , namely the set of all [P ◦a] ∈ P(C[W ]3), 
with a ∈ GL(W ). The boundary of the orbit of P , denoted ∂�(P ), is �(P ) \ �(P ), where �(P ), denoted also �(P ), is the 
Zariski closure of the orbit in P(C[W ]3).

Our main result is a description of ∂�(det3) that answers a question of Landsberg [10, Problem 5.4]: the two known 
components are the only ones. In §1, we explain the construction of the two components. Our contribution lies in §2 where 
we show that there is no other component.

Theorem 1. The boundary ∂�(det3) has exactly two irreducible components:

• The orbit closure of the determinant of the generic traceless matrix, namely

P1
def= det

⎛
⎝x1 x2 x3

x4 x5 x6
x7 x8 −x1 − x5

⎞
⎠ ;

• The orbit closure of the universal homogeneous polynomial of degree two in three variables, namely

P2
def= x4 · x2

1 + x5 · x2
2 + x6 · x2

3 + x7 · x1x2 + x8 · x2x3 + x9 · x1x3.

The two components are different in nature: the first one is the orbit closure of a polynomial in only eight variables 
and is included in the orbit of [det3] under the action of End W ; the second is more subtle and is not included in the 
End W -orbit of [det3]. Both components have analogues in higher dimension and some results are known about them [9].

1. Construction of two components of the boundary

For P ∈C[W ]3 \ {0}, let H(P ) ⊂ GL(W ) denote its stabilizer, that is

H(P )
def= {a ∈ GL(W ) | P ◦ a = P } .

The stabilizer H(det3) is generated by the transposition map A �→ AT and the maps A �→ U AV , with U and V in SL(C3) [3].

Lemma 2. For any P ∈C[W ]3 , dim�(P ) = 80 − dim H(P ). In particular, dim�(det3) = 64 and dim �(P1) = dim�(P2) = 63.

Proof. An easy application of the fiber dimension theorem to the map a ∈ GL(W ) �→ P ◦a ∈C[W ]3 gives that the dimension 
of the orbit of P in C[W ]3 is 81 − dim H(P ). Since the projective orbit in P(C[W ]3) has one dimension less, the first claim 
follows.

The stabilizer H(det3) has dimension 16, hence dim�(det3) = 64. To compute the dimension of H(Pi), 1 � i � 2, one 
can compute the dimension of its Lie algebra defined as

T1 H(Pi) =
{

a ∈ End(W )

∣∣∣ P (x + ta(x)) = P (x) + O (t2)
}

.

It amounts to computing the nullspace of a 165 × 81 matrix, which is easy using a computer. �
Lemma 3. The boundary ∂�(det3) is pure of dimension 63.

Proof. Let �′(det3) be the affine orbit of det3 in C[W ]3 under the action of GL(W ). It is isomorphic to GL(W )/H(det3), 
which is an affine variety because H(det3) is reductive [12, §4.2]. Therefore �′(det3) is an affine open subset of its closure, 
it follows that the complement of �′(det3) in its closure is pure of codimension 1 [7, Corollaire 21.12.7], and the same holds 
true after projectivization. �

Let ϕ be the rational map

ϕ : [a] ∈ P(End W ) ��� [det3 ◦ a] ∈ �(det3). (1)

Let also Z be the irreducible hypersurface of P(End W )

Z
def= {[a] ∈ P(End W ) | det(a) = 0} .

Note the difference between det3 ◦ a, which is a regular function of W , and det(a), which is a scalar. The indeterminacy 
locus of ϕ is a strict subset of Z . By definition, �(det3) = ϕ(P(End W ) \ Z). Let ϕ(Z) denote the image of the set of the 
points of Z where ϕ is defined.

Lemma 4. The closure ϕ(Z) is an irreducible component of ∂�(det3). Furthermore ϕ(Z) = �(P1).
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Proof. The closure ϕ(Z) is clearly contained in �(det3) since GL(W ) is dense in End(W ). The image ϕ(Z) does not inter-
sect �(det3): to show this, let us consider the function ν :C[W ]3 → N, which associates with P the dimension of the linear 
subspace of C[W ]2 spanned by the partial derivatives ∂ P

∂x1
, . . . , ∂ P

∂x9
. The function ν is invariant under the action of GL(W ). 

Because every form in ϕ(Z) can be written as a polynomial in at most eight linear forms, ν(P ) � 8 for all P ∈ ϕ(Z). On the 
other hand, ν(det3) = 9 and so ν(P ) = 9 for any P ∈ �(det3). This shows that ϕ(Z) ∩ �(det3) = ∅. Thus ϕ(Z) is contained 
in the boundary ∂�(det3). Moreover, ϕ(Z) is irreducible because Z is.

Clearly P1 ∈ ϕ(Z) and by Lemma 2, �(P1) has dimension 63. Since

�(P1) ⊂ ϕ(Z) ⊂ ∂�(det3),

they all three have dimension 63 and �(P1) = ϕ(Z) because the latter is irreducible. This gives a component 
of ∂�(det3). �
Lemma 5. The orbit closure �(P2) is an irreducible component of ∂�(det3) and is distinct from �(P1).

Proof. We first prove that [P2] ∈ ∂�(det3). Let

A =
⎛
⎝ 0 x1 −x2

−x1 0 x3
x2 −x3 0.

⎞
⎠ and S =

⎛
⎝2x6 x8 x9

x8 2x5 x7
x9 x7 2x4

⎞
⎠ .

By Jacobi’s formula, det(A + t S) = det A + Tr(adj(A)S)t + o(t), where adj(A) is the adjugate matrix of A, which equals uTu
with u = (x3, x2, x1). Since det(A) = 0, the projective class of the polynomial det(A + t S) tends to [Tr(adj(A)S)] when t → 0, 
and by construction, this limit is a point in �(det3). Besides

Tr(adj(A)S) = uSuT = 2P2,

thus [P2] ∈ �(det3). Yet [P2] is not in �(det3), because its orbit has dimension 63, by Lemma 2, whereas the orbit of every 
point of �(det3) is �(det3) itself. Therefore [P2] is in the boundary ∂�(det3). Since �(P2) has dimension 63, this gives a 
component of ∂�(det3). It remains to show that [P2] is not in �(P1), and indeed ν(P2) = 9 whereas ν(P1) = 8, where ν
is the function introduced in the proof of Lemma 4. �

Note that Lemma 5 generalizes to higher dimensions: the limit of the determinant on the space of skew-symmetric 
matrices always leads to a component of the boundary of the orbit of detn , when n � 3 is odd, as shown by Landsberg, 
Manivel, and Ressayre [9, Prop. 3.5.1].

2. There are only two components

Let E denote End(W ) and recall the rational map ϕ : P(E) ��� �(det3) defined in (1). Let B ⊂ P(E) denote the indeter-
minacy locus of ϕ , that is, the set of all [a] ∈ P(E) whose image a(W ) ⊂ W contains only singular matrices. The locus B
is a subset of Z because every a not in Z is surjective and thus has invertible matrices in its image. One way to describe 
the orbit closure �(det3) is to give a resolution of the indeterminacies of the rational map ϕ , that is a, projective birational 
morphism ρ : X → P(E) such that ϕ ◦ ρ is a regular map. In this case, the regular map ϕ ◦ ρ is projective and therefore its 
image is closed and equals �(det3). As we will see, it is actually enough to resolve the indeterminacies of ϕ on some open 
subset of P(E).

Let H = H(det3) ⊂ GL(W ) denote the stabilizer of det3 described above. The group H acts on P(E) by left multiplication 
and the rational map ϕ is H-invariant: for a ∈ End(W ) and h ∈ H , ϕ([ha]) = [det3 ◦ h ◦ a] = ϕ([a]). Let P(E)ss be the 
open subset of all semistable points in P(E) under the action of H , that is the set of all [a] ∈ P(E) such that there exists 
a non-constant homogeneous H-invariant regular function f ∈ C[E]H on E such that f (a) 	= 0. Equivalently [12, §4.6], 
the complement of P(E)ss is the set of all [a] ∈ P(E) such that 0 is in the closure of Ha in E . Let X be the closure 
in P(E)ss × �(det3) of the graph of the rational map ϕ , namely

X
def= Closure

{
([a], [P ]) ∈ P(E)ss × �(det3)

∣∣ [P ] = [det3 ◦ a]} .

Let ρ : X → P(E)ss denote the first projection. By construction, it is the blowup of P(E)ss along the ideal sheaf defined by 
the condition det3 ◦ a = 0, whose support is the indeterminacy locus B ∩ P(E)ss. (The condition det3 ◦ a = 0 expands into 
165 homogeneous polynomials of degree 3 in the 81 coordinates of a.)

The variety X also carries a regular map ψ : X → �(det3) given by the second projection. By construction, it resolves the 
indeterminacies of ϕ on P(E)ss: the rational map ϕ ◦ ρ : X → �(det3) extends to a regular map which equals ψ .

Lemma 6. ψ(X) = �(det3).
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Proof. The image of ϕ , which is �(det3), is included in ψ(X) and ψ(X) ⊂ �(det3). Thus, it is enough to show that ψ(X)

is closed.
Let T be the projective variety P(E) ×P(C[W ]3). The group H acts on T by h · (a, P ) = (h · a, P ). Let T ss the open subset 

of semi-stable points for this action; clearly T ss = P(E)ss × P(C[W ]3). The GIT quotient T ss/ /H is a projective variety and 
the canonical morphism π : T ss → T ss/ /H maps H-invariant closed subsets to closed subsets (e.g., [12, §4.6]); in particular, 
π(X) is closed. Moreover, the map ψ is H-invariant, so it factors as ψ ′ ◦ π for some regular map ψ ′ : T ss/ /H → P(C[W ]3). 
The image π(X) is closed in the projective variety T ss/ /H , thus ψ ′(π(X)) is closed. This proves the claim, since the latter is 
just ψ(X). �

The construction of X follows a general method to resolve the indeterminacies of a rational map, and as such, it gives 
little information. In fact X is a blowup of P(E)ss along a smooth variety.

First of all, the indeterminacy locus B is precisely known, thanks to the classification of the maximal linear subspaces 
of E containing only singular matrices [1,6,4]. Let H0 denote the connected component of 1 in H — due to the transposition 
map, H has two components. For every [a] ∈ B , there is a h ∈ H0 such that (ha)(W ) is a subset of one of the following 
spaces of singular matrices:

⎛
⎝∗ ∗ ∗

∗ ∗ ∗
0 0 0

⎞
⎠ ,

⎛
⎝∗ ∗ 0

∗ ∗ 0
∗ ∗ 0

⎞
⎠ ,

⎛
⎝∗ ∗ ∗

∗ 0 0
∗ 0 0

⎞
⎠ and

⎛
⎝ 0 α −β

−α 0 γ
β −γ 0

⎞
⎠ , α,β,γ ∈C.

The first three are called compression spaces, and the fourth is the space of 3 × 3 skew-symmetric matrices, denoted �3. 
They give four components of B . Let B1, B2, B3 and Bskew denote them, respectively. For example

Bskew =
{
[a] ∈ P(E)

∣∣∣ ∃U , V ∈ SL(C3) : ∀p ∈ W : Ua(p)V ∈ �3

}
.

Lemma 7. We have B ∩ P(E)ss = Bskew ∩ P(E)ss 	= ∅.

Proof. It is easy to check that the three matrices

(
t 0 0
0 t 0
0 0 t−2

)( ∗ ∗ ∗
∗ ∗ ∗
0 0 0

)
,

( ∗ ∗ 0
∗ ∗ 0
∗ ∗ 0

)(
t 0 0
0 t 0
0 0 t−2

)
,

(
t2 0 0
0 t−1 0
0 0 t−1

)( ∗ ∗ ∗
∗ 0 0
∗ 0 0

)(
t2 0 0
0 t−1 0
0 0 t−1

)

all tend to 0 when t → 0, for any constants ∗. This proves that B1, B2 and B3 do not meet P(E)ss.
To show that B ∩ P(E)ss is not empty, pick any three points p1, p2 and p3 in W . The function

τ : a ∈ E �→ Tr
(
a(p1) · adj(a(p2)) · a(p3) · adj(a(p1 + p2 + p3))

) ∈C,

is H0-invariant: if h ∈ H is the map A �→ U AV , for some U , V ∈ SL(C3), then

τ (ha) = Tr
(
Ua(p1)V · V −1 adj(a(p2))U−1 · Ua(p3)V · V −1 adj(a(p1 + p2 + p3))U−1),

which equals τ (a). It follows that the function a �→ τ (a) + τ (T a) is H-invariant, where T : A �→ AT is the transposition map. 
Consider the function b : W → W defined by

b =
(

0 x1 −x2
−x1 0 x3
x2 −x3 0

)
, (2)

where the xi ’s are linear forms W → C. This gives a point [b] in Bskew. If the points pi ’s are generic, then a simple 
computation shows that τ (b) + τ (T b) 	= 0. �
Lemma 8. The subvariety Bskew ∩ P(E)ss is smooth and ρ : X → P(E)ss is the blowup of P(E)ss along it.

Proof. Let I be the ideal sheaf generated by the condition det3 ◦a = 0. Its support is clearly B ∩P(E)ss, which is also Bskew ∩
P(E)ss, by Lemma 7. By definition, X is the blowup of P(E)ss along I . By contrast, the blowup of P(E)ss along Bskew ∩P(E)ss

is defined to be the blowup of the reduced ideal sheaf whose support is Bskew ∩ P(E)ss. Thus, it is enough to check that I
is smooth (which implies reduced). Let [b] ∈ Bskew be the point defined in (2).

We first observe that Bskew ∩ P(E)ss = [H · b · GL(W )], the orbit of [b] under the left action of H and the right action 
of GL(W ) by multiplication. The right-to-left inclusion is clear because the left-hand side is invariant under both actions 
and contains [b]. Conversely, let [a] ∈ Bskew ∩ P(E)ss. By definition of Bskew, we may assume that the image of a is included 
in �3, up to replacing a by another point in its orbit Ha. If the image of a had dimension 2 or less, then a would also lie 
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in some of the Bi ’s, 1 � i � 3 [2].1 Since [a] ∈ P(E)ss, Lemma 7 ensures that a is not in one of the Bi ’s, thus a has rank 3
and its image is �3. Then there is a g ∈ GL(W ) such that a = bg , and thus a ∈ H · b · GL(W ).

Regarding the smoothness, since I is invariant under the action of H and GL(W ) and since Bskew ∩ P(E)ss is an orbit 
under the same action, it is enough to check that I is smooth at one point, say [b]. By the Jacobian criterion [5, §V.3], it is 
enough to check that the dimension of the tangent space

T =
{

c ∈ T [b]P(E)

∣∣∣ ∀p ∈ W ,det(b(p) + tc(p)) = O (t2)
}

,

equals the dimension of Bskew at [b]. The dimension of T is easily computed using a computer: it is equal to 34. To compute 
the dimension of Bskew, we use again the fact that it is an orbit under a group action: it is smooth and the tangent space 
at [b] equals

T [b]Bskew = {mb + bc | m ∈ T1 H, c ∈ T1 GL(W )} ⊂ T [b]P(E)

= {p ∈ W �→ Mb(p) + b(p)N + b(c(p)) ∈ W | M, N ∈ W , c ∈ End(W )} .

Using a computer, we find that this space has also dimension 34, which terminates the proof. �
Proof of Theorem 1. Let D be the inverse image of the hypersurface Z by the blowup ρ . D is a hypersurface with exactly 
two irreducible components because P(E) is smooth and because the center of the blowup ρ is also smooth and included 
in Z [8, Lecture 7]. Respectively, the two components are the exceptional divisor ρ−1(Bskew) and the strict transform of Z , 
i.e. the closure of ρ−1(Z \ Bskew).

On the other hand ψ(X \ D) = ϕ(GL(W )) = �(det3), thus ∂�(det3) ⊂ ψ(D), by Lemma 6. This proves that ∂�(det3) has 
at most two components: The components found in §1 are the only ones.2 This finishes the proof of Theorem 1. �
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