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In this Note, we present geodesic versions of the Borell–Brascamp–Lieb, Brunn–Minkowski 
and entropy inequalities on the Heisenberg group Hn . Our arguments use the Riemannian 
approximation of Hn combined with optimal mass-transportation techniques.
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r é s u m é

Dans cette Note, nous présentons des versions géodésiques des inégalités de Borell–
Brascamp–Lieb et de Brunn–Minkowski, et des inégalités d’entropie sur le groupe de 
Heisenberg Hn . Nos démonstrations s’appuient sur l’approximation riemannienne de Hn

et sur des techniques de transport optimal.
© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Definitions and notations

The Heisenberg group Hn can be identified with its Lie algebra R2n+1 � C
n × R via canonical exponential coordinates, 

n ∈ N. We denote a point in Hn by x = (ξ, η, t) = (ζ, t), where ξ = (ξ1, . . . , ξn) ∈ R
n , η = (η1, . . . , ηn) ∈ R

n , t ∈ R, and we 
identify the pair (ξ, η) by ζ ∈C

n with coordinates ζ j = ξ j + i η j for all j = 1, . . . , n. The correspondence with its Lie algebra 
through the exponential coordinates induces the group law

(ζ, t) · (ζ ′, t′) = (
ζ + ζ ′, t + t′ + 2 Im〈ζ, ζ ′〉) , ∀(ζ, t), (ζ ′, t′) ∈C

n ×R,

where Im denotes the imaginary part of a complex number and 〈ζ, ζ ′〉 =
n∑

j=1
ζ jζ

′
j is the Hermitian inner product. In these 

coordinates the neutral element of Hn is 0Hn = (0Cn , 0) and the inverse element of (ζ, t) is (−ζ, −t). Note that x = (ξ, η, t) =
(ζ, t) form a real coordinate system for Hn and the system of vector fields given as differential operators
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X j = ∂ξ j + 2η j∂t, Y j = ∂η j − 2ξ j∂t, ∀ j = 1, . . .n, T = ∂t,

form a basis for the left invariant vector fields of Hn . The vectors X j, Y j, j ∈ {1, ..., n} form the basis of the horizontal 
bundle; let dCC be the associated Carnot–Carathéodory metric.

For every s ∈ (0, 1) and x, y ∈H
n , let

Zs(x, y) = {z ∈H
n : dCC(x, z) = s dCC(x, y), dCC(z, y) = (1 − s)dCC(x, y)}

be the set of s-intermediate points between x and y. Note that (Hn, dCC) is a geodesic metric space, thus Zs(x, y) �= ∅ for 
every x, y ∈H

n . For the nonempty sets A, B ⊂ H
n , let Zs(A, B) = ⋃

(x,y)∈A×B Zs(x, y).
For s ∈ (0, 1), we introduce the Heisenberg distortion coefficients τn

s : [0, 2π] → [0, ∞] defined by

τn
s (θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s
1

2n+1

(
sin θ s

2

sin θ
2

) 2n−1
2n+1

(
sin θ s

2 − θ s
2 cos θ s

2

sin θ
2 − θ

2 cos θ
2

) 1
2n+1

if θ ∈ (0,2π);
s

2n+3
2n+1 if θ = 0;

+∞ if θ = 2π.

(1)

The function θ 
→ τn
s (θ) is increasing on [0, 2π] and τn

s (θ) → +∞ as θ → 2π; in particular,

τn
s (θ) ≥ τn

s (0) = s
2n+3
2n+1 for every θ ∈ [0,2π], s ∈ (0,1). (2)

We also introduce the notation

τ̃n
s = s−1τn

s .

If x, y ∈H
n , x �= y we let θ(x, y) = |θ | with the property that (χ, θ) ∈ 	−1

1 (x−1 · y), where

	1(χ, θ) =
{ (

i e−iθ−1
θ

χ,2|χ |2 θ−sin(θ)

θ2

)
if θ �= 0;

(χ,0) if θ = 0,
(3)

is the so-called end-point map of the Heisenberg geodesic starting from 0Hn with parameters (χ, θ), see Ambrosio and 
Rigot [1]. Observe that θ(x, y) is well defined and θ(x, y) = θ(y, x). If x = y we set θ(x, y) = 0.

For every s ∈ (0, 1), p ∈R ∪ {±∞} and a, b ≥ 0, we consider the p-mean

M p
s (a,b) =

{ (
(1 − s)ap + sbp

)1/p if ab �= 0;
0 if ab = 0,

with M+∞
s (a, b) = max{a, b}, M−∞

s (a, b) = min{a, b} and M0
s (a, b) = a1−sbs .

2. Interpolation inequalities on Hn

2.1. Geodesic Borell–Brascamp–Lieb inequalities on Hn

Theorem 2.1 (Weighted Borell–Brascamp–Lieb inequality on Hn). Fix s ∈ (0, 1) and p ≥ − 1
2n+1 . Let f , g, h : Hn → [0, ∞) be 

Lebesgue integrable functions satisfying

h(z) ≥ M p
s

(
f (x)

τ̃n
1−s(θ(y, x))2n+1

,
g(y)

τ̃n
s (θ(x, y))2n+1

)
∀(x, y) ∈H

n ×H
n, z ∈ Zs(x, y).

Then the following inequality holds:

∫
Hn

h ≥ M
p

1+(2n+1)p
s

⎛
⎝∫

Hn

f ,

∫
Hn

g

⎞
⎠ .

By standard normalization and approximation arguments, it is enough to prove Theorem 2.1 for upper semicontinuous 
functions f and g with compact support such that 

∫
f = ∫

g = 1, and lower semicontinuous functions h. We start our 
proof by a Riemannian approximation of the sub-Riemannian structure of Hn in the spirit of Ambrosio and Rigot [1]. Next, 
we use optimal mass transportation for compactly supported measures with densities f and g on both the approximat-
ing Riemannian manifolds and Heisenberg group Hn . Our main ingredient is the famous interpolant Jacobi inequality on 
Riemannian manifolds due Cordero–Erausquin, McCann, and Schmuckenschläger [3]. The last step is a careful limiting pro-
cess that provides the result. Here, the limiting argument is based on an explicit computation of the volume distortion on 
the approximating Riemannian manifolds by using Jacobians of exponential maps and their limiting comparison with the 
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Heisenberg distortion coefficient τn
s , see (1). The method of calculation of the volume distortion using Jacobians of expo-

nential maps is inspired by the work of Juillet [6]. Further ideas/results from McCann [8] and Villani [11,12] are deeply 
explored in the aforementioned arguments.

A consequence of the above result is the following.

Corollary 2.2 (Non-weighted Borell–Brascamp–Lieb inequality on Hn). Fix s ∈ (0, 1) and p ≥ − 1
2n+3 . Let f , g, h : Hn → [0, ∞) be 

Lebesgue integrable functions satisfying

h(z) ≥ M p
s ( f (x), g(y)) for all (x, y) ∈ H

n ×H
n, z ∈ Zs(x, y).

Then the following inequality holds:

∫
Hn

h ≥ 1

4
M

p
1+(2n+3)p
s

⎛
⎝∫

Hn

f ,

∫
Hn

g

⎞
⎠ . (4)

The proof follows by Theorem 2.1, using the monotonicity estimate (2) and basic properties of the p-mean function. We 
notice that the constant 1

4 is sharp in (4).

2.2. Geodesic Brunn–Minkowski inequalities on Hn

For two measurable sets A, B ⊂ H
n , we introduce the quantity


A,B = sup
A0,B0

inf
(x,y)∈A0×B0

{
|θ | ∈ [0,2π] : (χ, θ) ∈ 	−1

1 (x−1 · y)
}

,

where A0 and B0 are full measure subsets of A and B , respectively. The following Brunn–Minkowski inequality on Hn is a 
consequence of Theorem 2.1.

Theorem 2.3 (Weighted Brunn–Minkowski inequality on Hn). Let s ∈ (0, 1) and A and B be two measurable sets of Hn. Then the 
following geodesic Brunn–Minkowski inequality holds:

L2n+1(Zs(A, B))
1

2n+1 ≥ τn
1−s(
A,B)L2n+1(A)

1
2n+1 + τn

s (
A,B)L2n+1(B)
1

2n+1 . (5)

Here we consider the outer Lebesgue measure whenever Zs(A, B) is not measurable, and the convention +∞ · 0 = 0 for 
the right-hand side of (5).

The value 
A,B is a typical Heisenberg quantity showing the deviation of an essentially horizontal position of the sets A
and B . Indeed, if the sets A and B are essentially horizontal, one has 
A,B = 0. However, when the sets are not essentially 
horizontal, the value 
A,B can be close to 2π, thus τn

1−s(
A,B) and τn
s (
A,B) can be arbitrarily large. Such a situation 

occurs, e.g., when Ar and Br are CC-balls in H1 with the same small radius r > 0 and centers situated on the t-axis far 
from each other. The geodesics joining the elements of Ar and Br largely deviate from the t-axis and Zs(Ar, Br) becomes 
a large set w.r.t. Ar and Br . In this situation we note that τ 1

s (
Ar ,Br ) ≥ Cr−1/3 as r → 0 for some C > 0, compensating the 
volume growth of Zs(Ar, Br) on the left-hand side of (5).

Corollary 2.4 (Non-weighted Brunn–Minkowski inequalities on Hn). Let s ∈ (0, 1) and A and B be two measurable sets of Hn. Then 
the following inequalities hold:

(i) L2n+1(Zs(A, B))
1

2n+1 ≥ (1 − s)
2n+3
2n+1 L2n+1(A)

1
2n+1 + s

2n+3
2n+1 L2n+1(B)

1
2n+1 ;

(ii) L2n+1(Zs(A, B))
1

2n+3 ≥
(

1

4

) 1
2n+3 (

(1 − s)L2n+1(A)
1

2n+3 + sL2n+1(B)
1

2n+3

)
.

By shrinking one of the above sets to a point, Corollary 2.4 (i) directly implies the measure contraction property
MCP(0, 2n + 3) on Hn proved by Juillet [6, Theorem 2.3], i.e., for every s ∈ [0, 1], x ∈H

n and measurable set E ⊂ H
n ,

L2n+1(Zs(x, E)) ≥ s2n+3L2n+1(E).
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2.3. Entropy inequality on Hn

By the same technique used in the proof of Theorem 2.1, we obtain an intrinsic entropy convexity on the metric measure 
space (Hn, dCC, L2n+1). This is seen as a natural sub-Riemannian counterpart of the famous curvature-dimension property 
CD(K , N) introduced by Lott and Villani [7] and Sturm [9,10]. We recall that the usual CD(K , N) property does not hold on 
(Hn, dCC, L2n+1) for any K , N ∈R, see Juillet [6].

Let us recall the Rényi entropy functional on (Hn, dCC, L2n+1), i.e., Ent2n+1(·|L2n+1) :P2(H
n, dCC) →R given by

Ent2n+1(μ|L2n+1) = −
∫
Hn

ρ1− 1
2n+1 dL2n+1,

where P2(H
n, dCC) is the usual Wasserstein space of probability measures and ρ is the density function of μ w.r.t. L2n+1.

Let μ0 and μ1 be two compactly supported, absolutely continuous probability measures w.r.t. L2n+1 on H
n . According 

to Ambrosio and Rigot [1], there exists a unique optimal transport map ψ : Hn → H
n transporting μ0 to μ1 associated with 

the cost function d2
CC
2 . Let s ∈ (0, 1). If ψs is the interpolant optimal transport map associated with ψ , the push-forward 

measure μs = (ψs)#μ0 is also absolutely continuous w.r.t. L2n+1, see Figalli and Juillet [4]. Due to Figalli and Rifford [5, 
Theorem 3.7], the map ψ is essentially injective and its inverse function ψ−1 is well defined μ1-a.e. Note that there exists 
a unique pair (χx, θx) ∈ C

n × (−2π, 2π) such that x−1 · ψ(x) = 	1(χx, θx), see (3), whenever ψ(x) is not in the Heisenberg 
cut-locus of x ∈ H

n (and this happens for μ0 a.e. x).
The sub-Riemannian version of the generalized entropy convexity, viewed as the intrinsic curvature-dimension condition 

on (Hn, dCC, L2n+1), is stated as follows.

Theorem 2.5 (Entropy convexity on Hn). Let s ∈ (0, 1), and μ0 and μ1 be two compactly supported, absolutely continuous probability 
measures w.r.t. L2n+1 on Hn with densities ρ0 and ρ1 , respectively. Let μs = (ψs)#μ0 be the interpolant measure between μ0 and μ1 . 
Then the following entropy inequalities hold:

Ent2n+1(μs|L2n+1) ≤ −
∫
Hn

τn
1−s(θx)ρ0(x)1− 1

2n+1 dL2n+1(x) −
∫
Hn

τn
s (θψ−1(y))ρ1(y)1− 1

2n+1 dL2n+1(y)

≤ (1 − s)
2n+3
2n+1 Ent2n+1(μ0|L2n+1) + s

2n+3
2n+1 Ent2n+1(μ1|L2n+1).

For detailed proofs, further results and comments, see paper [2].
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