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RESUME

Dans cette Note, nous étudions I'estimateur a noyau récursif des quantiles conditionnels
d'une variable réponse réelle Y sachant une variable aléatoire fonctionnelle X. Nous
établissons la convergence presque compléte de cet estimateur estimation lorsque les
observations ont une corrélation ergodique.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version francaise abrégée

Soit (X, Yi)i=1,..n une suite de variables aléatoires, strictement stationnaire, a valeurs dans F x R, ol F est un espace
semi-métrique. On note d la semi-métrique sur F. On suppose que la version réguliére de la probabilité conditionnelle de
Y sachant X existe et admet une densité bornée par rapport a la mesure de Lebesgue sur R. Pour tout x € F, on désigne
par F* la fonction de répartition conditionnelle de Y sachant X = x (resp. par f* la densité conditionnelle de Y sachant
X =x).

Par la suite, on fixe un point x dans F et on note Ny un voisinage de ce point. Pour « €]0, 1[, le quantile conditionnel
d’ordre o notée ty (x) est

ta(x) =inf{y eR: P(Y1 = y[X1 =% =a}. (1)
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Dans cette Note, on se propose d’étudier I'estimation récursive du quantile conditionnel t, (x) sous des conditions d’ergodi-
cité. Plus précisément, on estime t (x) par

Ta(®) =infly e R: F¥(y) > )

S K (a7 d(x, X)) Ty, <y)
S K@ d(x, X))

avec T, désigne la fonction indicatrice. K est un noyau et a, est une suite de nombres réels positifs telle que limp_, o0 ay =
0.

FX(y) =

L'objectif principal de cette note est d’étudier la convergence presque compléte de I'estimateur f, vers ty. Ce travail
constitue une généralisation des résultats de Laksaci et al. [14] dans deux directions différentes (la méthode d’estimation
et la corrélation des données). En effet, d’'une part, la méthode du noyau classique peut étre considérée comme un cas
particulier de la présente étude. D’autre part, I'hypothése d’ergodicité, considérée ici, est impliquée par les conditions de
mélange fort considérées par Laksaci et al. [14]. Le résultat obtenu est donné par le théoréme suivant (voir la version en
anglais pour les notations et les hypothéses) :

Théoréme 1. Sous les conditions (H1)-(H4), on a

—~ 1 " B @n(x)logn
o —lu =0aco. | —= i Pilx, Ui By E
o (%) — ta (X) ((pn(x)l;a, $itx.a) + | 29200 )

1. Introduction

Let (Xi, Yi)i=1,..n be a sequence of strictly stationary dependent random variables valued in F x R, where F is a
semi-metric space. For x € 7 and « € ]0, 1[, the conditional quantile of order ¢, denoted t4 (x) is defined by

ta(®) =inf{y e R: P(Yq < y|X1=x) > a}. (2)

In this Note, we deal with the nonparametric estimation of this model by using a recursive kernel method when the
observations are strictly stationary ergodic data. Specifically, our estimate is defined by

To(® =infly e R: F¥(y) > }
where
i K(ai_ld(x’ Xi) Ty, <y)
K@ dx, Xp)

with T, being the indicator function K is a kernel and a, is a sequence of positive real numbers such that limy_, o a5 = 0.

Let us note that the recursive estimation method permits to update the estimate for each additional information. This
feature is very useful in this area of functional data analysis. Because the observations are available by real time monitoring,
this implies a real-time update of the information.

It is well documented that the conditional quantile estimation is useful in prediction setting. Indeed, it provides an
alternative approach to classical regression estimation. The first results in this topic date back to Stone [18] and have
been widely studied, when the explanatory variable lies in a finite-dimensional space (see, for instance, Samanta [17] for
previous results and Dabo-Niang and Thiam [5] for more recent advances). This model was introduced in nonparametric
functional statistics by Ferraty and Vieu [8]. They established the almost complete convergence of the kernel estimator in
the independent, identically distributed (i.i.d.) case. The asymptotic normality of this estimator was studied by Ezzahrioui
and Ould-Said [7]. Laksaci et al. [13,14] proposed an alternative estimate based on the L!-method. Recently, Dabo-Niang and
Laksaci [4] stated the convergence in LP-norm under less restrictive hypotheses. Among the wide literature on functional
data analysis, we only refer to the overviews for parametric models given by Bosq [3], Ramsay and Silverman [15], and to
the monograph of Ferraty and Vieu [8] for the prediction problem in functional nonparametric statistics. It should also be
noted that the literature on nonfunctional nonparametric modeling of ergodic data is quite extensive; we refer the reader
to Delecroix and Rosa [6] or to Laib and Ould-Said [10], and the references therein.

Our main purpose in this paper is to study the almost complete convergence' of a functional kernel estimate of the
conditional quantile ty(x) under the ergodicity condition. More precisely, we establish this asymptotic property for the

FX(y) =

T Let (zn)nen be a sequence of real r.v.'s; we say that z, converges almost completely (a.co.) to zero if, and only if, Ve > 0, Yoo i P(lzn] > €) < o0.
Moreover, we say that the rate of almost complete convergence of z, to zero is of order u, (with u, — 0) and we write z;, = 0,0 (up) if, and only if,
3e >0, Y12, P(|zn| > €uy) < co. This kind of convergence implies both almost sure convergence and convergence in probability.
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L'-recursive kernel estimate of t, (x). We point out that the results of this work generalize those of Laksaci et al. [14] in
two different directions (estimation method and data correlation). Indeed, firstly, the classical kernel method can be viewed
as a particular case of the present study. Secondly, the ergodicity hypothesis, considered here, is implied by the mixing
conditions studied in this cited work. It should be noted that, although the statistical modeling for functional ergodic data
has a great importance in various domains such as statistical physics, thermodynamics, or signal processing, it has not yet
been fully explored. As far as we know, only the papers by Laib and Louani [11,12] and Gheriballah et al. [9] have paid
attention to study the kernel estimation of the regression function. On the other hand, as noticed by Roussas and Tran [16],
the recursive estimate is more relevant than the classical kernel method in time series analysis. So, we can say that the
adaptation of the recursive estimate in ergodic functional time series is very motivating. It is worth noting that this work is
the first contribution that considers a recursive estimate in ergodic statistic.

The paper is organized as follows: we present our general framework in Section 2. The asymptotic properties of the
recursive L!-estimate are given in Section 3. We study some particular cases in Section 4.

2. The functional ergodic data framework

The general framework of our study is nonparametric modeling in functional ergodic data. Such dependence structure is
an alternative to the strong mixing condition usually assumed in functional time series analysis. The ergodicity condition
is easier to handle than the mixing one, which needs to calculate the supremum over two sigma algebras. Moreover, it is
well known that ergodicity is less restrictive than the mixing hypothesis. Recall that, in multivariate statistics, the ergodicity
assumption is defined with respect to an ergodic transformation. In our functional context, we adopt the definition intro-
duced by Laib and Louani [11]. In addition, as usually for nonparametric modeling in functional statistics, the contribution
of the functional component to our asymptotic study is controlled by the concentration property of the probability measure
of the functional variable. Specifically, in addition to the classical concentration hypothesis, we have to take into account
the dependency setting, modeled by the ergodic condition. Thus, our functional ergodic data is carried out by the following
considerations: for k=1, ...,n, we put § the o-field generated by ((X1, Y1), ...(Xk, Yi)), we set &, the o-field generated
by ((X1,Y1),...(Xk, Yk), Xk+1), we assume that the conditional distribution of Y given &, depends only on X}, and we
suppose that the strictly stationary ergodic process (Xi, Y;)jen+ Satisfies

(H1)

(i) the function ¢ (x, ) :=P(X € B(x, 1)) is such that ¢(x,r) >0, Vr>0
where B(x,h) = {x' € F/d(x',x) <h};

(ii) forall i=1,...,n there exists a deterministic function ¢;(x, -) such that
almost surely 0 < IP (X; € B(x,1)|Ti—1) < ¢i(x,r), Vr >0, and ¢j(x,r) > 0asr — 0;

i P(Xi € B ri)ISion)

We point out that this assumption is quite milder than that considered by Laib and Louani [12]. Indeed, unlike in Laib and
Louani [12], it is not necessary to write (approximatively) the concentration function P (X; € B(x,r)) and the conditional
concentration function IP (X; € B(x,1)|Fi—1) as a product of two independent nonnegative functions of the center and of the
radius. Recall that this asymptotic decomposition of these small-ball probability functions requires the boundedness of its
associated Onsager-Machlup function (see [2]), but here it is not necessary to employ this function.

(iii) for all sequence (rj)i=1,.n >0, 1 a.co.

3. Hypotheses and results

From now on, x will stand for a fixed point in F and C or C’ denote some generic constant in R**. In order to establish
the almost complete convergence (a.co.) of fy (x) to ty(x), we fix the neighborhood Ny of x, we assume that the regular
version F¥ of the conditional distribution function of Y given X = X’ exists for all X' € Ny, we suppose that F* has a
continuous density f* with respect to (w.r.t.) Lebesgue’s measure over R and we consider the following assumptions:

(H2) there exists 8 > 0, such that ¥(t1, t2) € [t (X) — 8, Lo (X) + 812, V(x1, X2) € N2,
|F¥1(t1) — F*2(t2)| < €' (d(x1,x2)P' + |t — £2]?) and inf fX(y)>C
yelta (X)—8. ta (X)+3]
with C>0,C' >0, g1 >0, B2 >0;
(H3) K is a function with support (0, 1) such that CT(g 1) < K(t) < C'T0,1);
(H4)

. @pn(x)logn
00 n2ysf(x)

=0 where @n(x)=)_¢i(x.a) and yn()=n""Y p(x.ay).

i=1 i=1
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We obtain the following theorem which deals with the pointwise a. co. convergence of Ty (x) to ty(X).

Theorem 1. Under the hypotheses of Proposition 1, we have

00— to(X) = Oncs B, e ap) + | Prlogn )
fa(0) — ta(®) ..(%()Za¢<xa)+ 20200

The detail of proof is omitted due to space limitation. However, it is based on the following proposition.

Proposition 1. Assume that (H1)-(H4) are satisfied, then, we have

= n(x) logn
F* — F¥ = Oaco. h i + $nt) 081
ye[ra(x)i%?mma]' VI=Ewl ( Pn(X) 4 Za it a0 V' n2yi (0 )

Proof of Proposition 1. We start by writing

F Rn An s
F*(y) — F*(y) = Bn(x )+ A(X y) | Qux,y)

Fpx)  Fp(®
where
Qn(x, y) = (Fx(») = Fy (1)) = F* () (Fp () — Fp (%)
0 _Re 5 —_7R = 7
Bn(x, y) = = —F(y), and Rn(x,y):=—Bn(x, y)(Fp(x) — Fp(x))
Fp(x)
with
FX(y) = ——r )21<(a—1d(x XD Ty,<yy, FX(y) = m/f @ ZIE[K(a—‘d(x XD Uiy, <y)|Fiz 1]
T o -1 . E — -1
Fo(x) == — wn(x)EK(a" d(x., X)), Fo = leE[K(a A, X))ISi1 -

Thus, Proposition 1 is a consequence of the following intermediate results, whose proofs are given in the Appendix.

Lemma 1. Under Hypotheses (H1), (H3) and (H4), we have Fp(x) — Fp(x) = O a.co. ( W:Sg;?}i”).

Lemma 2. Under the hypotheses of Lemma 1, we have 3C >0 > o2 | IP (FD (x) <C) < oo.

Lemma 3. Under Hypotheses (H1)-(H3), we have sup e[t (-3, t (x)+61 \’En x,y)|=0 (m Z?:] afgl bi(x, a,-)).

T T _ n(x) logn
Lemma 4. Under the hypotheses of Theorem 1, we have sup e, (x)—s, to 0+8] [FN ) — Fy ()] = Oacco. ( /(anwg(x) >

4. Discussions and conclusion

In this section, we go back to discuss the practical interest of three structural axes of our study, such as the ergodicity
assumption on the data, the recursivity of the estimate and the almost complete consistency.

- On the ergodicity assumption
In practice, the ergodicity assumption is a fundamental postulate of statistical physics in order to control the thermo-
dynamic properties of gases, atoms, electrons, or plasmas. This hypothesis is also used in signal processing, for studying
the evolution of a random signal. From a theoretical point of view, modeling a functional time series data with ergod-
icity condition allows us to include several usual cases not covered by the classical mixing dependency. Moreover, the
ergodic assumption permits also to avoid the complicated probabilistic calculations of the mixing condition. So, we can
say that the nonparametric analysis of functional time ergodic data has a great impact in practice as well as in theory.
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- On the recursivity of the estimate
The main advantage of the recursive estimate is that the smoothing parameter is linked to the observation (Xj, Y;),
which permits to update our estimator for each additional observation. Moreover, the recursive estimate is very fast
in practice. Indeed, the latter can be obtained by a recursive formula (see [1]). So, the computation of the recursive
estimator for an additional observation (Xp41, Ynt1) is based on its value computed with n observations, then its
computational time is smaller than that of the classical one, for which we must recompute the estimate on the whole
sample (X;, Yi)i=1,..n+1.
- On the almost complete consistency
It is well known that the almost complete consistency is stronger than the two popular stochastic consistencies (almost
sure convergence and the convergence probability). This is the main motivation to explore the asymptotic properties of
the estimate by the almost complete convergence. Compared to the existing result in the classical case, our convergence
rate is given in a general form. Indeed, on the one hand, the convergence rate of Theorem 1 exploits the structural axes
of our study; in particular, the ergodicity assumption, which is controlled by the function ¢;. On the other hand, our
convergence rate can be particularized for several usual cases, such as the classical kernel case, the independence case,
and the finite-dimensional case.
- The classical kernel case: as noted earlier, the classical kernel method studied by Laksaci et al. [13] is a particular case
of our work with a; = ay, for all 1 <i <n. Therefore, condition (H4) is replaced by
X, ap) logn
(p(z Zn) g 3)
n°¢=(x, an)
where @(x,an) = Y I_; ¢i(x, an). The convergence rate is given by the following corollary.
Corollary 1. Under Hypotheses (H1)-(H3) and (3), we have
~ 81 ©(x,an)logn
a0 — ta®) =0 (af') + Oaco. [ 27 =20
" n2¢2(x, an)
Remark 1. We point out that, as far as we know, there is no work in the literature on the conditional quantile
estimation in functional ergodic data. Therefore, we can advance that our results are also new in this area.
- The independence case: in this situation, Condition (H1) reduces to ¢(x,r) >0, and, for all i =1, ...n, ¢i(x,1) =P (x, 7).
Thus, @n(x) =nyy,(x) and our theorems lead to the next corollary.
Corollary 2. Under Hypotheses (H1)-(H4), we have
~ 1 < B logn
fa(X) —ta(x) =0 Y d ¢ a) )+ Ouco | | —
On(X) = @n(X)
Remark 2. We note that we obtain the same convergence rate of Laksaci et al. [13] by considering both cases (classical
kernel and independent data); it suffices to combine both corollaries (2 and 1).
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