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RESUME

Cette note se focalise sur I'estimation non paramétrique a noyau associé discret d'une
fonction de masse de probabilité. Une expression de la fenétre optimale minimisant
la partie asymptotique de l'erreur quadratique globale est donnée. Des expressions
asymptotiques pour le biais et la variance d'un critére de sélection par validation croisée
sont également présentées. Enfin, les deux méthodes de choix de fenétre sont illustrées
par des simulations et une application sur des données réelles.
© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access
article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Let (Xi)i=1,2,..,n be a sample of i.i.d. discrete random variables (r.v.) having a p.m.f. f(x) =Pr(X; =x) > 0 on support S
(e.g., non-negative integers set N). The discrete kernel estimator f, of f can be expressed as

~ 1
fato =~ ; Kyen(Xi), x€8, (1)
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where h =h(n) > 0 is an arbitrary sequence of smoothing parameters that fulfills lim,_ o h(n) =0 and Ky(-) is a p.m.f,
called discrete associated kernel, with r.v. Ky, on support Sy (containing target x and not depending on h) satisfying

H1: }!in}) E(Cxn) =x, and H2: ’}irrz)Var(le,h) =0;

without loss of generality, we assume Sy C S in all this work. The nonparametric kernel estimation has been already largely
discussed in the literature for the probability density function (p.d.f.), in particular for choosing smoothing parameters;
see Bowman [2]| or Marron [6]. In contrast, the discrete kernel estimation for p.m.f. has received more less attention than
that for p.d.f. In fact, until now, it commonly results from the discretization of the continuous case by considering the
ordinal variables as being continuous; see Aitchison and Aitken [1], Titterington [8] or Simonoff and Tutz [7]. For a specific
investigation of count data, Kokonendji et al. [4] and Kokonendji and Senga Kiessé [3] have developed the nonparametric
kernel estimation using some discrete associated kernels. This opens way to a specific treatment of the bandwidth selections
of discrete kernel estimators by adapting classical methods, which are well known for the continuous case. This note pursues
the first works realized on this subject, with a first attempt to provide an expression of the optimal bandwidth and by
investigating the asymptotic properties of the cross-validation criterion for f; in (1).

2. Discrete associated kernels

Let us first introduce the following hypotheses on modal probability of Ky :

H1': Ky pn(X) = 1 — hA(Ky.p) + O (h?),
with ZyeSx\{x} Ky n(y) = hA(Kxp) + 0(h?) — 0 as h — 0, where A(K, ) is bounded away from 0 for h — 0. It results in
the following proposition.

Proposition 2.1. Consider a fixed point x € S and the bandwidth h > 0. Under assumption H1', the expectation and variance of the
discrete associated kernel Ky p fulfill H1 and H2.

Proof. For the assumption H1, the expectation of Cy ;, comes directly from
E(Kxn) =xXKen()+ Y yKen(y) =x+Bx; h),
yesSx\{x}

with B(x; h) = —xhA(Kx ) + Zyesx\m yKxn(y)+ 0 (h?) — 0 for h — 0. For the assumption H2, the variance of Kx.n can be
successively expressed as

2
Var(Kyn) = Y y*Ken(y) — { > ny,h(w} =X {Kyn(®) — 1} + D(x; h),
yeSy yeSx

with D h) =3 s Y Keh (D) +X2 = {x+ 35, (v — x)Kx_h(y)}2 — 0 when h — 0 under the hypotheses H1’. Indeed,
when h — 0, we have both K, (y) — 0 for y #x and Ky p(x) = 1 for y=x. O

Then, the following assumption can be formulated on the variance of Ky :

H2' : Var(Ky.p) = hV(Kyp) + 0 (h?),
leading to some hypotheses H1” and H2’ less general than H1 and H2; A(Kx ) and V(KCx ) do not obligatory depend on x
and h, as in the next example.

Example. (See Kokonendji and Zocchi [5].) Let aj,ay be fixed integers and hi, h, be smoothing parameters. For any fixed
x € S =Z, consider the r.v. Kq, g,:x.h,,h, Of discrete generalized triangular associated kernels defined on supports Sg, x =
(x—1,x=2,...,x—aq1} and Sxgq, ={x,x+1,...,x+az} and whose p.m.f. is

1 X—y h y—x h
Km,az;x,m,hz(Y):F 1- 441 1Sa1.x(Y)+ 1- m 1Sx.a2(J/) ,

where P = (a1 +az +1) — (@; + 1)~ Zﬁ;l K — (ay 4+ 1)~ 222:1 kh2 = P(aq, az, hi, hy) is the normalizing constant. For h
sufficiently small, one has

2 2

Koy (0 =1 Z{th(af) + O(h%)} and Var(Kg;x ;) = Z{hivmo + 0<h?>},

i=1 i=1

with A(aj) = ajlog(ai+1) — Y\, log(k) and V (a;) = a;(2a? 4 3a; + 1) log(a; + 1)/6 — >, k? log(k). Hence, the assumptions
H1’ and H2’ are fulfilled.
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3. Nonparametric kernel estimator

This section presents an optimal h-value minimizing an approximate of the mean integrated squared error (MISE) of Tn
in (1), in comparison with the h-value mimimizing cross-validation function (Kokonendji and Senga Kiessé [3]).

3.1. Minimization of MISE

The 7n's variance and bias have been established by Kokonendji and Senga Kiessé [3] under H1 and H2; by taking into
account H1” and H2’, the global error is

MISE(h) = Y Var{fa(x)} + Y _ Bias?{fa(x)} = AMISE(h) + 0 (% + h2> + 0(h?),
XeS XeS

where

AMISE) = 3™ 700 [ {1~ hAG )~ 100] + 30 Y Vi 72 )

xeS xeS
is the approximated MISE for h sufficiently small, with f @ 3 finite difference of second order. Hence, an approximate value
hopt = arg miny..o AMISE(h) of the true optimal bandwidth hope = arg miny.o MISE(h) can be given by
ers f(X)A(ICx,h)
5
Yores FOAKM + (1/4) X yes [Van) FO R0}

which tends to 0 as n — oo with 0 < 3", s {V(Kxp) f@ (x)}2 < o0. It results in an asymptotic relationship such that ﬁopt ~

kon=1 with ko =43 ,c s fFOAKxn) /[ ges (V) fP (x)}z]. Thus, the discrete generalized triangular associated kernel
presented as an example has optimal bandwidth
—~ A(a;) .
hopt(n, i, f) = l s, i=1.2. )
2{A(@)} + /2){V(@)}* Y vz { fP )}

7l\opt(ns H=

3.2. Minimization of cross-validation function
We are interested in a bandwidth he, minimizing a cross-validation score function CV with respect to h such that
hey = arg ming. o CV(h) with

n

n 2
V=) :% > K (xi)] - ﬁ 2> K (X)) (3)

XeS i=1 i=1 j#i

The CV’s mean and variance for fixed h are provided in the following theorem.

Theorem 3.1. Consider a fixed point x € S and the bandwidth h = h(n) > 0 such that nlim h = 0. Assume that CV is the cross-
—00

validation function for the nonparametric estimator in (1) of p.m.f. f. Then, we have

_ R 1. 2
E(CV(h)} = AMISE(h) — 3 f?(x) + O (n +h )

xeS

and

2 2
1 1 h? 1
Var(CV ()} =~ > {Zl(ih(x) - 21<X,h(x)} - - :Zfz(x)] + o(7 + n_2>

xeS xeS xeS

where Ky, is a discrete kernel satisfying the assumption H1'.

Proof. Let us present the cross-validation score function in (3) as
1 @ 2
V= LYK 00+ EY Yy
i=1xeS Jj<i

with Hij = s Ken(X) Kxn (X)) — 2Kx, n (Xj). One has E{CV ()} = (1/n) X5 BAKZ (X1} + (1 — 1/mE(Hj)). For the
first term of E{CV (h)}, we get:
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D E(KE (X} =Y KZ0f0+Y. > 1<X,,(y>f(y);

XeS XeS xeS yeS\{x
where the second term in the previous equation is finite. Now let us express
E{Kx, n(X2)} =Y E{Ken (X} (0, E{Kn(X} =Y Ken () F ) =EBL{f (Ken)},
xeS yes

and E{f(Kxn)} = f(%) +(1/2) fP (%) Var(Ky p)+o(h) obtained by using a discrete Taylor expansion around x. For the second
term of E{CV (h)}, it ensues

h? 2
E(Hij) = o Z{V(Kx,h)f“) (x)} =Y FP@ +oh*) +0h?),

xeS xeS

where o(h?) is asymptotically dominated by O (h?). Hence, it results E{CV (h)}.
For CV’s variance, we begin by calculating the variance of the first term as

2
—Var{ZK (xo} “ZK <x>} fo— {ZK (X)f(X)} ]—l—Qn(X;h),

XeS xeS xeS
with
2
P = ) {ZK h(y)} f(y)+{21 ,,(x)f(x)} {ZZ! h(y)f(y)}
yeS\{x} “xeS P yeS xeS

where Q, is o(1/n%); in fact, we can assume Var[}_, s{n™2 > kK2 2 p(Xi )}] =o0m3) + 0(n~3). Considering the variance
of the second term of CV, we have

—V&I‘(Z ZHu) Var(Hu) + - (1 — %)COV(HU7 Hix) + O (:_3)

j<i

2
Without giving all details, we get E(lej) =Y res {ers Kih(x) - 2I<X,h(x)] f2(x) + o(h?). Then, by using expression of
E(Hjj) calculated previously, we have

2 2
Var(H,-j>=Z{Z 2h (0 — 21<x,h<x>} fz(X)—{Zfz(X)}

xeS xeS XS
h2 2
+> Z{wmmﬂ” <x)} D@ +oh?).
XeS XeS

In addition, it can be shown that

2
E<”U”ﬂ<>=2{2’ W00 — 21<x,h<x>} P2 +om);

xeS xeS

then, by considering Cov(Hjj, Hix) = E(H;jH;k) — E(H;j)E(H;), we have

2 2
Cov(H,-,-,ka):Z{ZI w0 — 21<x,h<x)} f3(x)—{Zf2(x)}

xeS xeS XeS

2 2
+h; Z{vocx,h)f(”(x)} > FA@ +o(h®) + 0(h?),

XeS XeS
with Cov(Hjj, Hy) = 0. Hence the desired result on Var{CV (h)}. O

4. Illustrations

This section illustrates the bandwidth choices; discrete symmetric and generalized triangular kernels are applied for
simulated and real data, respectively.
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Table 1
Averages ISE, Hom and hey for nonparametric estimator using triangular kernels.
Sample size n hopt ISE (hopt) Topt TSE (Ropt) fioy TSE(hey)
a=2 25 0.49 0.0028 0.23 0.0116 0.73 0.0130
100 0.16 0.0011 0.12 0.0043 0.23 0.0053
a=3 25 0.22 0.0034 0.10 0.0140 0.43 0.0149
100 0.06 0.0009 0.04 0.0057 0.07 0.0062
a=4 25 0.12 0.0033 0.05 0.0196 0.23 0.0195
100 0.03 0.0006 0.02 0.0065 0.04 0.0068
Estimations by using kernels with bandwidths (h1cv, h2cv) Estimations by using kernels with bandwidths (h01, h02)
Observed Observed
Estimated Estimated
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Fig. 1. Estimations of the number of goals per match using a discrete generalized triangular kernel.

4.1. Simulations

Consider simulated data of sample size n from a Poisson distribution f with mean w = 2. The estimator Tn using
symmetric triangular kernels is applied with a1 =a; =a € {2,3, 4}, as an example. The performance of f, is evaluated via
the integrated squared error ISE(h) =), n{fu®) — f (%)}? determined using hopt, hey and true hope computed numerically

since f is known. In Table 1, the averages ISE, /h\opt and hey are calculated based on 100 replications of the simulated
data. The value hop is competitive since globally we have TSE (hopt) < ISE(hcy) for chosen values of a; note that hope is

underestimated by h\opt and overestimated by h,. At last, by estimating f using empirical frequency of data, ISE is equal
to 0.0308 for n =25 and 0.0088 for n = 100.

4.2. Application

The estimator T,, is applied using a generalized triangular kernel with (aq, az) = (1, 2) on count data, describing a number
of goals per match from the French football championship (Kokonendji et al. [4]). By a cross-validation procedure, we have
h1cy =0.170 and hyey = 0.085, while the expression (2) results in hopt 01 = 0.156 and hgpt,02 = 0.031, obtained by replacing
the unknown p.m.f. f in (2) with its empirical frequency estimate. The quality of the estimate provided using (h1cy, hacy) is
close to that of the one calculated using (hopt,01, hopt,02), since ISE is, respectively, equal to 3.0081 x 10~% and 3.0082 x 1074

(Fig. 1).
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