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The free surface flow of an Oldroyd-B viscoelastic fluid is considered, following A. Bonito, 
M. Picasso, and M. Laso (2006) [1]. When removing a term in the extra-stress constitutive 
relation, the description of an elastic incompressible solid is obtained, in Eulerian 
coordinates, with the velocity field as the unknown, rather than the usual deformation 
field. Two simulations are proposed, a bouncing ball and an oscillating beam.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

L’écoulement à frontière libre d’un fluide viscoélastique d’Oldroyd-B est considéré, selon 
A. Bonito, M. Picasso et M. Laso (2006) [1]. En supprimant un terme dans la loi 
constitutive de l’extra-contrainte, nous décrivons un solide élastique incompressible, en 
coordonnées eulériennes, avec le champ de vitesse comme inconnue, plutôt que le champ 
de déformation. Deux simulations sont proposées, le rebond d’une balle et une poutre 
vibrante.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The numerical simulation of fluid flow coupled with deformable solids is a difficult task, mainly because i) the un-
knowns are different, velocity in the liquid region, deformation in the solid region, ii) the velocity is expressed in Eulerian 
coordinates, whereas the deformation is in Lagrangian coordinates. In [3], the solid deformation is expressed in Eulerian 
coordinates in order to solve a fluid–structure interaction problem, thus removing difficulty ii) listed hereabove. However, 
difficulty i) is still present.
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In this paper, we propose to formulate the elastic deformation of a solid in Eulerian coordinates, with the velocity as 
unknown instead of the usual deformation. This formulation is obtained starting from a viscoelastic fluid with free surface. 
Large deformations are naturally included in the formulation.

2. The model

We follow [1]. Consider a cavity � of Rd , d = 2 or 3, partially filled with a viscoelastic incompressible fluid, for instance 
a Newtonian solvent with non-interacting polymer chains. We are interested in computing the fluid shape between time 0
and time T . Let �(t) ⊂ � be the liquid region at time t and let �T be the space–time domain containing the fluid. The 
velocity v : �T →R

d , pressure p : �T → R and extra-stress σ : �T →R
d×d satisfy the mass and momentum equations

ρ
∂v

∂t
+ ρ(v · ∇)v − 2ηs divε(v) + ∇p − divσ = ρ g, (1)

div v = 0, (2)

supplemented with the Oldroyd-B constitutive equation

σ + λ

(
∂σ

∂t
+ (v · ∇)σ − ∇vσ − σ∇vT

)
= 2ηp ε(v). (3)

Hereabove ρ is the fluid density, ηs the solvent viscosity, ε(v) = 1
2 (∇v + ∇vT) the symmetric part of the velocity gradient, 

g the gravity, λ the polymer relaxation time, ηp the polymer viscosity. Let ϕ : � × (0, T ) be the characteristic function of 
the liquid. Then, the domain containing the fluid at time t is defined by

�(t) = {x ∈ �;ϕ(x, t) = 1}.
Assuming the fluid particles move with the fluid velocity, ϕ must satisfy

∂ϕ

∂t
+ (v · ∇)ϕ = 0 in � × (0, T ) (4)

so that

ϕ(x(t), t) = ϕ(x(0),0) 0 ≤ t ≤ T ,

with ẋ(t) = v(x(t), t) and x(0) ∈ �(0). Concerning the initial conditions, ϕ(0) or equivalently �(0) must be provided at 
time 0, so as v(0) and σ(0) in �(0). Concerning the boundary conditions, it is assumed that no external force applies on 
the fluid’s free surface (the set of points where ϕ jumps from 0 to 1), thus(

−p I + 2ηs ε(v) + σ
)

n = 0, (5)

where n is the unit outer normal of the free surface. On the boundary of the fluid being in contact with the walls, either 
slip, imposed or no-slip boundary conditions apply.

3. The elastic limit

In order to consider the elastic limit of the Oldroyd-B constitutive equation, we shall replace (3) by

ασ + λ

(
∂σ

∂t
+ (v · ∇)σ − ∇vσ − σ∇vT

)
= 2ηp ε(v), (6)

where α = 0 or 1. Three cases can be considered:

– α = 1, λ = 0, ηs ≥ 0, ηp ≥ 0: an incompressible Newtonian fluid with viscosity ηs + ηp;
– α = 1, λ > 0, ηs ≥ 0, ηp > 0: an incompressible Oldroyd-B viscoelastic fluid;
– α = 0, λ > 0, ηs = 0, ηp > 0: an incompressible elastic solid formulated in Eulerian variables, with velocity v as un-

known, instead of the usual deformation field.

The integral formulation corresponding to (6) is the following, see also [5]. Let x(t; X) be the position at time t of the 
fluid particle that left X ∈ �(0) at time 0, that is the solution to ẋ(t) = v(x(t), t), x(0) = X , or equivalently

x(t; X) = X +
t∫

v(x(s; X), s)ds. (7)
0
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Let F be the deformation tensor defined by F (X, t) = ∇x(t; X), i.e.

Fij(X, t) = ∂xi

∂ X j
(t; X) i, j = 1, . . . ,d.

Taking the derivative of (7) with respect to X and t , we have

∂ F

∂t
(X, t) = ∇v(x(t; X), t)F (X, t).

We can then check (taking the derivative of the below formula with respect to t) that

σ(x(t; X), t) = ηp

λ2

( t∫
0

e−(t−s)/λ F (X, t)F −1(X, s)F −T(X, s)F T(X, t)ds + λ(e−t/λ F (X, t)F T(X, t) − I)

)

satisfies (6) when α = 1 (Oldroyd-B), whereas

σ(x(t; X), t) = ηp

λ

(
F (X, t)F T(X, t) − I

)

satisfies (6) when α = 0 (elastic solid). This model (α = 0) coincides with the Eulerian formulation of an incompressible 
Neo–Hookean material described in [3]. It should be stressed that in [3] the unknown is the deformation x(t; X) − X , 
whereas here the unknown is the velocity v .

4. The numerical method

The numerical method is the one presented in [1] for viscoelastic fluids; it stems from the one advocated in [2,6] for 
Newtonian flows. An implicit, order one, splitting method [4] is used for the time discretization, in order to decouple 
advection and diffusion phenomena. Let N be a positive integer, τ = T /N the time step, tn = nτ , n = 0, 1, . . . , N . For each n, 
given approximations of ϕ , v and σ at time tn , advection:

∂ϕ

∂t
+ (v · ∇)ϕ = 0,

∂v

∂t
+ (v · ∇)v = 0,

∂σ

∂t
+ (v · ∇)σ = 0,

is performed between tn and tn+1 using a forward characteristics method on a structured grid of size h. This provides a 
new liquid domain at time tn+1, so as predictions of v and σ in this new liquid domain. Diffusion:

ρ
∂v

∂t
− 2ηs divε(v) + ∇p − divσ = ρg, div v = 0, ασ + λ

(
∂σ

∂t
− ∇vσ − σ∇vT

)
= 2ηpε(v),

is then solved between tn and tn+1 on this new liquid domain using a fixed finite element mesh with larger size H . In 
order to reduce the numerical diffusion of the volume fraction of liquid ϕ , the size h of the structured grid is three to five 
times smaller than the finite element mesh size H . The CFL number is between one and ten. The method is of order one 
with respect to H , h, and τ .

5. Numerical experiments

5.1. Bouncing ball

All physical data are given in the international system of units. Consider the cavity � = [−0.2, 0.2] ×[−0.2, 0.2] ×[0, 0.3]
partially filled with a viscoelastic fluid in the elastic limit – α = 0 in (6) and ηs = 0 in (1) – having density ρ = 1000, 
polymer viscosity ηp = 0.1, elastic coefficient λ = 0.005 and subject to gravity g = (0, 0, −9.81) in the vertical direction. 
In order to allow bouncing when the ball touches the bottom wall of the cavity, Signorini-like boundary conditions are 
enforced, see Section 2.2 in [6] for details.

At the initial time, the fluid is the ball centered at (0, 0, 0.15) with radius 0.1 and has velocity (0, 0, −0.1). The finite 
element mesh is uniform, the requested mesh size is H = 0.005, has 485,485 vertices and 2,823,660 tetrahedra. The size of 
the cells is h = 0.001, the time step is 0.025. As reported in Fig. 1, the ball bounces on the bottom wall of the cavity.

The convergence of the numerical method at time 2.9 is checked as follows. Three finite element meshes of typical size 
H = 0.01, H = 0.005, H = 0.0025 are considered, the number of nodes being 56,723, 485,485, 3,933,299, respectively. The 
ratio between H and h is kept constant, thus the size of the cells is h = 0.002, h = 0.001, h = 0.0005, respectively. The CFL 
number is also kept constant, thus the time step is 0.05, 0.025, 0.0125, respectively. The shape of the deformed ball at 
time 2.9 in the plane x = 0 is reported in Fig. 2. The CPU time (in seconds) required to run the computations is 177, 3569, 
196,844, respectively. The first two computations have been carried out on an Intel i7-2820QM 2.30 GHz processor with 
16 Gb memory, while the last computation was done on a Intel Xeon X5675 3.06 GHz with 192 Gb memory.
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Fig. 1. Ball bouncing. Shape of the deformed ball at time steps 30, 60, 90, . . . , 540 (time 0.75, 1.50, 2.25, . . . , 13.5).

Fig. 2. Convergence with mesh size. Shape of the deformed ball at time 2.9 in the plane x = 0 with three meshes of typical sizes H = 0.01, H = 0.005, and 
H = 0.0025.

We have checked the conservation of the total energy

1

2

∫
�

(
ρ(v·v) + λ

2ηp
(σ : σ)

)
ϕ dx

as a function of time with these three meshes, in the case when the gravity g is set to zero, and when the nonlinear terms 
∇vσ +σ∇vT are omitted in (6). The results indicate that a discrepancy of 10% still occurs on the finest mesh, thus showing 
that more accurate numerical strategies should be investigated. This is not surprising, since the method is only order-one 
accurate in space and space.
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Fig. 3. Oscillating beam. Shape of the beam at time steps 3, 6, 9, . . . , 54.

5.2. Oscillating beam

The same fluid is considered with the same numerical parameters (H = 0.005, h = 0.001, time step 0.025) but with a 
different initial condition. At initial time, the fluid is a beam located at [−0.2, 0.1] × [−0.05, 0.05] × [0.1, 0.2] and still has 
velocity (0, 0, −0.1). At the plane x = −0.2, the fluid is in contact with the cavity and has zero velocity, thus zero defor-
mation. As reported in Fig. 3, the beam bends towards the bottom of the cavity, bounces, and finally reaches a stationary 
position.

6. Conclusion

The description of an elastic incompressible solid is proposed, in Eulerian coordinates, with the velocity field as the 
unknown, rather than the usual deformation field. Large deformations are naturally included in the model.

The next step would be to couple this elastic incompressible solid with an incompressible Newtonian fluid in order to 
simulate fluid–structure interactions with large deformations, with velocity as the unknown in both the solid and the liquid.
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