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The view adopted here is that the largest class of splines which are useful for design is 
composed of all spaces of geometrically continuous piecewise quasi-Chebyshevian splines 
that contain constants and possess blossoms. We recently described an iterative construc-
tion of all spaces of this class. This note announces the possibility of building associated 
rational spline spaces (and therefore, associated NURBS) while remaining in the same class. 
This is obtained when applying in an appropriate way one step of this construction.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

On peut assez naturellement considérer que la plus grande classe d’espaces de splines 
utiles pour le design est celle des espaces de splines à sections dans différents espaces 
« quasi-Chebyshev généralisés » reliées entre elles par des matrices de connexion, espaces 
qui, de plus, contiennent les constantes et possédent des floraisons. Nous avons récem-
ment donné une construction itérative étonnamment simple de cette classe très difficile. 
Une application adéquate d’une étape de cette itération peut être interprétée comme la 
construction de splines rationnelles (donc de NURBS) associées, tout se passant à l’inté-
rieur de la même classe.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Geometrically continuous piecewise Chebyshevian splines for design

Throughout this note, we work with a fixed interval [a, b], a < b, and a fixed positive number n. An (n + 1)-dimensional 
space E ⊂ Cn([a, b]) is an Extended Chebyshev-space (for short EC-space) on [a, b] if any non-zero element of E vanishes at 
most n times on [a, b], counting multiplicities up to (n + 1), or equivalently if any Hermite interpolation problem in (n + 1)

data on [a, b] has a unique solution in E. Because we are working on a closed bounded interval, this important class of 
spaces coincides with the class of all spaces of the form EC(w0, . . . , wn), defined as the set of all functions F ∈ Cn([a, b]) for 
which Ln F is constant on [a, b], where Ln is the differential operator built from the system (w0, . . . , wn) of weight functions 
on [a, b] (which means that each wi is Cn−i and positive on [a, b]) via the classical procedure [19]
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L0 F := F

w0
, Li F := 1

wi
DLi−1 F , 1 � i � n. (1)

The EC-spaces which are good for design on [a, b] are those in which we can take w0 = 1, where 1(x) = 1 for all x ∈ [a, b].
We now consider a fixed sequence of interior knots a < t1 < · · · < tq < b and a fixed associated sequence of multiplici-

ties mk , with 0 � mk � n for 1 � k � q. With t0 := a, tq+1 = b and m0 := mq+1 = n + 1, and with x[k] standing for x repeated 
k times, this provides us with the knot-vector

K := (
t0

[m0], t1
[m1], . . . , tq

[mq], tq+1
[mq+1]) = (ξ−n, . . . , ξm+n+1), where m :=

q∑
k=1

mk.

We denote by C(K) the class of all (n + 1 + m)-dimensional spaces of piecewise Chebyshevian splines (for short PEC-splines) 
based on K. To build a space S in the class C(K), we need the following ingredients:

– a sequence of section spaces Ek , 0 � k � q: for each k, Ek ⊂ Cn([tk, tk+1]) contains constants and the space DEk is an 
n-dimensional EC-space on [tk, tk+1] (i.e., Ek is good for design on [tk, tk+1]);

– a sequence of connection matrices Mk , 1 � k � q: for each k, Mk is a lower triangular square matrix of order (n − mk)

with positive diagonal entries.

The associated PEC-spline space S (containing constants) is the set of all continuous functions S : I →R such that

1) for k = 0, . . . , q, the restriction of S to [tk, tk+1] belongs to Ek;
2) for k = 1, . . . , q, the following connection condition is fulfilled:(

S ′(t+
k ), . . . , S(n−mk)(t+

k )
)T = Mk · (S ′(t−

k ), . . . , S(n−mk)(t−
k )

)T
. (2)

The expression “PEC-splines” is used to stress that the pieces are taken from different EC-spaces. Due to the presence of 
connection matrices, PEC-splines are implicitly allowed to be geometrically continuous. By contrast, we use the expression 
Chebyshevian spline space in the simpler case where there exists a system (w1, . . . , wn) of weight functions on [a, b] such 
that EC(1, w1, . . . , wn) ⊂ S, i.e., when all section-spaces are obtained as restrictions of a single EC-space good for design 
on the whole of [a, b], and when the splines are parametrically continuous (i.e., all Mk are identity matrices). The ordinary 
polynomial spline space of degree n (based on K) is obtained when w1 = · · · = wn = 1.

Not all spaces of the class C(K) are of interest. This is why we consider the subclass C0(K) of all S ∈ C(K) which are 
good for design in the sense that they possess blossoms. Readers more precisely interested in blossoms are referred to [16]
and other references therein. We limit ourselves to mentioning that, when S ∈ C0(K), each PEC-spline S ∈ S blossoms into a 
symmetric function s of n variables (its blossom), which, by nature, is defined on a restricted subset of [a, b]n containing the 
diagonal of [a, b]n , on which s gives S . In this very difficult PEC-context, a major difficulty consists in proving that blossoms 
are pseudoaffine in each variable. This is the precise property which permits the development of all the classical CAGD 
algorithms (evaluation, knot insertion, subdivision. . . ). This leads to the following statements [13], which highly justify our 
terminology good for design.

Theorem 1.1. Any PEC-spline space S ∈ C0(K) possesses a B-spline basis which is its optimal normalised totally positive basis. Con-
versely, given S ∈ C(K), if S and any spline space derived from S by knot insertion possess B-spline bases, then S ∈ C0(K).

As is classical, a B-spline basis in S is a sequence N� ∈ S, −n � � � m, which is normalised (i.e., 
∑m

�=−n N� = 1), each 
N� being positive on the interior of its support [ξ�, ξ�+n+1], with some additional condition on its zeroes at the endpoints 
of its support. The total positivity of such bases ensures shape-preserving control (see [7]), and optimality should simply be 
understood as “the best possible” from this viewpoint, see [11] and references therein.

We now consider a system (w0, . . . , wn) of piecewise weight functions on [a, b], with the meaning that each wi is Cn−i and 
positive separately on each [t+

k , t−
k+1]. With such a system we can associate linear piecewise differential operators L0, . . . , Ln

via the procedure already recalled in (1). We denote by ECP(w0, . . . , wn) the set of all piecewise functions on [a, b] such 
that Ln F is constant on [t+

k , t−
k+1] for k = 0, . . . , q, with the additional requirement that

Li F (t+
k ) = Li F (t−

k ) for i = 0, . . . ,n, and for k = 1, . . . ,q.

This space is (n + 1)-dimensional and it is an Extended Chebyshev Piecewise space on [a, b], in the sense that we can count the 
total number of zeroes of each of its non-zero elements, including multiplicities up to (n + 1), and this number is at most n. 
We conclude this section with a constructive characterisation of the subclass C0(K) (see [16,17]), of which the most difficult 
is the “only if” part. It implies in particular that splines in C0(K) are examples of the so-called CCT-splines (see Chapter 9 
of [19] and [1]).

Theorem 1.2. Let S ∈ C(K) be given. Then, S ∈ C0(K) if and only if there exists a system (w1, . . . , wn) of piecewise weight functions 
on [a, b] such that ECP(1, w1, . . . , wn) ⊂ S.
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2. Geometrically continuous piecewise Chebyshevian NURBS

That a space S in the class C(K) belongs to the subclass C0(K) can as well be characterised by the existence of B-spline-
like bases in the space DS obtained from S by (possibly left or right) differentiation and also in all spline spaces obtained 
from it via knot-insertion [16]. Note that, a priori, splines in DS are not functions but piecewise functions. B-spline-like 
bases satisfy properties similar to those of a B-spline basis, not including normalisation.

In the rest of this section, we consider a fixed PEC-spline space S in C0(K), and we denote by Nk , k = −n, . . . , m its 
B-spline basis. One key-point to establish the “only if” part of Theorem 1.2 is the following result (see [16,17]).

Theorem 2.1. For a spline Σ = ∑m
−n σk Nk ∈ S the following properties are equivalent:

(i) the poles σ−n, . . . , σm of Σ form a strictly increasing sequence;
(ii) W := DΣ has positive coordinates in any B-spline-like basis of DS;

(iii) the piecewise function W is positive on each [t+
k , t−

k+1] and, if we define the piecewise differential operator L by L F = D F/W , 
then the spline space LS lies in the class C0(K).

This theorem has been exploited in [17] to show the existence of infinitely many Schoenberg-type operators in S, permit-
ting simultaneous approximation of a function and its first derivative. Here, we exploit it in a different way, after observing 
that its equivalence (ii) ⇔ (iii) is actually an equivalence within the space DS. We can thus restate it in S rather than in DS, 
which yields:

Theorem 2.2. Given a spline � = ∑m
−n ωk Nk ∈ S, the following properties are equivalent:

(i) the poles ω−n, . . . , ωm of � are all positive;
(ii) the spline � is positive on [a, b] and the space obtained after division of all elements of S by � belongs to the subclass C0(K).

Definition 2.1. For each spline � ∈ S with positive poles, the space obtained after division of all elements of S by � is called 
the rational spline space based on S and �. We denote it by R

(
S; �)

.

We now assume that (i) of Theorem 2.2 holds. The B-spline basis in R
(
S; �)

is the sequence

ωk Nk

�
, k = −n, . . . ,m. (3)

The rational spline space R
(
S; �)

can thus be described as the set of all continuous functions of the form
∑m

−n αkωk Nk∑m
−n ωk Nk

, α−n, . . . ,αm ∈R. (4)

By analogy with the classical rational splines, we say the functions in (3) are geometrically continuous piecewise Chebyshevian 
NURBS. One can check that, for each � ∈ S satisfying (i) of Theorem 2.2

S = R
(
R

(
S;�); 1

�

)
. (5)

3. Geometrically continuous piecewise quasi-Chebyshevian NURBS

An (n + 1)-dimensional space E ⊂ Cn−1([a, b]) is said to be a Quasi-Extended Chebyshev-space (for short QEC-space) on [a, b]
if any non-zero element of E vanishes at most n times on [a, b], counting multiplicities up to n, or, equivalently, if any 
Hermite interpolation problem in (n + 1) data involving at least two distinct points in [a, b] has a unique solution in E. If C
is a two-dimensional Chebyshev space (C-space) on [a, b] (which, in dimension two, is the same as being a QEC-space on [a, b]) 
and if Ln−1 is associated with a system (w0, . . . , wn−1) of weight functions on [a, b], then the set QEC(w0, . . . , wn−1; C)

composed of all functions F ∈ Cn−1([a, b]) for which Ln−1 F ∈ C is an (n + 1)-dimensional QEC-space on [a, b] [8]. Actually, 
all (n + 1)-dimensional QEC-space on [a, b] are of this form [14]. For the design, we have to take w0 = 1. Note that the 
QEC-context implies many more difficulties (see [12]). As an example, for any real numbers p, q > n − 1, the space Ep,q

spanned on [0, 1] by the (n + 1) functions 1, x, . . . , xn−2, xp, (1 − x)q is a QEC-space on [0, 1], while it is an EC-space on 
[0, 1] if and only if p = q = n.

To define the class QC(K) of all (n + 1 + m)-dimensional spaces of (geometrically continuous) piecewise quasi-
Chebyshevian (PQEC) splines, we weaken the requirements on the section-spaces: if each Ek is still assumed to contain 
constants, we only require that Ek ⊂ Cn−1([tk, tk+1]) and that DEk be an n-dimensional QEC-space on [tk, tk+1]. Apart from 
this change, the PQEC-spline space S is then defined exactly as previously when all multiplicities are positive. Without going 
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into details, let us mention that if mk = 0 for some k ∈ {1, . . . , q}, to a connection of the type (2) between the (n − 1) first 
left and right derivatives at tk , we have to add a convenient relation between left and right Bézier points. To have a flavour 
of what such a relation should be, the reader can refer to [15] and [18]. As previously, we have to introduce the subclass 
QC0(K) composed of all S ∈ QC(K), which are good for design in the sense that they possess blossoms. Of course this is 
a larger class than C0(K). In this larger framework, we can then state the exact analogue of Theorem 1.1, simply replacing 
“B-spline basis” by “Quasi-B-spline basis”. The term “quasi” refers to the fact that the count of zeroes at the endpoints of 
the supports must take into account that the section spaces are not EC-spaces, but QEC-spaces.

Given a system (w0, . . . , wn−1) of piecewise weight functions on [a, b], the associated piecewise differential operator 
Ln−1, and a two-dimensional C-space C ⊂ C0([a, b]) on [a, b], denote by QECP(w0, w1, . . . , wn−1; C) the (n +1)-dimensional 
space of all piecewise functions F on [a, b] such Ln−1 F ∈C and Li F (t+

k ) = Li F (t+
k ) for i = 0, . . . , n − 1 and k = 1, . . . , q. This 

space is a Quasi-Extended Chebyshev Piecewise space in the sense that the total number of zeroes of a non-zero element 
is bounded above by n, multiplicities included up to n. Below, the analogue of Theorem 1.2 describes the class QC0(K)

(including the possibility of zero multiplicities) see [15].

Theorem 3.1. Assume that S ∈ QC(K). Then S ∈ QC0(K) if and only if there exists a system (w1, . . . , wn−1) of piecewise weight 
functions on [a, b] and a two-dimensional C-space C on [a, b] such QECP(1, w1, . . . , wn−1; C) ⊂ S.

The “only if” part relies on an analogue of Theorem 2.1 for n � 2. However, moving from C0(K) to QC0(K) introduces 
many additional difficulties in the proofs. This in turn leads to the exact analogue of Theorem 2.2, simply replacing C0(K)

by QC0(K). Within QC0(K), we can thus define geometrically continuous piecewise quasi-Chebyshevian NURBS as in (3), the 
rational spaces satisfying (4) and (5).

4. Conclusion

The class QC0(K) can be seen as the largest class of spline spaces with ordinary differentiability assumptions on the 
section-spaces which can be used for Geometric Design (or Approximation or Isogeometric Analysis). The most famous 
examples of spaces in QC0(K) \ C0(K) are the so-called variable “degree” splines, that is, splines with, up to affine changes 
of variables, different Ep,q as section-spaces [3,4,9,8,10,15,2]. To make the note accessible, we deliberately avoided details 
on the difficulties specific to QEC-spaces [8,12,14], preferring to insist on the smaller class C0(K). This choice also enables 
readers to have access to detailed versions of the recent results recalled in Section 1, since they have already appeared, 
while it is not yet so concerning their analogues in the even more difficult class QC0(K), see [18].

Theorem 2.2 says in particular that the classical rational spline spaces are examples of spaces of parametrically contin-
uous splines in the class C0(K). They can thus benefit from all properties developed within C0(K), see [17] for instance. 
Compared to the degree n polynomial B-splines, one of the main interests of introducing the classical NURBS (see [5,6]) 
was the shape effects permitted by the parameters ω−n, . . . , ωm defining them. The class QC0(K) provides us with such 
a great variety of shape parameters (coming either from the section-spaces or from the connection matrices) that it may 
seem useless to add new parameters to introduce NURBS in it, all the more so as this does not increase the class QC0(K). 
Nevertheless, given S ∈ QC0(K), it will be interesting to investigate how its own shape parameters interact with the posi-
tive parameters defining all rational spline spaces based on S. The whole question will be addressed in details in a further 
article.
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