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© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RESUME

Si P(2) = Z’}:o ajzf est un polynéome de degré n, Rahman et Schmeisser [4] ont montré
que, pour tout p € [0, +o0], on a

IPllp

|an| + lao| < 2——L—.
" I+ zlp

Nous obtenons ici diverses majorations pour les coefficients d’'un polyndéme qui, entre
autres, incluent I'inégalité ci-dessus comme cas particulier.
© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and statement of results

Let P, be the set of all polynomials of degree n. For P € P, define
1/p

2
1 .
IPlp := E/lp(ele)lde (0 <p < 00),
0

| Pl oo := max|P(2)]
lz|=1
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and
2

1 .
IPllo == exp —/log|P<e'0)|de
2
0

If PePyand P(2) = Z?:o ajzj, then by Rouché’s theorem, the polynomial

P(2) + MPlloo = nZ" + an12""" + ... + (@0 + A Plloo)
does not vanish in the unit disk |z| <1 for any choice of A € C with |A| = 1. It follows that |ap + 1| P|lco| > |an| for each
A € C with |A] = 1. By choosing the argument of A suitably, we get

lan| + laol < IPlloo- (1.1)

This is called Visser’s inequality [5]. It is well known that equality holds in (1.1) only when a; =0 for j=1,2,...,n—1.
Different variants of this inequality can be found in [3]. Rahman and Schmeisser [4] obtained an L, version of inequality
(1.1) and proved that if P € P, and P(z) = Z'}:o ajzf, then for every p € [0, +o0],

IPIlp
|an| + |ag| < 2——. (1.2)
" 11+ 2z,

In this paper, we first prove the following result, which among other things includes inequalities (1.1) and (1.2) as special
cases. More precisely, we prove the following theorem.

Theorem 1.1. If P € Py and P(z) = }_'}_qa;z/, then for each 0 < p < oo,

al _ 1Pl
janl + 9 < e (13)
() 1+ 2zl

wherek=0,1,...,n—1.

For k =0, inequality (1.3) reduces to (1.2).
If we let p — oo in (1.3), we obtain the following result, from which the Visser’s inequality follows when k = 0.
Corollary 1.2.If P € Py and P(2) = Y__ya izJ, then

|ag|
lan] + Z5 < IPlloo

(&)

wherek=0,1,...,n—1.

Theorem 1.1 can be improved if we restrict ourselves to the class of polynomials having no zero in |z| < 1. In this
direction, we prove:

Theorem 1.3.If P € P, and P(z) = Z?:o ajzf does not vanish in |z| < 1, then for each 0 < p < oo,

lax| IPIl,
|an| + e < 2¢p ——E—
TR TP+,
1 ifk=0
_ _ — 1
wherek=0,1,...,n—1andcp, = ifk> 0.
11+ zllp

Note that 0 < ¢, <1 for k>0 and p > 0.
2. Lemmas

We first describe a result of Arestov [1]. '
For Y = (Y0, Y1, ..., ¥n) € C"*1 and P(2) = > i—0ajz’ € Py, we define

n
CyP(2) = Z yja;z’.
j=0

The operator C, is said to be admissible if it preserves one of the following properties:
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(i) P(2) has all its zeros in |z| <1,
(ii) P(z) has all its zeros in |z| > 1.

The result of Arestov [1, Theorem 2] may now be stated as follows.

Lemma 2.1. Let ¢ (x) = ¥ (logx), where  is a convex non-decreasing function on R. Then for all P € P, and each admissible opera-
tor C
yy

2 2
/w(ICyP(eiQ)I) do s/<p(c(y)|P(ei9)|) do
0 0

where c(y) = max (|yol. |Val).

In particular Lemma 2.1 applies with ¢ : x — xP for every p € (0, c0) and with ¢ : x — logx as well. Therefore, we have
for 0 <p < oo,

27T 1/p 27T 1/p
/leP(eiG)’pdG <cp) /lp(eie)]pde . 21)
0 0

Lemma 2.2.[f P € P, and P(z) = ?:0 ajzj does not vanish for |z| < 1, then fork=0,1,...,n—1, ¢ real and each p > 0,

. ar . an_1
<anem9 + Tkelk(9> ol + ( nn k el—k)o +ao>
() ()

2w
sAl’/|P(eig>|”d9
0

27

[

de

B 3 [ 1n+e? ifk=0
wherek=0,1,...,n 1andA_{ 1 if0 <k <n.
Proof. Since P(z) has all its zeros in |z| > 1, then all the zeros of P*(z) = z"P(1/Z) lie in |z| <1 and |P(2)| = |P*(2)|
for |z| = 1. Therefore P*(z)/P(z) is analytic in |z| < 1. By the maximum modulus principle |P*(z)| < |P(z)| for |z| <1 or
equivalently |P(z)| < |P*(z)| for |z| > 1. By Rouché’s theorem, all the zeros of the polynomial

n

P(2) = AP*(2) =Y (aj — AGn_ )2’

j=0
lie in |z| <1 for every A € C with [A| > 1. If 21, 2;, ..., 2, are roots of P(z) — AP*(2), then |zj| <1, j=1,2,...,n and we
have by Viete’s formula for k=0,1,...,n—1,
—i [ Gk + Ak
—pnk (2R ) = Zi Zi, ... Zj
( ) ( an+}\'a0 Z 1141 In—k

1<iy<ip...<ip_g<n
which gives
ag + Adp_i
an + Adg

= > |2iy2i, -2, | < (n i k) = (Z) (2.2)

1<ii<ip...<ip_g<n

Therefore, all the zeros of the polynomial

_ ay + Aa,_ a _ an_
M(2) = (an + Adg)Z" + Mzk —a,Z" + KK (aoz” + gn)k zk>

(&) (&) k

lie in |z| <1 for A € C with |A] > 1. So that if r > 1, the polynomial

_ n Ak k (- n n—k k)
M(rz) =an(rz)” + 5 (r2)" + A | ap(r2)” + ——(r2)

(&) (&)
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has all its zeros in |z| < 1. This implies

Qg an—k
an(r2)" + - (r2)*

(i) (i)

for |z| > 1. Indeed, if inequality (2.3) is not true, then there exists a point w with |w| > 1 such that

< |ag(ro)™ + (rz)k (2.3)

ag dn—k
B (rw)" + 7 (rw)*

n n
(i) ()
Since all the zeros of P*(z) lie in |z| <1, then by the similar argument as in (2.2), we have |ag| > |(1n,k|/(’,:), which implies
that do(rw)" + dn_r/ () rw)¥ # 0. We take

> |ag(rw)™ + (rw)k|.

an(rw)" + s (rw)
k
ag(rw)n + a’ﬁ"(rw)k’
k
then A is a well defined complex number with |A| > 1 and with this choice of A, we obtain M(rw) =0 where |w| > 1. This
contradicts the fact that all the zeros of M(rz) lie in |z| < 1. Thus (2.3) holds. Letting r — 1 in (2.3) and using continuity, in

particular, we obtain

A=—

a n_ (n—k
anzn+_2k n—k _k n—k _n—k

| OO e T

for |z| = 1. Again, since |ag| > |ﬁn_k|/(Z) then the polynomial agn—*)"z”*" + ag does not vanish in |z| < 1. Hence by the maxi-
k.

=

doZ" + (2.4)

mum modulus principle,
ag Un—k n—
Tzk nn CZn k+ao
() ()

A direct application of Rouché’s theorem shows that with P(z) =a,z" + - -- +ap,

CyP(2)= (anzn + aTka> el 1 (ann_k ik +a0>
(k) (k)

has all its zeros in |z| > 1. Therefore, C) is an admissible operator. Applying (2.1) of Lemma 2.1, the desired result follows
immediately for each p>0. O

apZ" + for |z] <1.

The next two lemmas can be found in [2].

Lemma 2.3. Let o be a complex number independent of 6, where 6 is real. Then for each p > 0

2 21

1P .
/‘a—i—e‘e d&:/’1+|a|e'9

0 0

P
de.

Lemma 2.4. Let n be a positive integer and 0 < p < oo,

[1+2, =11 +zl,.

Lemma 2.5. Let «, B € C and n, k are positive integers with n > k. Then for each p > 0,

o] + 18]
> BTy, (2.5)

az’ Zk
H +h P 2

Proof. If o =0 then (2.5) follows by the fact |1+ z||, < 2. Henceforth, we assume that « # 0, therefore by Lemma 2.3 and
Lemma 2.4, we obtain

Haz”—i—ﬂz"” = || z—i—é
p o
p
=|o¢|”1+’é z (2.6)
@l lp
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From the inequality

14rel?| 147
+ - zi with r= E and0 <60 <21
1+ el 2 o
we deduce
. o .
ol 1+‘ﬁ ot 1+ 1A] |+|'B|‘l+e'9 .
o 2

This implies

B

Bl ] o Il | o
o 2

||

1+' ‘z

p p

Using this in conjunction with (2.6), the desired result follows. 0O
3. Proof of theorems

Proof of Theorem 1.1. By hypothesis P € P,, we can write
P(z) = P1(2)P2(2),

where all the zeros of P1(z) lie in |z| <1 and all the zeros of P,(z) lie in |z| > 1. First, we suppose that P1(z) has no zero
on |z| = 1. Let the degree of polynomial P,(z) be k then the polynomial P3(z) = ZKP»(1/Z) has all its zeros in |z| <1 and
|[P3(2)| = |P2(2)| for |z| =1. Now consider the polynomial

F(z) = P1(2) P5(2),
then all the zeros of F(z) lie in |z| <1 and for |z] =1,
|F()| = P1(2)||P3(2)| = |P1(2)| IP2(2)| = |P(2)].
By the maximum modulus principle, it follows that
IP(2)| <|F(2)| for |z|>1.

Since F(z) #0 for |z| > 1, a direct application of Rouché’s theorem shows that the polynomial H(z) = P(z) + AF(2) has all
its zeros in |z| < 1, for every A € C with |A| > 1. Let F(2) = Z?ZO b;zl, then the polynomial

H(@) =Y (aj+bj)z’

j=0
has all its zeros in |z| < 1. If wi, wa, ..., w;, be roots of H(z), then |wj| <1, j=1,2,...,n and we have by Viéte’s formula
fork=0,1,...,n—1,
_k [ G+ Abg
R ) = Wi, Wi, ... Wj .
( ) (an+)\.bn Z 11 1 In—k

1<iy<iy...<ip_g<n

Now, proceeding similarly as in Lemma 2.2, we obtain

a b
an?" + 72| < |bnz" + o2

(i) (&)

for |z| > 1. This implies for each p >0 and 0 <6 < 2m,

=

2 p 2 b p
/ ane™ + TEel?| do < / bne™ + 7elk?| do. (31)
0 (Ic) 0 (k)

Again, since all the zeros of F(z) = Z’}:o b]-zj lie in |z| < 1, similarly as shown before, the polynomial b,z" + b 7k also has

&)

all its zeros in |z| < 1. Therefore, the operator C), defined by

b
CyF(2) =byz" + 2"

(&)
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is admissible. Hence by (2.1) of Lemma 2.1, for each p > 0, we have

27 b
. ki
b in6 + K e1k0

Of 0

where c(y) = max (|yol, |¥n|) = 1. Combining inequalities (3.1), (3.2) and noting that IM(el?)| = | P(el?)|, we obtain for each
p>0,

p 2
do < (c(y))? [ )| a6, (32)
0

2 1/p 2 1/p
. ax
anemG + e

p
iko N
/ o o] gol < /‘P(e‘ )} o
0 k 0
Using this in conjunction with Lemma 2.5, we obtain

|a| IP@)I
lan| + - <2— L. (3.3)
@ =1+,
In case P1(z) has a zero on |z| =1, inequality (3.3) follows by continuity. This proves Theorem 1.1 for p > 0. To obtain this
result for p =0, we simply make p — 0+. O

Proof of Theorem 1.3. Since P(z) = Z?zo ajzf does not vanish in |z| < 1, therefore by (2.4) for k=0,1,2,...,n—1,

e 4+ aTk ik0 | < anT—kei(nfk)G +aol. (3.4)
() ()

Also, by Lemma 2.2,
2 2
/ ’G(G) ~|—ei¢Q(9)’pd9 < AP / IP(e)[Pdo, (3.5)
0 0

where G(0) = ape™ + ‘j,:—"eik" and Q(0) = "E’T*)"ei(”*")g + ao.

Integrating both sides of (3.5) with respect to ¢ from 0 to 2w, we get for each p > 0 and ¢ real
27 2w 27
/f ‘G(Q) + e1¢Q(9)’ dedo < / Apqu/ [P(e?)Pdo. (3.6)
0

Now for every real ¢ and t > 1 and p > 0, we have
27 21
[rereeras= [1+etpas.
0 0

If G(0) #0, we take t =|Q (0)|/|G(0)|, then by (3.4) t > 1 and by using Lemma 2.3 we get

2 2
i p _ p i Q®) P
/’G(Q)—i—e Q(@)‘ de = |G(0)| /‘1+e o
0
p 1¢
— 16 )| /‘ + oo "dg

z|c(e)|P/|1+ei¢|Pd¢.

For G(0) =0, this inequality is trivially true. Using this in (3.6), we conclude that, for real ¢,

27

[lcwn”d@/Il+e‘¢’|Pd¢></A"d¢/|P<e‘9>|Pde

0
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This implies

1/p 1/p : 1/p
me { gﬂpApd¢] {jﬁ”{P(éGHPde}
[aneln9+_k iko <

e do <
0 () {fozﬂ 1 +ei¢|Pd¢}1/p

which in conjunction with Lemma 2.5, gives

la| IP@II,
|an| + - < 2cp —-
e P +zIl,

(&)
1 ifk=0

where ¢, = ifk>0. O

11+ 2zlp
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