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In this note, by combining the work of Amiot–Iyama–Reiten and Thanhoffer de Völcsey–
Van den Bergh on Cohen–Macaulay modules with the previous work of the author on 
orbit categories, we compute the algebraic K -theory with coefficients of cyclic quotient 
singularities.
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r é s u m é

Dans cette note, en combinant les travaux de Amiot–Iyama–Reiten et Thanhoffer de 
Völcsey–Van den Bergh sur les modules Cohen–Macaulay avec le travail précédent de 
l’auteur sur les catégories d’orbites, nous calculons la K -théorie algébrique avec coefficients 
des singularités quotient cycliques.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and statement of results

Let k be an algebraically closed field of characteristic zero. Given an integer d ≥ 2, consider the associated polynomial 
ring S := k[t1, . . . , td]. Let G be a cyclic subgroup of SL(d, k) generated by diag(ζ a1 , . . . , ζ ad ), where ζ is a primitive nth

root of unit and a1, . . . , ad are integers satisfying the following conditions: we have 0 < a j < n and gcd(a j, n) = 1 for every 
1 ≤ j ≤ d; we have a1 + · · · + ad = n. The group G acts naturally on S and the invariant ring R := SG is a Gorenstein 
isolated singularity of Krull dimension d. For example, when d = 2, the ring R identifies with the Kleinian singularity 
k[u, v, w]/(un + v w) of type An−1.

The affine k-scheme X := Spec(R) is singular. Following Orlov [5,4], we can then consider the associated dg category of 
singularities Dsing

dg (X), also known as matrix factorizations or maximal Cohen–Macaulay modules. Roughly speaking, this dg 
category encodes all the crucial information concerning the isolated singularity of X .
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Let us denote by (Q , ρ) the quiver with relations defined by the following steps:

(s1) consider the quiver with vertices Z/nZ and with arrows xi
j : i → i + a j , where i ∈ Z/nZ and 1 ≤ j ≤ d. The relations ρ

are given by x
i+a j

j′ xi
j = x

i+a j′
j xi

j for every i ∈ Z/nZ and 1 ≤ j, j′ ≤ d;

(s2) remove from (s1) all arrows xi
j : i → i′ with i > i′;

(s3) remove from (s2) the vertex 0.

Consider the matrix (n − 1) × (n − 1) matrix C such that Cij equals the number of arrows in Q from j to i (counted 
modulo the relations). Let us write M for the matrix (−1)d−1C(C−1)T − Id and M : ⊕n−1

r=1 Z/lν → ⊕n−1
r=1Z/lν for the associated 

(matrix) homomorphism, where lν is a (fixed) prime power.

Theorem 1.1. We have the following computation:

Ki(Dsing
dg (X);Z/lν) �

⎧⎨
⎩

cokernel of M if i ≥ 0 even,

kernel of M if i ≥ 0 odd,

0 if i < 0.

Thanks to Theorem 1.1, the computation of the (nonconnective) algebraic K -theory with coefficients of the cyclic quotient 
singularities reduces to the computation of (co)kernels of explicit matrix homomorphisms! To the best of the author’s 
knowledge, these computations are new in the literature. In the particular case of Kleinian singularities of type An they 
were originally established in [8, §3].

Corollary 1.2.

(i) If there exists a prime power lν and an even (resp. odd) integer j ≥ 0 such that K j(Dsing
dg (X); Z/lν) 	= 0, then for every even (resp. 

odd) integer i ≥ 0 at least one of the groups Ki(Dsing
dg (X)) and Ki−1(Dsing

dg (X)) is non-zero.

(ii) If there exists a prime power lν such that Ki(Dsing
dg (X); Z/lν) = 0 for every i ≥ 0, then the groups Ki(Dsing

dg (X)), i ≥ 0, are uniquely 
lν -divisible.

Proof. Combine the following universal coefficients sequence (see [8, §5])

0 −→ Ki(Dsing
dg (X)) ⊗Z Z/lν −→ Ki(Dsing

dg (X);Z/lν) −→ {lν-torsion in Ki−1(Dsing
dg (X))} −→ 0

with the computation of Theorem 1.1. �
2. A low dimensional example

When d = 3, n = 5, a1 = 1, and a2 = a3 = 2, the three steps (s1)–(s3) lead to the following quiver

1 x

y

z

2

y

x

z

3 x 4

with relations xy = yx, yz = zy, and zx = xz. Consequently, we obtain the following matrix

M =

⎛
⎜⎜⎝

0 −1 −3 −3
1 −1 −4 −6
3 −2 −10 −13
3 0 −11 −19

⎞
⎟⎟⎠ .

Since det(M) = 26, we have Ki(Dsing
dg (X); Z/lν) = 0 whenever l 	= 2, 13. In the remaining two cases, a computation shows 

that Ki(Dsing
dg (X); Z/lν) � Z/l for every i ≥ 0. Thanks to Corollary 1.2, this implies that for every i ≥ 0, at least one of the 

groups Ki(Dsing
dg (X)) and Ki−1(Dsing

dg (X)) is non-zero. Moreover, the groups Ki(Dsing
dg (X)), i ≥ 0, are uniquely l-divisible for 

every prime l 	= 2, 13.
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3. A family of examples

When n = d ≥ 3 and a1 = · · · = ad = 1, the above three steps (s1)–(s3) lead to the following quiver

1

x1

xd

... 2

x1

...

xd

3 · · · d − 3

x1

...

xd

d − 2

x1

...

xd

d − 1

with relations x j xi = xi x j . In the case where d is odd, we obtain the matrix

Mij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−∑i−1
r=0

((
d
r

))((
d

( j−i)+r

))
if i < j,

−∑i−1
r=1

((
d
r

))2
if i = j,

−∑ j−1
r=1

((
d

(i− j)+r

))((
d
r

))
+

((
d

i− j

))
if i > j,

where 
((

d
r

))
stands for the multicombination symbol.2 Similarly, in the case where d is even, we obtain

Mij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑i−1
r=0

((
d
r

))((
d

( j−i)+r

))
if i < j,

−2 + ∑i−1
r=1

((
d
r

))2
if i = j,

∑ j−1
r=1

((
d

(i− j)+r

))((
d
r

))
−

((
d

i− j

))
if i > j.

Whenever d is a prime number, all the multicombinations((
d
r

))
=

(
d + r − 1

r

)
= (d + r − 1) · · ·d(d − 1)!

r!(d − 1)! , 0 ≤ r ≤ d − 2

are multiples of d. This implies that the homomorphism M : ⊕d−1
r=1 Z/d → ⊕d−1

r=1Z/d is zero, and consequently that 
Ki(Dsing

dg (X); Z/d) � ⊕d−1
r=1Z/d for every i ≥ 0. Thanks to Corollary 1.2(i), we hence conclude that for every i ≥ 0 at least 

one of the groups Ki(Dsing
dg (X)) and Ki−1(Dsing

dg (X)) is non-zero.

4. Proof of Theorem 1.1

Let A be a finite dimensional k-algebra of finite global dimension. We write Db(A) for the bounded derived category 
of (right) A-modules and Db

dg(A) for the canonical dg enhancement of Db(A). Consider the dg functors τ−1�d : Db
dg(A) →

Db
dg(A), d ≥ 0, where τ stands for the Auslander–Reiten translation. Following Keller [3, §7.2], we can consider the associated 

dg orbit category C(d)
A := Db

dg(A)/(τ−1�d)Z . Similarly to [8, Thm. 2.5] (consult [7, §2]), we have a distinguished triangle of 
spectra

v⊕
r=1

K(k;Z/lν)
(−1)d�A−Id−→

v⊕
r=1

K(k;Z/lν) −→ K(C(d)
A ;Z/lν) −→

v⊕
r=1

�K(k;Z/lν),

where v stands for the number of simple (right) A-modules and �A for the inverse of the Coxeter matrix of A. Consider 
the following (matrix) homomorphism

(−1)d�A − Id :
v⊕

r=1

Z/lν −→
v⊕

r=1

Z/lν . (1)

As proved by Suslin in [6, Cor. 3.13], we have Ki(k; Z/lν) � Z/lν when i ≥ 0 is even and Ki(k; Z/lν) = 0 otherwise. Conse-
quently, making use of the long exact sequence of algebraic K -theory groups with coefficients associated with the above 
distinguished triangle of spectra, we obtain the following computations:

Ki(C(d)
A ;Z/lν) �

⎧⎨
⎩

cokernel of (1) if i ≥ 0 even,

kernel of (1) if i ≥ 0 odd,

0 if i < 0.

2 Also usually known as the multisubset symbol.
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Consider also the dg functors S−1�d : Db
dg(A) −→ Db

dg(A), d ≥ 0, where S stands for the Serre dg functor. The associated 
dg orbit category Cd(A) := Db

dg(A)/(S−1�d)Z is usually called the generalized d-cluster dg category of A; see [1, §1.3] and the 

references therein. Since S−1� = τ−1, we have Cd(A) � C(d−1)
A .

Now, let us take for A the k-algebra kQ /〈ρ〉 associated with the quiver with relations (Q , ρ). As proved independently 
by Amiot–Iyama–Reiten [1, §5] and Thanhoffer de Völcsey–Van den Bergh [2], we have Dsing

dg (X) � Cd−1(A). Consequently, 
it remains then only to show that the homomorphism (1), with d replaced by d − 2, agrees with the homomorphism M
associated with the matrix M := (−1)d−1C(C−1)T − Id. On the one hand, the number of simple (right) A-modules agrees 
with the number of vertices of the quiver Q . This implies that v = n − 1. On the other hand, the inverse of the Coxeter 
matrix of A can be expressed as −C(C−1)T, where Cij equals the number of arrows in Q from j to i (counted modulo the 
relations). This implies that (−1)d−2�A − Id = (−1)d−1C(C−1)T − Id = M, and hence concludes the proof.
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