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We prove in this Note an observation estimate at one point in time for the Kolmogorov 
equation in the whole space. Such estimate implies the observability and the null 
controllability for the Kolmogorov equation with a control region which is sufficiently 
spread out throughout the whole space.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous démontrons dans cette Note des inégalités d’observation traduisant la continuation 
unique pour l’équation de Kolmogorov définie sur l’espace tout entier.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and the main result

Consider the following Kolmogorov equation in the whole space (d ∈ N
+)

{
(∂t + v · ∇x − �v)g(t, x, v) = 0, (t, x, v) ∈ R

+ ×R
d ×R

d,

g(0, x, v) = g0(x, v), (x, v) ∈R
d ×R

d.
(1)

The well-posedness of the solution to (1) was proved in Propositions 2.1 and 2.2 in [3]. In [3], the authors considered the 
following definition.

Definition 1.1. (See Definition 1.1 in [3].) An open set O of Rn (n ∈N
+) is said to be an observability open set on the whole 

space Rn if there exist δ > 0 and r > 0 such that
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∀ y ∈R
n, ∃ y′ ∈ O such that BRn (y′, r) ⊂ O and |y − y′| ≤ δ. (2)

Here BRn (x, r) denotes an open ball in Rn of radius r centered at x.

From this definition, the authors in [3] proved the following estimate: assume that ωx ⊂ R
d and ωv ⊂ R

d both verify the 
property (2) with n = d. Then for all T > 0, there exists C > 0 so that for each g0 ∈ L2(R2d), the solution to (1) satisfies that

‖g|t=T ‖L2(R2d) ≤ C‖g‖L2((0,T )×ωx×ωv ). (3)

In [3], the proof of (3) is based on a spectral inequality, a Carleman inequality with respect to the variable v and a decay 
inequality for the Fourier transform of the solution to (1) with respect to the variable x. The geometric condition (2) plays 
an important role in proving (3). The authors in [3] pointed out the following fact: there exists an open set O of R2d , which 
is an observability open set in the whole R2d , and does not contain any Cartesian product O1 ×O2, where each O1 and O2
are both observability open sets in the whole space Rd .

In this note, assuming that ω ⊂ R
2d verifies (2) with n = 2d, we get a unique continuation estimate for the Kolmogorov 

equation. Such kind of estimate has been studied in [1] and [6]. Our proof combines the spectral inequality given in [3] and 
a decay inequality on the Fourier transform of the solution to (1) with respect to the variables x and v . The main result is 
as follows.

Theorem 1.2. Let ω ⊂ R
2d be an observability open set on the whole space R2d. Then there exists C = C(ω, d) > 0 so that for all 

T > 0, α ∈ (0, 1) and g0 ∈ L2(R2d), the solution to (1) satisfies that

∥∥g|t=T
∥∥

L2(R2d)
≤ e

C
α (1+ 1

T 3 )∥∥g|t=T
∥∥1−α

L2(ω)
‖g0‖α

L2(R2d)
. (4)

By a telescoping series method (see [6, Theorem 1.1]), a direct consequence of (4) is the following observability estimate.

Corollary 1.3. Let ω ⊂ R
2d be an observability open set on the whole space R2d. Let T > 0 and E ⊂ (0, T ) be a measurable set of 

positive measure. Then there exists Cobs = C(ω, d, T , E) > 0 so that for each g0 ∈ L2(R2d), the solution to (1) verifies that

∥∥g|t=T
∥∥

L2(R2d)
≤ Cobs

∫
E

‖g(t, ·, ·)‖L2(ω) dt. (5)

When E = (0, T ), Cobs = e
C(1+ 1

T 3 )
where C only depends on ω and d.

Such observability estimate implies by duality the null controllability for the Kolmogorov equation.

2. A spectral inequality

The following spectral inequality plays a key role to deduce the estimate (4). Here f̂ denotes the Fourier transform of f .

Theorem 2.1. (See Theorem 3.1 in [3].) Let ω ⊂ R
2d be an observability open set on the whole space R2d. Then there exists C =

C(ω, d) > 0 such that for all N > 0, every f ∈ L2(R2d) verifies that∫
|ζ |≤N

| f̂ (ζ )|2 dζ ≤ eC(1+N)

∫
ω

∣∣∣ ∫
|ζ |≤N

f̂ (ζ )eiz·ζ dζ

∣∣∣2
dz. (6)

We mention that, for a smooth compact and connected Riemannian manifold M with metric g and boundary ∂M , 
the following inequality was obtained in [4]: let ω ⊂ M be an open nonempty subset. There exists C > 0 such that the 
Laplace–Beltrami operator −�g on M satisfies that

‖u‖L2(M) ≤ C eC
√

λ‖u‖L2(ω) for all λ > 0 and u ∈ span{e j; λ j ≤ λ}, (7)

where {λ j} and {e j} are the eigenvalues and the corresponding eigenvectors of −�g with the zero Dirichlet boundary 
condition. Based on this type of inequality (7), a similar estimate to (4) was obtained for the heat equation in a bounded 
domain (see [1, Theorem 6]). The strategy in this note also works for the heat equation in the whole space. This can be 
compared with [5], where M is non-compact with a Ricci curvature bounded below. The author in [5] proves that, under 
an interpolation inequality in [5, (6) on p. 40], (2) implies the spectral inequality (6), which yields the observability for the 
heat equation in M .
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3. A decay inequality

We apply the Fourier transform, with respect to the variables x and v , to Eq. (1). Then we get the following equation in 
the corresponding frequency space{

(∂t − ξ · ∇η + |η|2)ĝ(t, ξ,η) = 0, (t, ξ,η) ∈R
+ ×R

d ×R
d,

ĝ(0, ξ,η) = ĝ0(ξ,η), (ξ,η) ∈ R
d ×R

d.
(8)

The solution to (8) has an explicit representation, which has been obtained in [2, Section 7.6, pp. 210–211]. Based on this, 
we get a decay estimate for the Kolmogorov equation as follows.

Proposition 3.1. There exist C > 0 and C ′ = C ′(d) > 0 such that for all N, T > 0 and each g0 ∈ L2(R2d), the solution to (8) verifies 
that ∫

|(ξ,η)|>N

|ĝ(T , ξ,η)|2 dξ dη ≤ eC ′−C N2 min{T ,T 3}
∫

R
d
x×R

d
v

|g0(x, v)|2 dx dv. (9)

Proof. Let g be a solution to (8). One can directly compute that

ĝ(t, ξ,η) = ĝ0(ξ,η + ξt)exp
( − |η|2t − η · ξt2 − |ξ |2t3/3

)
, ∀ (t, ξ,η) ∈R

+ ×R
d ×R

d.

This yields that for all (t, ξ, η) ∈ R
+ ×R

d ×R
d ,

|ĝ(t, ξ,η)| ≤ |ĝ0(ξ,η + ξt)|exp
[−(|η|2 + |ξ |2)min{t, t3}/30

]
.

From this, we see that for all N , T > 0,∫
|(ξ,η)|>N

|ĝ(T , ξ,η)|2 dξ dη ≤ exp
(−N2 min{T , T 3}/15

) ∫
R

d
ξ ×R

d
η

|ĝ0(ξ,η)|2 dξ dη,

which leads to (9). This ends the proof. �
4. Proofs of Theorem 1.2 and Corollary 1.3

In this section, we first prove Theorem 1.2 by combining Theorem 2.1 and Proposition 3.1 as follows.

Proof of Theorem 1.2. Let g be the solution to Eq. (1) with the initial data g0 ∈ L2(R2d). For each N > 0, write

ĝ(t, ξ,η) = χB N (ξ,η)ĝ(t, ξ,η) + χBc
N
(ξ,η)ĝ(t, ξ,η), ∀ (t, ξ,η) ∈ R

+ ×R
d ×R

d,

where χBN and χBc
N

denote the characteristic functions of the set B N �
{
(ξ, η) ∈ R

2d; |(ξ, η)| ≤ N
}

and its complement, 
respectively. Let T > 0. We observe that for all N > 0,

(2π)d‖g|t=T ‖L2(R2d) = ‖ĝ|t=T ‖L2(R2d) ≤ ‖χB N ĝ|t=T ‖L2(R2d) + ‖χBc
N

ĝ|t=T ‖L2(R2d). (10)

On one hand, we apply (6) to g to get the existence of a positive constant C1 = C1(ω, d) so that for all N > 0,∫
B N

|ĝ(T , ξ,η)|2 dξ dη ≤ e2C1(N+1)
[∫

ω

∣∣ ∫
R

d
ξ ×R

d
η

ĝ(T , ξ,η)ei(x·ξ+v·η) dξ dη
∣∣2

dx dv

+
∫

R
d
x×R

d
v

∣∣ ∫
Bc

N

ĝ(T , ξ,η)ei(x·ξ+v·η) dξ dη
∣∣2

dx dv
]
. (11)

On the other hand, let f (ξ, η) � χBc
N
(ξ, η)ĝ(T , ξ, η), (ξ, η) ∈R

d
ξ ×R

d
η . It follows from the inverse Fourier transform formula 

that 
∫

f (ξ, η)ei(x·ξ+v·η) dξ dη is the inverse Fourier transform of f . Then

1

(2π)2d

∫
R

d
x×R

d
v

∣∣ ∫
Bc

N

ĝ(T , ξ,η)ei(x·ξ+v·η) dξ dη
∣∣2

dx dv = 1

(2π)2d

∫
R

d
x×R

d
v

∣∣ ∫
R

d
ξ ×R

d
η

f (ξ,η)ei(x·ξ+v·η) dξ dη
∣∣2

dx dv

=
∫

R
d×R

d
η

| f (ξ,η)|2 dξ dη =
∫

Bc
N

|ĝ(T , ξ,η)|2 dξ dη. (12)
ξ
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Meanwhile, we apply (9) to g to obtain that there exist C2 > 0 and C3 = C3(d) > 0 so that for all N > 0,∫
Bc

N

|ĝ(T , ξ,η)|2 dξ dη ≤ e2[C3−C2 N2 min{T ,T 3}]
∫

R
d
x×R

d
v

|g0(x, v)|2 dx dv. (13)

Write T 1
3 � min{T , T 3}. By the inverse Fourier transform formula, we see from (10)–(13) that for all N > 0,

‖g|t=T ‖L2(R2d) ≤ eC1(N+1)‖g|t=T ‖L2(ω) + 2 eC1(N+1)+C3−C2 N2 T 1
3 ‖g0‖L2(R2d). (14)

Let α ∈ (0, 1). We set k(α) � α/(1 − α). Then we have that for all N > 0,

C1N ≤ C2
1

2k(α)C2T 1
3

+ k(α)
C2N2T 1

3

2
and C1N − C2N2T 1

3 ≤ C2
1

2C2T 1
3

− C2N2T 1
3

2
.

These, together with (14), yield that for all ε ∈ (0, 1),

‖g|t=T ‖L2(R2d) ≤ C̃1

[
ε−k(α)‖g|t=T ‖L2(ω) + ε‖g0‖L2(R2d)

]
, (15)

where

C̃1 � max
{

e
C1+ C2

1
2k(α)C2 T 1

3 ,2 e
C1+C3+ C2

1
2C2 T 1

3

}
≤ 2 e

(C1+C2+C3)2

αC2
(1+ 1

T 3 )
.

Since ‖g|t=T ‖L2(R2d) ≤ ‖g0‖L2(R2d) , the minimization of the right side of (15), with respect to the variable ε over R+ , leads 
to (4). This completes the proof. �

We next use the telescoping series method to deduce Corollary 1.3 from Theorem 1.2.

Proof of Corollary 1.3. Let g be the solution to Equation (1) with the initial data g0 ∈ L2(R2d). We take α = 1/2 in (4) and 
then see from the Young inequality that there exists C1 = C1(ω, d) > 0 so that

‖g|t=T ‖ ≤ 1

ε
e

C1(1+ 1
T 3 )‖g(T , ·, ·)‖L2(ω) + ε‖g|t=0‖, ∀ε > 0.

Generally, for each 0 < t1 < t2, we have that

‖g|t=t2‖ ≤ 1

ε
e

C1[1+ 1
(t2−t1)3 ]‖g(t2, ·, ·)‖L2(ω) + ε‖g|t=t1‖, ∀ε > 0. (16)

Let l be a Lebesgue density point of E . Then by [6, Proposition 2.1], we know that for each λ ∈ (1/
6
√

2, 1), there exists a 
sequence {lm} ⊂ (l, T ) so that for each m ∈ N

+ ,

lm − l = λm−1(l1 − l) and 3|E ∩ (lm+1, lm)| ≥ |lm+1 − lm|. (17)

Take a m ∈ N
+ and let 0 < lm+2 < lm+1 ≤ s < lm < T . Since ‖g|t=lm ‖ ≤ ‖g|t=s‖ and lm+1 − lm+2 ≤ s − lm+2, we apply (16), 

where t1 = lm+2 and t2 = s, to get that

‖g|t=lm‖ ≤ 1

ε
e

C1[1+ 1
(lm+1−lm+2)3 ]‖g(s, ·, ·)‖L2(ω) + ε‖g|t=lm+2‖, ∀ε > 0.

By integrating both sides over E ∩ (lm+1, lm) in the above inequality, we know that

(
ε|E ∩ (lm+1, lm)|e− C1

(lm+1−lm+2)3
)
‖g|t=lm‖ −

(
ε2|E ∩ (lm+1, lm)|e− C1

(lm+1−lm+2)3
)
‖g|t=lm+2‖

≤ eC1

∫
E∩(lm+1,lm)

‖g(s, ·, ·)‖L2(ω) ds, ∀ε > 0. (18)

Meanwhile, we know from (17) that

3|E ∩ (lm+1, lm)| ≥ |lm+1 − lm| ≥ e
− 1

|lm+1−lm | ≥ e
− λ3(l1−l2)2

(lm+1−lm+2)3
, ∀m ∈N

+.

Since lm − lm+2 = (1 + 1 )(lm+1 − lm+2), the above, as well as (18), yields that for all m ∈ N
+ and ε > 0,
λ
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εe
− C2

(lm−lm+2)3 ‖g|t=lm‖ − ε2e
− C2

(lm−lm+2)3 ‖g|t=lm+2‖ ≤ 3 eC1

∫
E∩(lm+1,lm)

‖g(s, ·, ·)‖L2(ω) ds, (19)

where C2 = (1 + 1
λ
)3[C1 +λ3(l1 − l2)2]. Let β � λ6

2λ6−1
(> 0) and ε = e

− (β−1)C2
(lm−lm+2)3 . Since λ2(lm − lm+2) = lm+2 − lm+4, ∀ m ∈N

+ , 
it follows from (19) that

e
− βC2

(lm−lm+2)3 ‖g|t=lm‖ − e
− βC2

(lm+2−lm+4)3 ‖g|t=lm+2‖ ≤ 3 eC1

∫
E∩(lm+1,lm)

‖g(s, ·, ·)‖L2(ω) ds.

We deduce from this that

e
− βC2

(l1−l3)3 ‖g|t=l1‖ =
∞∑

k=0

[
e
− βC2

(l2k+1−l2k+3)3 ‖g|t=l2k+1‖ − e
− βC2

(l2k+3−l2k+5)3 ‖g|t=l2k+3‖
]

≤
∞∑

k=0

3 eC1

∫
E∩(l2k+3,l2k+1)

‖g(s, ·, ·)‖L2(ω) ds ≤ 3 eC1

∫
E∩(l,l1)

‖g(s, ·, ·)‖L2(ω) ds.

Since ‖g|t=T ‖ ≤ ‖g|t=l1‖, the above implies that

‖g|t=T ‖ ≤ 3 e
C1+ βC2

(l1−l3)3

∫
E

‖g(s, ·, ·)‖L2(ω) ds.

This proves (5). Especially, when E = (0, T ), we can take l1 = T and l3 = T /4. We end the proof. �
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